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An Approach to Constructing Sets with Imaginary  
and Complex Elements 

 

Аннотация. When solving equations with sets problems arise that there is no solution for some of them in the framework 
of the classic Cantor’s set theory. Introduction of an imaginary set, different from the real (classical) set is proposed in the 
present work. At that the union of an element or a set located in a real state with the same element or set from the imagi-
nary state result in an empty state. This means that one and the same element in a given set may be in one only state – 
real or imaginary but not in both simultaneously. The set in which different elements in one of the two possible states are 
contained is called a complex set. With regard to these features the classical operations - ∪, ∩, \, ∆, are adapted to com-
plex ones. Some relations are obtained characteristic to the complex sets only. It is shown that these sets observe the al-
gebraic requirements intrinsic to the Boolean algebra and the lattice, De Morgan’s laws for double negation, commutativi-
ty, distributivity and other. An example is shown for constructing a boolean of the complex sets. 
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Introduction 

Different problems had arisen in the centuries 
old history of mathematics and nowadays – in In-
formation Technologies (IT), which could not be 
solved in the frame of the structures established. 
This had imposed extension of these structures. An 
example for this may be pointed out in the real 
number theory in which an equation arises in the 
form: 

x2 = -1; x = √െ1, (1) 

which cannot be solved in the real numbers’ frame. 
No real number exists which raised to square re-
sults in -1. This had imposed the extensions of real 
numbers’ scope to the complex numbers [4] thor-
ough the imaginary unit i (i2 = -1). The general 
well-known form of these complex numbers z is: 

z = a + bi, (2) 

where a and b are real numbers. 
Analogically in [7] an imaginary logical varia-

ble i was introduced accepting two states i and ¬i . 
This provided a possibility of solving logical equa-
tions of the form of F ˄ x = T through the relation 

F ˄ i = T (3) 
where {F, T} are the states of the classical real (r-)  
propositional logic, and {i, ¬i} is the set of states 
in the imaginary logic. 

A solution of the set equation [2, 3, 5] 

A	∪	B = C; (4) 

is sought in the present work, where Ø is the empty 
set, and the symbols ∪, ∩, \, ∆ denote the respective 
operations union, intersection, difference, and sym-
metric difference in the Cantor’s set theory [2], and 
A, B, and C are respective subsets. If we suppose 
that in equation (4) non-empty sets A and B are  
given, such that  

A\C ് Ø and C\A ് Ø. (5) 

then, as seen from Fig. 1 no such a set B exists in 
the frame of the classic set theory that satisfies the 
requirements of (4). 

This impossibility is still more obvious if we 
suppose in equation (4) 

A ് Ø; C ് Ø; (6) 

because there is no way that the non-empty set A 
united with any other set B to result in an empty set 
C = Ø. 
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1. Real and imaginary sets 

An outcome of the situation may be found if we 
suppose that every element a ϵ U, where U is the  
universal set may be in one of two its sets – real a 
and imaginary – ia, where i – a symbol of imagi-
narity. Then another point of view may exist, 
where those two states of one and the same ele-
ment a may be considered as two distinct elements  

a ϵ U, and ia ϵ {ia/a ϵ U}. (7) 

We assume that new complex elements may be 
formed from (7) by a union between a and ib, 
namely: 

c = a ∪ ib; a ϵ U; ib ϵ {ib/b ϵ U}; (8) 

at which a ≠ b. 
Then the universal set 

Uˈ = {(a ∪ ib) / a ϵ U; b ϵ U; a ≠ b} (9) 

should be considered as a complex universal set in 
which together and separately three types of ele-
ments are contained: 

{a}; {ib}; {(a ∪ ib)}. (10) 

As a mapping exists between U and Uˈ - and 
that follows from (9), further both will be denoted 
by one and the same symbol – U. 

For finite sets A, B, and C relations (10) will be 
in the following form 

a ϵ A; b ϵ B; (A ∪ iB) ⊆ C. (11) 

A requirement is introduced that for each a ϵ U 
and ia ϵ iU the following relation is observed: 

a ∪ ia = Ø. (12) 

This means that condition (12) will be also ob-
served for any finite set A ⊂ U; and iA ⊂ iU, 
namely: 

A ∪ iA = Ø. (13) 

With relations from (7) to (13) thus defined a gen-
eral solution B may be found of the equation (4) and 
(5) by using the imaginary element and sets: 

B = C ∪ i(A \ C); 
i.e. A ∪ B = A ∪ (C ∪ i(A \ C)). (14) 

In the case (6), when C = Ø the solution is sim-
pler and evident. 

