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An essay on complex valued propositional logic 
 

Abstract. In the decision making logic it is often necessary solving of logical equations for which, due to the features of 
disjunction and conjunction, no admissible solutions exist. An approach is suggested in which by introducing of Imaginary 
Logical Variables (ILV) the classical propositional logic is extended to a complex one. This provides a possibility to solve a 
large class of logical equations. 
The real and imaginary variables each satisfy the axioms of the Boolean algebra and of the lattice. It is shown that the 
Complex Logical Variables (CLV) observe the requirements of the Boolean algebra and the lattice axioms. Suitable 
definitions are found for these variables for the operations disjunction, conjunction, and negation. 
A series of results are obtained, included also the truth tables of the operations disjunction, conjunction, negation, implica-
tion, and equivalence for complex variables. Inference rules are deduced for them analogous to Modus Ponens and 
Modus Tollens in the classical propositional logic. 
Values of the complex variables are obtained, corresponding to TRUE (T) and FALSE (F) in the classic propositional logic.  
A conclusion may be made from the initial assumptions and the results attained, that the imaginary logical variable i introduced 
hereby is ‘truer’ than the condition ‘T’ of the classic propositional logic and ¬i – ‘falser’ than the condition ‘F’, respectively. 
Possibilities for further investigations of this class of complex logical structures are pointed out. 

Keywords: propositional logic, logical equations, complex propositional logic, Boolean algebra, imaginary logical variable, lattice.  

Introduction 

Various types of logical equations are beginning to play more and more important role in the last dec-
ade in the development and application of different decision support systems. In some of such equations 
where operations disjunction and conjunction are applied there are no admissible solutions, which fact se-
riously hinders their usage. Propositional logic is well examined [1, 2] and it has a developed, up-to-date, 
apparatus to be applied to various areas of knowledge. A good example of this is the decision making log-
ic [3] which is also based on its principles. At last time solving of different classes of logical equations is 
necessary in different application areas.  

An approach is proposed in the present work, which provides a possibility to evade the existing diffi-
culties Due to the specificity of defining the logical operation disjunction and conjunction very often a 
solution of these equations cannot be found. 

As an example the following equation of the propositional logic may be pointed out: 
F Λ X = T;  (1) 

where X is a logical value which accepts one of two states – True (T) or False (F). 
It is evident that in the frame of the classical propositional logic there is no such value of X, X ϵ {T, F}. 

for which the requirements of requirements of equation (1) to be satisfied. 
An analogy to this condition may be sought in the number theory in which exist equations of the type: 

1;12  xx  (2) 
Equation (2) has no solution in the frame of the real numbers theory, as no real number exists which 

raised by square to give result -1. This leads to extending the range of the real numbers and to transition 
to complex ones through the introduction of the imaginary unit i (i2 = -1). The general appearance of the 
complex number z is: 

z = a+bi;  (3) 
where a and b are real numbers. 
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The complex numbers theory turned to be an exclusively fruitful scientific abstraction whose results 
led to successful solution of a series of problems in the area of science, engineering and economy. 

1. Imaginary logical variables 

Imaginary valued variables are considered in [9], but in an essentially different way, and [10] and [11] 
concern the classical Aristotelian logic.  

It is expedient the same approach to be used, and solution of equation (1) to be found by introducing 
an imaginary logical variable in the following way: 

F Λ i ≡ T; (4) 
where “≡” stands as usually, for ‘by definition’.  
State i and its negation ¬i are a part of the set of the possible imaginary states 

I = {i, ¬i}. (5) 
The Imaginary Logical Variable (ILV) p may be in one of the two states 

p ϵ {i, ¬i}. (6) 
In [5] authors suggest imaginary logical variables, but in the so called quaternion logic, which is sub-

stantially from the present approach. 
The classical logical variable  

x ϵ X={T, F} (7) 
will be further referred to as Real Logical Variable (RLV). 

On the base of relation (4) and by the logical operations disjunction (V), conjunction (Λ) and negation 
(¬) the complex logical variable (CLV) will be introduced, which is of the type: 
g1 = x1 V p1; g2=x2 Λ p2; (8) 
where x1 and x2 are RLV or their negations, and p1 and p2 – ILV or their negations. The set of all possible 
complex logical variables will be denoted by  

G = { g1; g2; … gi …}. (9) 
Real logical variables of the propositional logic sequentially correspond to the algebraic structures 

symmetric idempotent semi ring, Boolean algebra and a lattice [4]. 
The Boolean algebra B1 = (Bˈ1, V, Λ, ¬, 0, 1) is a structure of two binary operations V and Λ, negation ¬, 
identity elements 1 and 0 respectively. It is a symmetric idempotent ring in which for each element x a 
complement ¬x exists, such that  

x V ¬x =1; x Λ ¬x = 0. (10) 
The Boolean algebra axioms may be written down in Тable 1 as follows: 

Table 1 
№ Axiom № Axiom 
1.      cbacba     8.     cbacba     

2.  abba   9. abba   
3.  aaa   10. aaa 
4.  aa  0  11. aa 1  
5.       cabacba      12.      cabacba      

6.  00 a  13. 11a  
7.  1 aa  14. 0 aa  

 
Three important properties follow from axioms above: 
a) The complement operation is symmetric, i.e. 

