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Abstract. A large number of statistical methods are being developed to solve the problem of natural gas 
composition analysis. Statistical models are used in these methods for determination of natural gas com-
position by its known physical parameters. The choice of a statistical model for the method under discus-
sion is a difficult task. No general algorithm has been found for selecting a model for a specific task. 
Basic statistical models, that are often used in practice, are studied in the article. The comparative analysis 
of the models is carried out according to a number of important criteria for solving the discussed problem. 
As a result, it is concluded that the neural network model is the most effective model for the natural gas 
composition analysis. Recommendations are given on choosing a statistical model in the tasks of natural 
gas quality analysis that are similar to the problem under consideration. 
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Introduction 

Currently, the natural gas composition analysis 
is an urgent task for the gas industry. A change in 
the natural gas composition due to technological 
peculiarities of the transportation and storage pro-
cesses leads to a change in a number of energy 
characteristics of the gas (in particular, its calorific 
value [1]). In its turn, it leads to difficulties in cal-
culating the natural gas cost indicators. The corre-
lation methods are developed for real time natural 
gas composition analysis for this reason [2; 3]. 
Various statistical models are often used in correla-
tion methods due to the impossibility or high com-
plexity of solving the problems with traditional 
methods. Having a number of advantages over tra-
ditional algorithms [4], such statistical models as-
sign unknown outputs to the known input values 
using existing dependencies between them.  

The choice of a model for the problem under 
discussion is mostly made by heuristic methods 
due to the lack of a general algorithm for choosing 
a model and a variety of both statistical models and 
architectures of individual models. The article pro-
vides a comparative analysis of the main models 
that are used to solve the task of natural gas com-
position analysis. On the basis of this analysis, the 
conclusions are drawn about a specific model, that 
is most appropriate to apply to existing data. 

1. The methodology of statistical 
model comparative analysis 

A number of preliminary procedures were de-
veloped and implemented prior to conducting a 
comparative analysis of statistical models for natu-
ral gas composition determination: selection of ini-
tial data and ensuring uniformity of conditions for 
model training, as well as selecting necessary data 
for model testing; selection of statistical models for 
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comparison; selection of criteria and characteristics 
to be used for model comparison.  

The first step is to select data for model training 
and testing. The data must comply with the re-
quirements for the natural gas [5], but should not 
create unsolvable problems in the process of model 
analysis using this data. 

For the initial data selection a sample of gas 
mixtures based on the Russian natural gas was 
simulated taking into account the permissible rang-
es of the molar fractions of the components by 
sorting out all possible combinations of compo-
nents. Then the simulated gas mixtures were re-
duced to equivalent four-component pseudo-gas 
mixtures to simplify the analysis of the considered 
statistical models [6]. Based on the obtained natu-
ral gas model, the output parameters for the model 
are concentrations of effective components of the 
pseudogas mixture that can be determined, namely, 
methane, propane, nitrogen and carbon dioxide. 
The input parameters for the model should be 
physical parameters of the natural gas. The criteria 
for choosing input physical parameters are: availa-
bility of the applied technology for measuring the 
parameter; availability of a commercially available 
and relatively inexpensive parameter measuring 
technique; a correlation between the gas parameter 
and the composition; a high correlation between 
the parameter and the composition and a low corre-
lation with the other input parameters. 

Having reviewed known methods for natural 
gas quality control [2] and taken into account in-
struments for measuring the necessary physical gas 
parameters [7-11] the following parameters were 
selected as possible input parameters for the mod-
el: the speed of sound (c), thermal conductivity co-

efficient (χ), dynamic viscosity (η), dielectric per-
mittivity (ε) and carbon dioxide concentration 
(XCO2). Methane concentration (XCH4), nitrogen 
concentration (XN2) and propane concentration 
(XC3H8) in equivalent four-component pseudo-gas 
mixture were chosen as the output parameters. 

The correlation analysis was performed for se-
lection of input parameters and elimination of their 
possible multicollinearity. Pearson correlation co-
efficients are calculated for each pair of the studied 
parameters. These coefficients can be used to de-
termine a linear relationship between two parame-
ters. In the general case, the Pearson correlation 
coefficient r for samples of parameters X1 and X2 is 
calculated as follows: 
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Carbon dioxide concentration, the speed of 
sound, and thermal conductivity coefficient were 
selected as input parameters due to the correlation 
analysis results, that are shown in Тable 1. 