B = iA; A ∪ B = A ∪ iA = Ø. (15) 

In this way the class of the solvable set equa-
tions is extended through the imaginary elements 
and sets. 

Requirement (12) means that that any element a 
of one and the same complex set C cannot simultane-
ously be in two states – real a and imaginary ia, i.e.  

if a ϵ C then ia ∉ C, and vice versa. (16) 

Definition: Two complex sets 

C1 = A1 	∪ iB1; C2 = A2 	∪ iB2; (17) 

are considered to be equal if each element a ϵ A1 is 
simultaneously an element of A2 and vice versa and 
each element of iB1 is simultaneously an element 
of iB2 and vice versa. Sets C1 and C2 from (17) are 
thoroughly defined by their elements. If 

A = {a1, a2, .., an); iB = {ib1, ib2, .., ibn);  
A ∩ B ≠ Ø; 

(18)

then the set C = A ∪ iB will be called (n, m) ele-
ment set. 

Set C1 of (17) is a subset of C2 if each element 
of A2 is an element of A1 and each element of iB2 is 
an element of iB1. Then we may write down: 

A1 ⊆ A2; iB1 ⊆ iB2; (A1 ∪ iB1) ⊆ (A2 ∪ iB2); 
and C1 ⊆ C2. 

(19)

Another definition may be given: set C1 is equal 
to C2 if 

((C1 ⊆ C2) and ((C2 ⊆ C1)). (20) 

The proof method of set theory equations is known 
as “method od two inclusions”. In case that A1 ∪ 
iB2 = Ø and C1 ≠ C2 we write down C1 ⊂ C2 and 
the set C1 is called a “proper set”. 

For the complex sets’ operations		∪, ∩, \, ∆ will 
be defined observing the requirements: 
for each C = A ∪ iB,  

A ∩ B = Ø and A ∩ iB = Ø. (21) 

Further on the expedience of such an assump-
tion will be proved through relations (29) to (33). 
For each C1 and C2 from (17): 

a) The union of C1 ∪ C2 is equal to: 

(A1 ∪ iB1) ∪ (A2 ∪ iB2)=((A1 ∪ A2) ∪ i(B1∪ B2) =
= {a/(a ϵ A1˅ a ϵ A2)}∪{(ib/ (ib ϵ iB1 ˅ ib ϵ iB2)};

(22)

C\A A\C

Fig. 1 

A   C 
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where ˅ and ˄ are the symbols of disjunction and 
conjunction respectively. The results of (22) follow 
from the associativity of the union. 

b) The intersection C1 ∩ C2 is equal to: 

(A1 ∪ iB1) ∩ (A2 ∪ iB2) = ((A1 ∩ A2) ∪ i(B1 ∩ B2) = 
= {a/(a ϵ A1 ˄ a ϵ A2)} ∪ {(ib/ (ib ϵ iB1 ˄ ib ϵ iB2)}; 

(23) 

The relation above immediately follows from: 
(A1 ∪ iB1) ∩ (A2 ∪ iB2) = (A1 ∩ A2) ∪ (A1 ∪ iB2) ∪ 
(A2 ∩ iB1) ∪ i(B1 ∩ B2)  = (A1 ∩ A2) ∪ i(B1 ∩ B2); 
due to the fact that by assumption (21) 
A1 ∩ iB2 = Ø and A2 ∩ iB1 = Ø.  

c) The difference C1 \ C2 is equal to  

(A1 ∪ iB1) \ (A2 ∪ iB2) = (A1 \ A2) ∪ i( B1 \ B2) = 
={a/(a ϵ A1 ˄a ∉ A2)}∪{ib / (ib ϵ iB1 ˄ ib ∉ iB2)}. 