;aa   (11) 

b) For each a the complement  ¬a is unique; 
c) The following rules, called de Morgan’s laws, exist: 

    .    ; babababa   (12) 
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If the property ‘absorption’  
    ,   , abaaabaa    (13) 

is added to the above stated axioms, then we reach to the algebraic structure lattice. 
There are no difficulties of principle the imaginary logical variables to satisfy, like the real ones, the axi-

oms from Table 1 and relations (10) to (13), i.e., the requirements of the symmetric idempotent semi ring are 
satisfied in them also, as well as the requirements of the Boolean algebra B2 = (Bˈ2, V, Λ, ¬, 0, 1), and of lat-
tice. At that as a difference from the RLV variable, the parameters 0 and 1 (identities) will be distin-
guished from those in B1. 

Hence the RLV in the frame of the Boolean algebra B1 and the ILV – in the Boolean algebra B2 func-
tion independently from each other in the corresponding algebraic structures. At that always 

 ,F ,  T x and  .  i i, p  

2. Connecting RLV and ILV 

The complex logical variables may be considered as connecting member between RLV and ILV. In 
the case that we consider this link is equation (1). 

It follows that the way should be defined, in which the logical operations with complex logical varia-
bles are performed and to define the frames of the algebraic structures in which they function. It is expe-
dient to define the operations disjunction and conjunction between complex logical values in the follow-
ing way: 

        ;p px xp xp x 21212211    (14)  

       ;     21212211 ppxxpxpx    (15)  

     ;    1221211 pxxxxpx    (16)  

     ;    1221211 pxxxxpx    (17)  

            ;          122121212211 PxPxPPxxPxPx    (18)  

            .         122121212211 PxPxPPxxPxPx    (19)  

If we introduce the notations: 
 ;  111 Pxg    ;  222 Pxg    ;  113 Pxg    ;  224 Pxg    ;  213 xxx   

 ;  213 PPP    ;  214 xxx    ;  214 PPP    ;  125 Pxg    ;  126 Pxg   

 ;  217 Pxg    ;  218 Pxg   ;449 Pxg  .3310 Pxg   

Then the relations above may be represented through the following CLV: 
;113321 gPxgg   ;124443 gPxgg   (20) 

;135421 ggxxg   ;146323 ggxxg   (21) 

  ; 15754421 gggPxgg     .  16863321 gggPxgg   (22) 

It is proper to define the negation at the complex logical variables similarly to the de Morgan laws, i.e. 
  ; 21111 xxpxg   (23) 

  . 21222 xxPxg   (24) 

It will be shown that the operations ,  and , defined through relations (14) to (24) for the complex 
logical variables correspond, both in their  real and imaginary parts in particular, to all axioms of Table 1 
of the Boolean algebra. 

The complement element is defined for the Boolean algebras B1 and B2 introduced above in the fol-
lowing way for the real and the imaginary variables: 

1 xx ; ;0 xx  1 PP ; . 0 PP  (25) 

For the real variables the unit has the truth value (T) and the zero – false (F). For the imaginary varia-
bles these values are i and ¬i respectively. 
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By analogy with (25) the complement for the complex variables Gg   will be defined in the follow-

ing way: 
,gg   ,gg   ,Gg  (26) 

where the first relation in (26) plays the role of unit and the second – of zero. 
It may be shown that the axioms from Table 1 are observed for the complex logical variables, and 

namely: 
1. Associativity of the disjunction of Axiom 1 directly follows from relation (14). 
2. Commutativity of disjunction is a corollary of 

           .       112221212211 PxPxPPxxPxPx   (27) 

3. Idempotence of the disjunction for CLV ensues from 
        .     PxPPxxPxPx   (28) 

4. Distributivity of disjunction concerning conjunction follows from (16) and (18). 
Axioms 6 and 7 are in conformity with the definitions from (25) and (26). The validity of Axioms 8 to 

14 from Table 1 about the conjunction of complex logical variables may be proved in an analogous way. 
Like as in propositional logic, it may be shown that the following properties of the Boolean algebra 

hold for the complex logical variables too: 
a) For each g, its complement g is unique; 

b) A ”symmetry” of the complement exist, i.e., 
. gg   (29) 

Really, if ,pxg   then    . )( gpxpxpxg   

c) De Morgan laws are valid also for the complex variables of the Boolean algebra and namely, if 