It should be noted that prior to training the 
model, the initial data are cross-validated and nor-
malized in order to be able to be used uniformly 
and improve the forecast results of the studied 
models. A sample of 552000 elements was used 
for the task under discussion. The ranges of con-
centrations included in the training set and their 
parameters that were used as input parameters are 
shown in Тable 2. 

The next step is to get a number of statistical 
models that can be used to solve the task of the 
natural gas composition analysis. This choice is 

Table 1. Correlation coefficients of input parameters against the gas component concentrations 

 

с, m/s χ, W/(m·K) η, Pa·s ε, - XCH4, % XN2, % XCO2, % XC3H8, % 

с, m/s 1 0,992 -0,278 -0,720 0,929 -0,243 -0,623 -0,743 
χ, W/(m·K) 0,992 1 -0,162 -0,799 0,885 -0,159 -0,564 -0,810 
η, Pa·s -0,278 -0,162 1 -0,461 -0,485 0,516 0,746 -0,421 
ε, - -0,720 -0,799 -0,461 1 -0,481 -0,222 0,083 0,971 

XCH4, % 0,929 0,885 -0,485 -0,481 1 -0,577 -0,577 -0,577 
XN2, % -0,243 -0,159 0,516 -0,222 -0,577 1 0 0 
XCO2, % -0,623 -0,564 0,746 0,083 -0,577 0 1 0 
XC3H8, % -0,743 -0,810 -0,421 0,971 -0,577 0 0 1 
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based on an analysis of sources that address the 
problems arising when selecting statistical models 
for specific tasks of the oil and gas industry [12-
15], as well as the practical feasibility of imple-
menting the selected statistical models. The fol-
lowing models were selected for comparative anal-
ysis on the basis of the study results: 

 multiparameter linear regression; 
 ridge regression; 
 Gaussian process regression; 
 neural network model (multilayer perceptron); 
 recurrent neural network model; 
 recurrent neural network model with long 

short-term memory. 
The accuracy characteristics of the model are 

often used as the main parameters to make a con-
clusion about the possibility of using the statistical 
model [16]. Various accuracy parameters are cal-
culated for both the training and test samples in the 
conducted comparative analysis. The fact that the 
statistical model can show good results on a train-
ing set, but a high error on a testing set is taken in-
to account. The time that was spent for the model 
training is another important parameter in as-
sessing performance of the statistical model. For 
large samples training of models with complex ar-
chitecture can take a long time that may not re-
spond to the required characteristics. 

The following parameters are calculated to as-
sess model accuracy: mean absolute error (MAE) 
and mean absolute percentage error (MAPE). 
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where Youtput are values that were obtained from the 
statistical model, Ytarget are initial target values, n is 
a test or train sample size. 

Taking into account the fact that the model can 
have a satisfactory average error, but still have out-
liers at certain points it is also necessary to calcu-
late the maximum absolute error (MaxAE) and 
maximum absolute percentage error (MaxAPE). 
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where max is an operation of calculating the max-
imum value. 

2. Statistical models under study 

The multiparameter linear regression can be 
considered in the studied problem as a reference 
model [17]. It can be used to obtain a result that 
will be taken to compare accuracy of other models 
with regression. In case of multiparameter linear 
regression, the value of Y depends on several in-
dependent quantities xi (i=1…m). The initial points 
are in an m+1-dimensional space and are approxi-
mated by the m-dimensional hyperplane. The sys-
tem of equations for multiparameter linear regres-
sion can be written as: 
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This system of equations can be written in ma-
trix form taking into account the error vector e: 

 Y X e  
where β is a (m+1)-dimensional parameter vector, X 
is a matrix of row-vectors xi  that can be written as: 
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In order to find an estimate of the linear regres-
sion parameters, it is necessary to find the mini-

Table 2. Ranges of gas mixture concentraions and their 
physical parameters for the training sample 