(24) 
This follows from: 

(A1 ∪ iB1) \ (A2 ∪ iB2) = 
= ((A1 \ (A2 ∪ iB2)) ∪ ((iB1 \ (A2 ∪ iB2)) =  
= (( A1 \ A2) ∩ (A1 \ iB2 )) ∩ ((iB1 \ A2) ∪ (A1 ∪ iB1) 
∪ ((iB1 \A2) ∩ ((iB1 \ A2) ∩ (iB1 \ iB2)) = 
((A1 \ A2) ∩ A1)) ∪ ((iB1 ∩ i(B1 \ iB2)) =  
= ( A1 \ A2) ∪ i(B1 \ iB2). 

In analogic manner: 
(A2 ∪ iB2) \ (A1 ∪ iB1) = (A2 \ A1) ∪ i( B2 \ B1). 
d) Symmetric difference may be defined by the 

difference (24) 

C1 ᇞ C2 = (A1 ∪ iB1) ᇞ (A2 ∪ iB2) =  
((A1 ∪ iB1) \ (A2 ∪ iB2) ∪ ((A2 ∪ iB2) \ (A1 ∪ iB1)) = 
(A1 \ A2) ∪ i(B2 \ B1) ∪ (A2 \ A1) ∪ i(B2 \ iB1) = 
((A1 \ A2) ∪ (A2 \ A1)) ∪ i(B1 \ B2) ∪ (B2 \ B1).    (25) 

e) Splitting is an operation which in the com-
plex sets is defined through the following relations 
below. 

Let sets C1 and C2 from (17) be defined for 
which it is true: 

C = C1 ∪ C2 = A ∪ iB; (26) 
and: 

1. A1 ∪ A2 = A; iB1 ∪ iB2 = iB; (27) 

2. A1 ∩ A2 = Ø; iB1 ∩ iB2 = Ø; (28) 

Then we may state that the complex set C is 
split into two subsets C1 and C2. Operations ∪, ∩, \, 
∆, and splitting are shown in Figs. 2 to 6 with the 
help of the filled areas. 
  

A1∪A2 
i(B1∪B2

Fig. 2 - ∪ 

A1∩A2 

A1

A

i(B1∩B2)

iB1 

iB2 

Fig. 3 - ∩ 

A1 \ A2

A2

i(B1 \ B2) 

iB

Fig. 4 - \ 

A1 \ A2 

A2 \ A1 

i(B1 \ B2) 

i(B2 \ B1) 

Fig. 5 - ∆ 

A1

A2

iB1 

iB2 

Fig. 6 - splitting 
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Definition: The complex set C = A ∪ iB will be 
called normed if it satisfies the condition 

A ∩ B = Ø. (29) 

Proposition: Condition (29) is necessary and 
sufficient for C = A ∪ iB to satisfy the require-
ments (13) and (14). Violation of condition (29) 
means that 

A ∩ B = D ≠ Ø (30) 

an element, although single, exists which is in real 
state and simultaneously – in imaginary state  
ia ϵ D. But according to (12) and (16) this results 
in contradiction and proves the the impossibility of 
(30) and the truth of (29). And vice versa – if 
(13)and(14) are observed then this results in D = Ø 
and as so to (29). 

Hence the complex set C = A ∪ iB is normed if 
it contains one and the same element in two states 
or which is the same – two elements a and ia, i.e. 
requirements (29) and (12), (13) are observed to-
gether or separately. 

Corollary: The following relations are equiva-
lent to (29): 

a) A \ B = A and B \ A = B; (31) 

b) A ∪ B = A ∆ B. (32) 

Condition (29) is supposed to be observed. 
Then 

a) A = (A\B) ∪ (A∩B) = (A\B)  
and B = (B\A) ∪ (A∩B) = (B\A); 

b) A∪B = (A\B) ∪ (A∩B) ∪ (B\A) = 
=(A\B) ∪ (B\A) = A ᇞ B. 

The converse is also true – (29) follows from 
the truth of (31) and (32). This means that if at 
least one of the equalities (31) and (32) is observed 
the complex set (A ∪ iB) is normed and relation 
(29), and (13), (14) are also observed. 

The following relation is almost obvious: for 
each A ⊂ U and iB ⊂ iU it is true that 

A ∩ iB = Ø. (33) 

The assumption that A ∩ B = D ≠ Ø means that 
at least one element exists which is real and imagi-
nary state simultaneously which is impossible by 
definition and proves (33). 