111 pxg   and ,222 pxg   then 

  ; 2121 gggg   (30) 

  .  2121 gggg   (31) 

Having in mind that the complex variables and the operations with them submit to the Boolean algebra 
axioms some new results may be received from the relations 4, and namely: 
Proporsition 1: A relation exists 

T Λ i = T. (32) 
If in (T Λ i) instead of T its equivalent value from the left hand side of (4) is put, then we receive: 

    T,T  iiiiii F FF  

which confirms (32). 
Corollary: The application of negation and of de Morgan laws to both sides of (4) and (32) results in 

¬(F˄i) = ¬T; T˅¬i = F; (33) 
¬(Ti) = ¬T; F˅¬i = F. (34) 

Relations (4) and (32) may be written in the following way: for each x ϵ {T,F} 
x ˄ i = T. (35) 

Relations (33) and (34) lead to the result: 
x ¬I = F. (36) 

The truth Table 2 for the disjunction from (36) and Table 3 for the conjunction from (35) are of the 
following kind: 

Table 2 Table 3 

x P g  x P g 
T i  F  T i T 
F i  F  F i T 

It follows from (35) and (36) and the two tables above, that no matter in what state the logical variable 
x is – T or F its disjunction with ¬i leads always to false, and its conjunction with i – always to true. 
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Proporsition 2: The following relation exists: 
T ˅ i = F ˅ i. (37) 

If in T ˅ i state i is substituted by its equivalence i = i ˅ ¬i from (25) keeping in mind (33), then 
T ˅ i = T ˅ (i ˅ ¬i) = (T ˅ ¬i) ˅ i = F ˅ i, 
which confirms (37). 

Corollary: By applying the de Morgan laws separately to both sides of (37) we will receive 
¬(T ˅ i) = F ˄ ¬i; ¬(F ˅ i ) = T ˄ ¬i. (38) 

It follows from (37) and (38) that for each x ϵ {T, F} 
x ˅ i = T ˅ i = F ˅ i; (39) 
x ˄ ¬i = T ˄ ¬i = F ˄ ¬i. (40) 

The results received provide a possibility for discussion on the values 0 and 1 from (26) and from the 
axioms 6 and 7 of Table 1 for the complex logical variables. 

If the CLV g accepts value F ˄ ¬i (T ˄ i respectively) or g = T ˅ ¬i (F ˅ ¬i respectively), then accord-
ing to Table 2 and Table 3 this complex variable passes into a real one – x, i.e. it should be considered 
further only in the frame of the classic propositional logic in which the unit (1) corresponds to T and the 
zero – to F. 

Depending on the logical equations of type (1) and (32) to (34) new imaginary variables may arise or 
through the same equations to turn again into real logical variables. These are processes analogical to 
those for the complex numbers. 

The complex logical values of the type g = T ˅ i (F ˅ i respectively) or g = F ˄ ¬i (T ˄ ¬i respective-
ly), which are pretenders for the role of 1 and 0 from (26). In the accepted way of defining the complex 
logical variables, ‘T ˅ i’, may be identified as 1, and ‘F ˄ ¬i’ – as zero. And really, if 

g = T ˅ i; ¬g = F ˄ ¬i; (41) 
then from (26) and (41) after respective transformations 

g ˅ ¬g = (T ˅ i) ˅ (F ˄ ¬i) = T ˅ (i ˅ (F ˄ ¬i)) = T ˅ i; (42) 
g ˄ ¬g = (T ˅ i) ˄ (F ˄ ¬i) = F ˄ (¬i ˄ (T ˅ i)) = F ˄ ¬i. (43) 

Another conclusion may be also drawn that for the complex variables (T ˅ i) corresponds to T for the 
real variables and (F ˄ ¬i) – to F in the classic propositional logic. This in its turn provides a possibility to 
construct truth tables for the complex variables from (39) and (40) – Table 4 for the disjunction and Table 
5 for the conjunction. 

 Table 4 Table 5 

№ g1 g2 g3 = g1 ˅ g2  № g1 g2 g3 = g1 ˄ g2 
1 T ˅ i T ˅ i T ˅ i  1 T ˅ i T ˅ i T ˅ i 
2 T ˅i F ˄ ¬i T ˅ i  2 T ˅i F ˄ ¬i F ˄ ¬i 
3 F ˄ ¬i T ˅ i T ˅ i  3 F ˄ ¬i T ˅ i F ˄ ¬i 
4 F ˄ ¬i F ˄ ¬i F ˄ ¬i  4 F ˄ ¬i F ˄ ¬i F ˄ ¬i 

Analogically to Table 3 the truth of lines 1 and 4 follow from the idempotence of conjunction and of 
lines 2 and 3 – from the equivalence in (43) and commutativity of its left hand part. 