Parameter Range 

XCH4, % 85 – 100 

XN2, % 0 – 5 

XC3H8, % 0 – 5 

XCO2, % 0 – 5 

с, m/s 401.49 – 445.02 

χ, mW/(m·K) 30.59 – 33.27 
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mum of the sum of squared errors, that is written in 
the matrix form as follows: 

2 ( ) ( ).    T T
i

i

e e e Y X Y X   

To find an estimate of the parameters it is nec-
essary to use the condition that the partial deriva-
tive is zero at the minimum point. A system of 
normal equations for multiparameter linear regres-
sion in the matrix form can be obtained by differ-
entiating the expression for the sum of the squared 
errors with respect to the variable β and equating 
the resulting partial derivative to zero: 

( ) .T TX X X Y  
The estimation of the parameters of multi-

parameter regression is the solution to this system 
using the least squares method, which may be 
shown as follows: 

1( ) .


 T TX X X Y  
The multiparameter linear regression is trained 

on the initial data with calculating an estimate of 
the parameters for each component of the gas mix-
ture under study. Then the model is tested on data 
that was not involved in the training process. The 
accuracy estimates for the model are calculated on 
the basis of the test results. 

The ridge regression is used in tasks with data re-
dundancy as one of the methods of dimensionality 
reduction [18]. In the problem under study, this is 
possible when the input parameters correlate with 
each other, i.e. multicollinearity is not completely 
eliminated by the correlation analysis. Multicollinear-
ity can lead to instability of estimates of regression 
coefficients and poor conditioning of the XTX matrix, 
that leads to instability of the normal linear regression 
equation solution. The ridge regression method con-
sists in introducing an additional regularizing pa-
rameter τ into the minimized functional. The applied 
regularization makes it possible to reduce the condi-
tion number of the XTX matrix and obtain a more 
stable solution. The parameters of the regression 
model with regularization are found through mini-
mizing the functional β*: 

2 2* arg min( ).  Y X     

The solution to the minimization problem is 
found in the same way as to the linear regression: 

* 1( ) T TX X I X Y  , 
where I is an identity matrix. 

Let us consider the condition number μ of the ma-
trix M = XTX+τE which is the ratio of its maximum 
to the minimum singular number. For the regularized 
matrix under consideration, it is equal to 

1( )
n

M
 
 





, 

where λi are matrix eigenvalues XTX. 
From the above formula it is seen that an in-

crease in the regularization parameter leads to a 
decrease in the condition number of the regulariza-
tion matrix. The smaller this parameter, the less is 
the error of the solution regarding errors in the in-
put data. Moreover, an increase in the regulariza-
tion parameter leads to a decrease in the norm of 
the parameter vector. It is worth noting that the 
ridge regression method improves the stability of 
the parameters of the regression model, but does 
not nullify any of them [19]. 

Ridge regression is trained and tested on the 
same data division scheme as multiparameter line-
ar regression. Based on the essence of the ridge re-
gression method higher accuracy estimates for this 
model can be assumed. 

The Gaussian process regression [20] is a non-
parametric probabilistic model of the process, all 
finite-dimensional distributions of which are nor-
mal. The Gaussian process regression model ad-
dresses the question of predicting the value of a re-
sponse variable, given the new input vector and the 
training data {(xi ,yi); i=1...n}. The Gaussian pro-
cess regression model explains the response by in-
troducing latent variables, f(xi) (i=1...n) from a 
Gaussian process, and explicit basis functions. The 
covariance function of the latent variables captures 
the smoothness of the response and basis functions 
project the inputs x into a p-dimensional feature 
space. 

The Gaussian process is defined by the mathe-
matical expectation function and the covariance 
function. The Gaussian process (GP) is designated 
as follows: 

( ) ( ( ), ( , ))f x GP m x k x x , 
where f(x) is a Gaussian process latent function 
values, x is a set of the training inputs, ~ is sign 
that means “distributed according to”, k(x, x′) is a 
covariance function evaluated at x and x′, m(x) is 
the mean function of a Gaussian process. 
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If f(x) is a Gaussian process, then the mathe-
matical expectation function and the covariance 
function can be represented as follows: 

( ) ( ( )),

( , ) (( ( ) ( ))( ( ) ( ))),
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m x E f x

k x x E f x m x f x m x
 

where E is the symbol of mathematical expectation. 
The Gaussian process is a set of random varia-

bles, such that any finite number of them have a 
joint Gaussian distribution. If f(x) is a Gaussian 
process, then given n observations x1…xn, the joint 
distribution of the random variables f(x1)...f(x n) is 
Gaussian. 