Proposition: Condition (33) is not sufficient for 
the normalization of the complex set (A∪iB). 
We assume that 

A = (AI ∪ a); B = (BI ∪ a). (34) 

Then according to (33) and (34) the result  
(A ∩	iB) = (AI ∪ a) ∩ (BI ∪ a) = Ø. The opposite 
assumption means that one and the same element is 

simultaneously in both states – real and imaginary, 
which is impossible. 

On the other hand under the same assumption 
(34) 

A ∩ B = (AI ∪ a) ∩ (BI ∩ a) = (AI ∩ BI) ∪ a ≠ Ø 
which does not agree with (33) and means that A ∪ 
iB is not normed, that proves the proposition. 

Corollary: On the base of the result above it 
may be proved that the following conditions 

A \ I = A; iB \ A = iB; (35) 

and A ∪ iB = A ᇞ B; (36) 

are not sufficient for normalization 0f complex sets 
and for observing (12) and (13). The proofs for the 
insufficiency of (35) and (36) may be carried out 
analogically to those for (31) and (32).  

It follows from this that although the norming 
condition is embedded if the definitions of opera-
tions	∪, ∩, \, ∆ each operation “union of real and 
imaginary sets” a check should be carried out for 
the normalization of the new complex set attained 
through any of  procedures (29), (31), or (32). 

Results (33), (35), and (36) show that opera-
tions ∪, \, ∆ in the complex sets result in either real 
A or imaginary iB only, or in complex sets A ∪ iB. 
This is the cause operation ∪ to be chosen as a 
basic one in defining the complex set (A ∪ iB) ϵ U. 

For each complex set C a set of all subsets of C 
may be formed. It is called boolean of set C and it 
is denoted as 2C. 

2C = {X / X ⊆ C}. 
If A, B, and C are finite sets then it is expedient 

boolean 2C  to be considered as an aggregate of the 
real set 2A  boolean, the imaginary set 2B  and the 
complex set 2C’ for which 
C' = {(a ∪ ib) / (a ϵ A ˄ b ϵ iB); A ≠ Ø; B ≠ Ø; a ≠ b} 
then 2C = 2A ∪ 2B ∪ 2C’. 

If we denote by |A| the number of elements in A 
then 

2|C| = 2|A| + 2|B| + 2| C’|. 
Let A = {a1, a2} and iB = {ib1, ib2, ib3,}, 
from which it follows |A| = n = 2; |B| = m =3;  
|C| = n.m =6. 
Then 2|C| = 2n + 2m + 2nm = 2|C| = 22 + 23 + 26 = 76. 

This means that 76 subset correspond to the 
complex set {a1, a2} ∪ {ib1, ib2, ib3,} = A ∪ iB – 
much more than th real set – 4 and the imaginary 
set iB – 8. Increasing number of complex sets may 
be generated by the boolean 2C. 

Complements of the sets A, B, and C respec-
tively will be defined through the universal set U 
in the following way: 
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തܤ ;U\A = ܣ̅  = U\B; ̅ܥ = U\C. (37) 

These complements are sets of all elements of 
U not belonging to A, B, and C respectively. Fur-
ther besides the denotations (17) for C1 and C2 the 
denotation C3 = A3 	∪ iB3. 

It is well known that Cantor’s set theory has al-
gebraic features characteristic to the Boolean alge-
bra and the lattice. In the case under consideration 
such features have separately both the real and the 
imaginary sets. It will be demonstrated that the 
complex sets are constructed in such a manner that 
they also have such features. These algebraic fea-
tures are demonstrated in the following Table 1 
with regard to the complex sets. Requirements (13) 
and (36) are shown in it, characteristic to the com-
plex sets only. 

It follows from the way of defining of opera-
tions over the complex sets (22) to (25), as well as 
from the remaining relations from (19) to (36) that 
for the complex sets the algebraic laws: associa-
tive; communicative, idempotent, distributivity of 
the union with regard to intersection and vice ver-
sa, are also observed.  