3. Implication and Equvalence 

In a similar way through the CLV (T ˅ i) and (F ˄ i) a truth table for the implication can be drawn up, 
and namely: 

Table 6 

№ g1 g2 g3 = g1 →g2 
1 T ˅ i T ˅ i T ˅ i 
2 T ˅i F ˄ ¬i F ˄ i 
3 F ˄ ¬i T ˅ i T ˅ i 
4 F ˄ ¬i F ˄ ¬i T ˅ ¬i 
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Like with the real logical variables it may be shown that for the implication of the complex logical 
variables it can be put down: 

21213 ggggg  . (44) 

And really for row #1 of Table 6 it may be written down: 

)()()()()( iTiTiFiTiT  , 

which follows from (44) and row #3 of Table 4. 
Row #2 is confirmed by the idempotent relation: 

.)()()()( iFiFiFiFiT   

The same may be written down and for row #3 of Table 6: 
iTiTiTiTiF  )()()()( ; 

and the last row of the same table follows from the second row of Table 4 and (44): 
iTiFiTiFiF  )()()()( . 

Following the method shown up, the following truth table of the equivalence of the complex logical 
variables may be drawn up 

Table 7 

№ g1 g2 g3 = g1 ~g2 
1 T ˅ i T ˅ i T ˅ i 
2 T ˅i F ˄ ¬i F ˄ ¬i 
3 F ˄ ¬i T ˅ i F ˄ ¬i 
4 F ˄ ¬i F ˄ ¬i T ˅ i 

 
The following relation is true for the complex logical variables, like for the real ones: 

)()(~ 2121213 ggggggg  . (45) 

It follows for the first row of Table 7 from the idempotence of conjunction, (42), and (45) that: 
iTiFiTg  )()(3 . 

The truth of the second row of Table 7 immediately follows from relations (42), (43),and (45) 
iFiFiTiFiTiFiTg  ))()(())()(())()((3 . 

The truth of the third row of Table 7 may be may be proved in the same way. The fourth row of Table 7 
as well as the first row, follow from the idempotence of conjunction, (42), (43), and (45). 

iTiTiFg  ))()((3 . 

Table 7 for the implication provides a possibility, like in the classical propositional logic, to deduce 
the following two rules for inference for the complex propositional logic: 

1. Modus Ponens 

;
  ,

2

13

iTg

iTgiTg




 (46) 

2. Modus Tollens 

. 
  ,

1

23

iFg

iFgiTg




 (47) 

4. The imaginary logical variables i and ¬i - illustration 

It is not known in what exact interrelation and ratio are the states i or ¬i , with T and F respectively, 
except for the cases of Table 2 and Table 3. The following general conclusion may be conditionally 
drawn from (4): that i is ‘truer’ from state T of the real variable, and from (33) – that ¬i is ‘falser’ from its 
state F. These assumptions for the complex logical variables may be illustrated in the following way: 
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A. Disjunction 

 
Fig. 1 

 
B. Conjunction 

 
Fig. 2 

 
The initial vertex of each first arrow shows the starting state of the complex variable and its end vertex 

– its second state which is connected to the first through disjunction/conjunction. The final vertex of the 
second arrow shows the result of the corresponding logical operation. The last two operations in each of 
the two figures corresponds to the operations (i˅¬i) and (T˅F) on Fig. 1 and (i˄¬i) and (T˄F) – on Fig.2. 

The property of absorbing was shown in (13) to which the real and imaginary logical variables obey. It 
is also true for the complex logical variables, and namely: 

12111211 )(  ;)( gggggggg  , (48) 

where g1 and g2 are CLV. 
The check of iFgiTg  21  and for the first of the two equalities (48), considering relation 

(37) demonstrates: 

i 

T 

F 

¬i 

i 

T 

F 

¬i 
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iTiFiTiFiTiTggg  )()())()(()()( 211 . 

The second equality of (48) may be checked in a similar way. 

Conclusions 

The complex propositional logic corresponds to the algebraic structure ‘lattice’ like the real and imag-
inary logical variables. It is evident that a series of results may be obtained in the complex propositional 
logic, which have analogs in the classical propositional logic. Introduction of the complex logical varia-
bles, similarly to the complex numbers, provides a possibility to resolve logical equations similar to the 
one of type (1), which in classic propositional logic has no solution. The abstraction ‘complex logical var-
iables’ extends to a given degree the abilities of the classic propositional logic. This is of importance for 
the logic decision making systems, which are actively used in the intelligent systems, as well as in the 
systems with artificial intelligence. There exist quite good attempts for use of complex numbers in fuzzy 
logic [6, 7] but there the interpretation is quite different, concerning only the classical complex numbers. 
In paper the notion ‘complex variable’ is used as an analogy to describe elements of various algebraic 
structures in which propositional logic may be described. 
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