A set of basis functions h transform the original 
feature vector x into a new feature vector h(x). A 
regression model based on Gaussian processes can 
be represented as follows: 

( ) ( ) TY h x f x , 
where Y is the output vector, h(x) is a set of basis 
functions evaluated at all training points, β is the 
vector of basis function coefficients, f(x) is a zero 
mean Gaussian process with covariance function 
k(x, x′). 

Then it is necessary to obtain the target distri-
bution of the output vector. Based on the Gaussian 
process regression, an instance of response can be 
modeled as: 

2( | ( ), ) ~ ( | ( ) ( ), ),T
i i i i i iP y f x x N y h x f x   

where P is the posterior distribution, N is the nor-
mal distribution, matrix, σ2 is error variance. 

The Gaussian process regression is a probabilis-
tic model. There is a latent variable f(xi) introduced 
for each observation xi , that makes the model 
nonparametric. In vector form, this model can be 
represented as follows: 

2( | , ) ~ ( | , )P Y f X N Y H f I  , 
where Y, f, X, H are represented as follows: 

1 11 1

2 2 1 2

( )( )

( ) ( )

. . . .
, , ,

. . . .

. . . .

( ) ( )

      
      
      
      
         
      
      
                    

T T

T T

T T
n n n n

x h xy f x

y f x x h x

Y f X H

y f x x h x

 

Therefore, to obtain a prediction by the studied 
model it is necessary to know the coefficients of 
the vector β, the error variance σ2 and to be able to 

evaluate the covariance function (often this is a dif-
ficult task due to the so-called hyperparameters θ - 
unknown parameters that can vary). One of the 
methods for estimating the necessary parameters is 
to find the maximum of the following functional: 

2 2

2, ,

, , arg max log ( | , , , )
 

 P Y X
  

      , 

where 2, ,  
 

 are the estimates of parameters, 
arg max is an argument of the maximum, log is a 
common logarithm. 

Firstly, an estimate of the parameters β for the 
given values of σ2 and θ is obtained by the formula: 
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where the covariance function is written as 
K(X, X | θ) to explicitly indicate the dependence 
on θ and looks as follows: 
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Then, the functional presented above is maxim-
ized with respect to σ2 and θ to obtain their esti-
mates. 

The Gaussian process regression is trained and 
tested on the same data division scheme as the two 
previous models under consideration. Based on the 
Gaussian process regression method, higher time 
costs for this model can be assumed. 

The neural network model (multilayer percep-
tron) is a three-layer network with a sigmoidal ac-
tivation function in the form of a hyperbolic tan-
gent for a hidden layer and a linear activation 
function for the output layer, the Levenberg-
Marquardt algorithm was used as a learning algo-
rithm. 

A detailed description of this model is given in 
[21], that addresses the issues of artificial neural 
networks to solve the task of natural gas composi-
tion analysis. 

Recurrent neural networks (RNN) is a class of 
neural networks that can use their internal memory 
when processing input data [22]. The functioning 
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of this class of neural networks is based on the use 
of previous network state to calculate the current 
one. A recurrent network can be considered as sev-
eral copies of the same network, each of which 
transfers information to a subsequent copy. Cur-
rently, there are a large number of architectures of 
recurrent neural networks. Taking into account the 
computational difficulties encountered in develop-
ing this class of neural networks, it was proposed 
to consider a simple recurrent neural network first. 
The hidden elements have links directed back to 
the input layer in such type of network. This allows 
to take into account the previous state of the net-
work during training. Mathematically, the process 
of saving information about the previous training 
step is as follows: at each i-th training step, the 
output value of the RNN hidden layer hi is calcu-
lated taking into account the output value of the 
hidden layer in the previous step hi-1: 

1 0( )  i h i h i hh f W X U h b , 
where Wh, Uh, bh0 are parameters of the RNN hid-
den layer. 