It will be shown that the two De Morgan’s laws 
(rules 7 and 8 from Table 1) are also observed. The 
complements will be defined: 

  ;ଶതതത = U\C2ܥ ;ଵതതത = U\C1ܥ
and ܥଵ ∪  . = U\(C1 ∪ C2) = (U\C1) ∩ (U\(C2)	ଶതതതതതതതതതതܥ

The comparison between the three relations 
above confirms the first De Morgan’s law (rule 7 
of Table 1). The second De Morgan’s law may be 
confirmed in analogic way by the next rule 8. It 
may be shown that the law of double complement 
from rule 17 is used in the complex sets also: 

  ;ଵതതത = U\C1ܥ
 .ଵധധധ = U \ (U \ C1) = (U \ U) ∪ (U ∩ C1) = C1ܥ

The truth of the remaining rules from Table 1 
may be proven in a similar way and this is compar-
atively not complicated. As a rule keeping of the 
same rules in the complex logic like in the classical 
Cantor’s set theory is a corollary of the fact, that 
operations 	∪, ∩, \, ∆ from (22) to (25) for the 
complex sets are as a rule executed separately for 
the real and imaginary sets and in the framework 
of the classical rules. The real and imaginary sets 
practically do not intersect in between and they in-
teract mainly through requirements (13) and (36), 
rules (13) and (36) respectively from Table 1. Due 
to this cause mainly in the complex sets themselves 
very complicated cases do not arise. The similarity 
of the complex sets to algebraic structures Boolean 
algebra and lattice emerges from Table 1. 

The fact is to be noted that the imaginary set 
play the role of a negative set. This immediately 
follows from the initial assumption (13) according 
to which the “collision” at the uniting the real set A 
with the imaginary set iA results in an empty set. 
This means that the term “negative set” may be 
used in this sense. The term “imaginary set” is 
preferable though because the role it plays is in es-
sence the same like the imaginary part of the com-
plex numbers. 

Another point of view may be formulated 
where the real and imaginary sets are considered as 
two specific subsets between which interactions 
(13) and (14) exist in the framework of the classi-
cal Cantor’s theory. Anyway they provide addi-
tional specific possibilities and extend the possibil-
ities of the classical logic to some degree. 

Table 1 
1. C1∪C2= C2∪C1 13. C1∪ ܥଵതതത = U 
2. C1∩C2= C2∩C1 14. C1∩ ܥଵതതത = Ø  
3. C1∪(C2∪C3) = (C1∪C2)∪C3 15. C1∪C1= C1 
4. C1∩(C2∩C3) = (C1∩C2)∩C3 16. C1∩C1= C1 
5. C1∩(C2∪C3) = (C1∩C2)∪(C1∩C3) 17. ܥଵധധധ = C1 
6. C1∪(C2∩C3) = (C1∪C2)∩(C1∪C3) 18. C1 \C2 = C1∩ ܥଶതതത 
1ܥ .7 ∪ 1തതതതܥ = 2തതതതതതതതതതܥ ∩  2തതതത 19. C1∆C2= (C1∪C2) \ (C1∩C2)ܥ
1ܥ .8 ∩   = C1∪C2 20. (C1∆C2)∆C3 = C1∆(C2∆C3)	2തതതതതതതതതതܥ
9. C1∪Ø = C1 21. C1∆C2= C2∆C1 
10 C1∩Ø = Ø 22. C1∩(C2∆C3) = (C1∩C2)∆(C1∩C3) 
11. C1∩U = C1 23. A∪iA = Ø 
12 C1∪U = U 24. C1∆C2 = C1∪C2 
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2. Summing up 

A series of questions arises concerning the pos-
sibilities of using the complex sets: 

a) As the set theory is basic for constructing of 
various mathematical structures then it is possible for 
some of them new possibilities for extension to arise; 

b) The example cited – from (12) to (15) 
demonstrates how by introducing of complex sets 
various set equations may be solved; 

c) On the base of the complex sets proposed, con-
struction of physical models is possible in which the 
union of different elements (particles) of different, 
opposite charge results in their mutual destruction 
(annihilation) or transition to another state.1 

The complex sets being proposed need wider, 
deeper, and more rigorous investigation which may 
lead to better definition of their possibilities. 

 
 

1 In general, the union operation does not satisfy the associativity 
law, hence these operations must be delayed to the end stage 
of computation. 
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