The output value at the i-th training step is cal-
culated as follows: 

0 i out i outy W h b , 
where Wout, bout0 are parameters of RNN output layer. 

The architecture of the considered RNS is 
shown in Fig. 1. The number of neurons at the in-
put (n), hidden (k) and output (m) layers, the acti-
vation functions for the layers (for the hidden layer 
- sigmoidal function in the form of hyperbolic tan-
gent, for the output layer – linear function), the 
learning algorithm (Levenberg-Marquardt) were 
chosen the same as for the neural network model in 
the form of a multilayer perceptron. 

Taking into account the more complex RNN ar-
chitecture in comparison with other models, the 
accuracy of the natural gas composition analysis is 
expected to increase. 

A comparative analysis was proposed of a re-
current neural network with long short-term 
memory [23] to test the idea that increasing the 
complexity of the neural network architecture 
within one type of network (for example, RNN) 
does not lead to a significant improvement of the 
natural gas composition analysis. Long short-term 
memory (LSTM) is a special type of architecture 
of recurrent neural networks, that is capable of 
learning long-term dependencies. A more complex 
method is used to calculate both the output value 
of the hidden layer and the output value of the 
network as a whole in neural networks with a simi-
lar architecture. This method involves use of so-
called gates. A gate is a special unit in LSTM ar-
chitecture, that is implemented as a logistic func-
tion and operation of elementwise multiplication 
(Hadamard's product). The logistic function layer 
shows how much of the information coming from a 
particular unit should be transmitted further along 
the network. This layer returns values in the range 
from zero (information does not go further along 
the network structure at all) to one (information 
completely goes further along the network struc-
ture). There are three such gates in traditional 
LTSM architecture: a forget gate, an input gate and 
an output gate. The sigmoid function is often used 
as a logistic function for gates.  

Let us take a closer look at the functioning of 
the LSTM unit. The input vector Xi, the long-term 
memory vector LTMi-1 (the state vector of the unit 
at the (i-1)-th step) and the vector of the working 
memory WMi-1 (the output vector of the unit at (i-
1)-th step) come to LSTM unit at the i-th step of 
the model training. The forget gate and the input 
gate are used while calculating the long-term 
memory vector. Firstly, the forget gate is used to 
determine the proportion of long-term memory 
from the previous step, which should kept in use at 

Fig. 1. Architecture of recurrent neural network (RNN) model 
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the current step. The forget gate is calculated by 
the formula: 

1 0( )  i f i f i fforget W X U WM b , 

where σ is a sigmoid function of the forget gate, 
Wf, Uf, bf0 are parameters of the forget gate of 
LSTM unit. 

After that, the proportion of information from 
the input data vector that can be added to long-
term memory is determined: 

' ' ' '
1 0tanh( )  i i iLTM W X UWM b , 

where tanh is an activation function in the form of 
hyperbolic tangent, W’, U’, b’

0 are LSTM unit pa-
rameters. 

The input gate is calculated in order to estimate 
the useful proportion of the previous step that will 
be added to the long-term memory: 

1 0( )  i input i input i inputinput W X U WM b , 

where σ is a sigmoid function of the input gate, 
Winput, Uinput, binput0 are parameters of the input gate 
of LSTM unit. 

Taking into account the performed operations, 
i.e. eliminating unnecessary information from the 
previous step and adding useful information from 
the current step, the vector of updated long-term 
memory can be calculated: 

'
1* * i i i i iLTM forget LTM input LTM , 

where * is an elementwise multiplication operation. 
After that, it is necessary to calculate the vector 

of working memory. An output gate is used for 

calculating the vector of working memory. It is 
necessary to calculate proportion of information 
from long-term memory that should be used at the 
current training step to calculate the vector of 
working memory. The output gate is calculated as 
follows: 

1 0( )  i output i output i outputoutput W X U WM b , 

where σ is a sigmoid function of output gate, Wout-

put, Uoutput, boutput0 are parameters of output gate of 
LSTM unit. 

Then, the vector of working memory is calcu-
lated at the current step: 

* tanh( )i i iWM output LTM , 
where tanh is an activation function in the form of 
hyperbolic tangent, * is an elementwise multiplica-
tion operation. 

The calculated vectors of long-term memory 
LTMi and working memory WMi will go to the 
LTSM unit at the following training step. 

The architecture of the LTSM unit is shown in 
Fig. 2. The general RNN architecture with long 
short-term memory is the same as for a simple 
RNN, taking into account an LSTM unit in the 
hidden layer. 

The output value at the i-th training step for the 
RNN with the LTSM unit is calculated the same 
way as for a simple RNN: 

0 i out i outy W WM b , 
where Wout, bout0 are parameters of RNN output 
layer with LSTM unit. 

Fig. 2. Architecture of long short�term memory (LSTM) unit 
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Taking into account the more complex architec-
ture of RNN with LTSM unit in comparison with a 
simple RNN, but with a similar principle of func-
tioning of a neural network model, the time spent 
on training the model is expected to increase and 
accuracy characteristics of the natural gas compo-
sition analysis are expected to maintain. 

3. Comparative analysis  
of the selected statistical models 

All selected statistical models were trained on 
the same data generated according to the previous-
ly described requirements. The input parameters 
for the models were calculated using the NIST 
REFPROP software. The training of statistical 
models was carried out in the Matlab 2018a soft-

ware. The selected models were trained on the 
same data several times, and then the average 
model training time and the average accuracy 
characteristics of the model for several training cy-
cles were taken for increasing the analysis adequa-
cy. A comparative analysis of the time spent on 
training for the studied models is presented in 
Тable 3. 

A comparative analysis of accuracy characteris-
tics at the training stage for the models under study 
is shown in Table 4. Absolute errors (MAE, Max-
AE) are given in units of determined concentra-
tions (in %), relative errors (MAPE, MaxAPE) are 
given in %. 

A comparative analysis of the accuracy charac-
teristics at the testing stage for the studied models 
is shown in Тable 5. 

Table 3. Training time for the studied models 

Studied model Average training time 

Multiparameter linear regression (LINREG) 6 seconds 

Ridge regression (RIDGE) 4 seconds 

Gaussian process regression (GPR) 45 minutes 

Neural network model (multilayer perceptron) (ANN) 1,3 hours 

Recurrent neural network (RNN) 3,5 hours 

Recurrent neural network model with long short-term memory (LSTM) 5,6 hours 
 

Table 4. Accuracy characteristics at the training stage for the studied models 
 

Component Characteristic 

Model 

LINREG RIDGE GPR ANN RNN LSTM 

Methane 

MaxAE, % 5,383 5,373 0,581 0,491 0,184 0,184 

MAE, % 0,382 0,382 0,007 0,007 0,001 0,001 

MaxAPE, % 5,396 5,386 0,611 0,491 0,184 0,184 

MAPE, % 0,441 0,442 0,008 0,008 0,001 0,001 

Nitrogen 

MaxAE, % 6,464 6,450 0,362 0,247 0,253 0,241 

MAE, % 0,479 0,480 0,025 0,010 0,012 0,012 

MaxAPE, % 6,481 6,472 0,383 0,249 0,255 0,254 

MAPE, % 0,514 0,501 0,027 0,011 0,012 0,012 

Propane 

MaxAE, % 1,081 1,077 0,589 0,426 0,189 0,174 

MAE, % 0,107 0,107 0,011 0,007 0,005 0,005 

MaxAPE, % 1,095 1,087 0,589 0,446 0,183 0,171 

MAPE, % 0,109 0,109 0,011 0,009 0,004 0,004 
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Conclusion 

The statistical models under study (multiparam-
eter linear regression, ridge regression, Gaussian 
process regression, neural network model (multi-
layer perceptron), recurrent neural network, recur-
rent neural network with long short-term memory) 
were subjected to a comparative analysis to select 
the most suitable model for solving the task of nat-
ural gas composition analysis. Based on a compari-
son of the training time for the models under study, 
it was concluded that the model’s training time in-
creased while its architecture became more com-
plicated. 

Taking into account that in the proposed meth-
od for natural gas composition analysis [3], models 
train on theoretical data until the stage of applying 
the model to real data, increasing the training time 
within several hours does not impair the applicabil-
ity of the method. Based on the comparison of the 
accuracy characteristics of the models both at the 
training stage and at the testing stage, it was con-
cluded that the model error decreases with the 
complexity of its architecture. Summarizing the 
results of the comparative analysis of the statistical 
models, it is proposed to use a model with a more 
complex architecture (RNN) in working with real 
data. It is recommended to use neural network 
models with a similar architecture in similar tasks 
of the natural gas composition analysis, as well as 

in other tasks of determining the gas energy char-
acteristics. 

Further research is required in the field of de-
veloping a method for natural gas composition 
analysis using more complex neural network mod-
el for real data and adjusting the architecture pa-
rameters of the neural network model to solve the 
task of analyzing specific gas mixtures. 

The author is grateful to the international coop-
eration projects BRISK II TA and Erasmus + 
2017-1-SE01-KA107-034292 Staff Mobility be-
tween the universities for the opportunity to con-
duct this study. 

References 
1. GOST 31369-2008. Gaz prirodnyiy. Vyichislenie teplotyi 

sgoraniya, plotnosti, otnositelnoy plotnosti i chisla Vobbe 
na osnove komponentnogo sostava [Natural gas. Calcula-
tion of the calorific value, density, relative density and 
Wobbe number based on the composition.]. Moscow: 
Standartinform. 2008. 30 p. 

2. Dörr H., Koturbash T., Kutcherov V. Review of impacts 
of gas qualities with regard to quality determination and 
energy metering of natural gas // Measurement Science 
and Technology. 2019. V. 30, №2. P. 1-20. 

3. Koturbash T.T., Brokarev I.A. Metod opredeleniya 
svoystv i sostava prirodnogo gaza po izmereniyam ego 
fizicheskih parametrov [Method for determining the prop-
erties and composition of natural gas by measuring its 
physical parameters] // Datchiki i sistemyi [Sensors and 
systems]. 2018. № 6. C. 43-50. 

Table 5. Accuracy characteristics at the testing stage for the studied models 

Component Characteristic 

Model 

LINREG RIDGE GPR ANN RNN LSTM 

Methane 

MaxAE, % 5,531 5,399 0,592 0,511 0,361 0,295 

MAE, % 0,416 0,399 0,009 0,008 0,004 0,003 

MaxAPE, % 5,578 5,423 0,712 0,529 0,421 0,356 

MAPE, % 0,567 0,487 0,012 0,010 0,005 0,004 

Nitrogen 

MaxAE, % 6,691 6,689 0,353 0,236 0,241 0,233 

MAE, % 0,523 0,501 0,024 0,009 0,010 0,010 

MaxAPE, % 6,526 6,516 0,394 0,253 0,258 0,255 

MAPE, % 0,578 0,561 0,028 0,011 0,012 0,012 

Propane 

MaxAE, % 1,125 1,099 0,592 0,432 0,193 0,181 

MAE, % 0,109 0,109 0,012 0,007 0,005 0,004 

MaxAPE, % 1,239 1,102 0,596 0,448 0,188 0,175 

MAPE, % 0,131 0,115 0,011 0,009 0,004 0,004 
 



Comparative Analysis of Statistical Models for the Task of Natural Gas Composition Analysis  

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 1/2020 43 

4. Kostin V.N., Tishina N.A. Statisticheskie metodyi i 
modeli [Statistical methods and models]. Orenburg: 
GOU OGU, 2004. 138 p. 

5. GOST Р 8.662-2009 (ISO 20765-1:2005) Gaz prirodnyiy. 
Termodinamicheskie svoystva gazovoy fazyi. Metodyi 
raschetnogo opredeleniya dlya tseley transportirovaniya i 
raspredeleniya gaza na osnove fundamentalnogo 
uravneniya sostoyaniya AGA8 [Natural gas. Thermody-
namic properties of the gas phase. Calculation methods for 
the transportation and distribution of gas based on the fun-
damental equation of state AGA8]. Moscow: Standartin-
form. 2010. 43 p. 

6. Koturbash T.T., Brokarev I.A. Sravnitelnyiy analiz fizi-
cheskih svoystv prirodnogo gaza i ekvivalentnyih emu 
psevdogazovyih smesey [Comparative analysis of the 
physical properties of natural gas and equivalent pseudo-
gas mixtures] // Datchiki i sistemyi [Sensors and systems]. 
№3. 2019. P. 7-13. 

7. Koturbash T., Bicz A., Bicz W. New instrument for measur-
ing velocity of sound and quantitative characterization of 
binary gas mixtures composition // Measurement Automa-
tion Monitoring. 2016. Р. 254-258. 

8. Löfqvist T., Delsing J., Sokas K. Speed of sound meas-
urements in gas — mixtures at varying composition using 
an ultrasonic gas flow meter with silicon based transducers 
// International Conference on Flow Measurement. Gro-
ningen, Netherlands. 2003. 

9. Thermal Conductivity Gauge. Available at: 
http://www.xensor.nl (Accessed December 1, 2019). 

10. Dynament Infrared Gas Sensors. Available at: 
https://www.dynament.com (Accessed December 1, 2019). 

11. Bright Sensors BlueEye. Available at: https://www.bright-
sensors.com (Accessed December 1, 2019). 

12. Mirzaei-Paiaman A., Salavati S. The application of arti-
ficial neural networks for the prediction of oil production 
flow rate // Energy Sources, Part A: Recovery, Utiliza-

tion, and Environmental Effects. 2012. No. 34:19. 
P. 1834-1843. 

13. Hribar R., Potočnik P., Šilc J., Papa G. A comparison of 
models for forecasting the residential natural gas demand 
of an urban area // Energy. 2018. Vol. 167. P. 511-522. 

14. Vondráček J., Pelikán E., Konár O., Čermáková J., Eben, 
K., Malý, M., Brabec, M. A statistical model for the es-
timation of natural gas consumption // Applied Energy. 
2008. No. 85(5). P. 362-370. 

15. Aleardi, M. Analysis of different statistical models in 
probabilistic joint estimation of porosity and litho-fluid 
facies from acoustic impedance values // Geosciences. 
2018. No. 8(11). P. 386-388. 

16. Mitchell T. M. Machine Learning // McGraw-Hill Sci-
ence/Engineering/Math. 1997. 

17. Graybill F.A., Iyer H.K. Regression analysis // Concepts 
and applications, Duxbury Print. 1994. 

18. Strizhov V.V., Kryimova E.A. Metodyi vyibora regres-
sionnyih modeley [Regression model selection methods]. 
Moscow: VTS RAN, 2010. 60 p. 

19. Hastie T., Tibshirani R., Friedman J. The Elements Of 
Statistical Learning: Data Mining, Inference and Predic-
tion // Springer. 2009. 

20. Rasmussen C. E., Williams C. K. Gaussian Processes for 
Machine Learning // The MIT Press. 2006. 

21. Brokarev I.A. Iskusstvennyie neyronnyie seti dlya resh-
eniya zadachi analiza komponentnogo sostava gazovyih 
smesey [Artificial neural networks for solving the prob-
lem of analyzing the composition of gas mixtures] // Up-
ravlenie bolshimi sistemami [Large-scale Systems Con-
trol]. V. 80. Moscow: IPU RAN, 2019. P.98-115. 

22. Callan R. The essence of neural networks (The essence 
of computing series) // Prentice Hall Europe. 1999. 

23. Hochreiter S., Schmidhuber J. Long short-term memory 
// Neural computation. 1997. Vol. 9(8). P. 1735-1780. 

 
Brokarev I. A. Assistant, PhD student of National University of Oil and Gas «Gubkin University», Moscow, 119991, 
Leninskiy prospect, 65, bl.1. Graduated from National University of Oil and Gas «Gubkin University» in 2017. 14 published 
articles. Topics of interest: information technologies, machine learning, natural gas analysis. E-mail: brokarev.i@gubkin.ru 
 

Vaskovskii S. V. Senior research associate of V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sci-
ences, Moscow, 117997, Profsoyuznaya street, 65. PhD. Graduated from Moscow Power Engineering Institute in 1986. 66 
published articles. Topics of interest: information technologies, distributed computer systems, computer speech technologies. 
E-mail: v63v@yandex.ru 


