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Abstract. This paper presents a polynomial algorithm for new generalization of the absolute 1-center 

problem (A1CP) in general undirected graph with each edge having a positive weight vector (length for 

the first coordinate and costs for all the other coordinates) and with each vertex having non-negative 

weight vector. We assume that the cost is a linear function of the length on edge. Non-negative cost 

boundaries are also given. AA1CP (admissible absolute 1-center problem) minimizes the weighted length 

of path between a point on edge and the farthest vertex provided that any weighted cost of path from the 

point to any vertex does not exceed the corresponding cost boundary. 
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Absolute 1-center problem  

The absolute 1-center problem is defined as fol-

lows. Undirected connected graph G = <V, E, l, 

w> without loops or multiple edges is given, |V| = 

n, |E| = m with non-negative vertex weights w(v), 

v ϵ V and positive edge lengths l(e), e ϵ E. We refer 

to the case of equal weights as the vertex-

unweighted case. An edge (x, y) is identified with a 

line segment of length l(x, y). By point τ in G we 

mean any point along any edge including its verti-

ces. Point τ = (x, y; t) is characterized by its loca-

tion at a distance of t and at l(x, y) – t from x and y, 

respectively. The distance d(t1, t2) between the 

points t1 and t2 is defined as the length of the short-

est path in G between t1 and t2. Let us define the 

weighted distance between the point τ and the far-

thest vertex as F(τ): F(τ) = max{w(v)d(τ, v): v ϵ V} 

where w(v)d(τ, v) is the weighted distance from 

point τ to vertex v. Let us assume that τ
* 

is a point 

in G such that the distance between this point and 

the farthest vertex is minimum: F(τ
*
) = min{F(τ):  

τ ϵ G}. The point τ
*
 is referred to as the absolute  

1-center of G and r1(G) = F(τ
*
) is referred to as the 

absolute 1-radius of G. 

A1CP for the vertex-unweighted case was orig-

inally stated and solved by Hakimi (1964) [1]. To 

find the absolute 1-center of the graph Hakimi used 

a graphical procedure for computing local absolute 

centers on each edge by determining the minimum 

value of the function F(τ) along such edge. The lo-

cal absolute center of the edge corresponds to the 

point τ
*
(e) along the edge e such that F(τ

*
(e)) = 

min{F(τ(e)): τ ϵ e} and F(τ
*
) = r(e) is the local ab-

solute radius. The absolute 1-center of the graph is 

chosen among the local absolute centers of edges 

so that r1 = min{r(e): e ϵ E}. Kariv and Hakimi 

(1979) later presented an algorithm for the general 

vertex-weighted graph with computational com-

plexity O(|E|nlog n) when the distance matrix was 

known and O(|E|n
 
log n + n

3
) when the distance 

matrix was unknown [2].  

Goldman (1972) first studied A1CP for vertex-

unweighted trees [3]. Kariv and Hakimi (1979) 

presented an algorithm with computational com-

plexity O(|E|nlog n) for a weighted tree [2] and 



  

Megiddo (1983) presented a linear O(n) algorithm 

[4]. Let us consider the case with weighted trees in 

more detail.  

Vertex-weighted tree 

Let us assume that τ* is the 1-center of the ver-

tex-weighted graph G. It can be easily verified that 

there are at least two vertices i and j such that the 

weighted distance from τ
*
 to i is equal to that from 

τ
*
 to j and the absolute radius: w(i)d(i, τ

*
) = w(j)d(j, 

τ
*
) = r1(G). The absolute center is the middle of the 

weighted path between i and j. Vertices i and j are 

referred to as peripheral vertices. When we add 

w(j)d(i, τ
*
) to both sides of the previous equality 

we obtain the following expression for the absolute 

radius of the graph:       
         

         
        

where l(i, j) is the length of the path between the 

peripheral vertices provided that it passes through 

the absolute center. When the graph G is a tree 

T(V, E), the path between the vertices i and j is 

unique and l(i, j) = d(i, j) [2]: 

      
         

         
        

 

 
        (1) 

and the peripheral vertices represent any pair of i 

and j such that Δ(i, j) ≥ Δ(u, v) for all u, v ϵ V [2]. 

Extension of the vertex-weighted A1CP 

In the above-cited papers the distance from the 

point to the farthest vertex is minimized without 

any constraints. Therefore, the absolute center can 

be located at any point of the edge. This represents 

a grave disadvantage from the perspective of prac-

tical applications.  

Ding and Qui (2017) presented an extension of 

the classic vertex-weighted absolute 1-center problem 

(GA1CP) and FPTAS for solving it [5; p.1]: “Given a 

vertex-weighted undirected connected graph G = (V, 

E, l, p) where each edge e ϵ E has length t(e) > 0 and 

each vertex v ϵ V has weight p(v) > 0, a subset T ⊆ V 

of vertices and a set S consisting of all the points 

along the edges in a subset E′ ⊆ E of edges, the gen-

eralized absolute 1-center problem (GA1CP), an ex-

tension of the classic vertex-weighted absolute 1-

center problem (A1CP), requires to find a point from 

S such that the weighted  distance to the farthest ver-

tex from T is minimized”. 

In real problems, the decision maker must choose 

the optimal location using more than just a single cri-

terion. The first approach is to treat the multi-

objective problems as really multi-objective and to 

derive the Pareto-set. For example, R.M. Ramos, J. 

Sicilia and M.T. Ramos (1997) studied a bi-criteria 

problem of determining the absolute center of a graph 

with two objective functions using independent 

lengths on each edge [6]. The authors proposed a 

polynomial time algorithm to obtain the non-

dominated location points on the graph. 

Another approach to dealing with multicriteria 

discrete location problems is to fix a bound on the 

obnoxious effects as a set of constraints. For ex-

ample, Ding and Qui (2015) studied the restricted 

absolute center problem (RA1SP) in general undi-

rected graph with each edge having two weights, 

cost and delay, where the delay is a separable func-

tion of the cost on edge [7]. The distance involved 

in RA1SP is referred to as the length of the re-

stricted shortest path (RSP) between two distinct 

nodes. The RSP problem is known to be NP-

complete and has a fully polynomial approxima-

tion scheme (FPAS). RA1SP requires to find a re-

stricted absolute 1-center in P (consisting of all the 

points along the edges in a subset E′ ⊆ E) such that 

the cost of the most costly RSP from it to a given 

node subset is minimized. The problem is solved 

by (1 + ε)-approximation when the RSP distance 

matrix has a saddle point. 

Our results 

In this paper we present a restricted vector version 

of A1CP for the weighted case. Every edge e  E of 

the undirected connected graph G = <V, E> is as-

signed a positive weight vector lj(e) and every vertex 

v  V is assigned a non-negative weight vector wj(v), 

j = 1 … k.  We minimize the weighted length of path 

between a point τ1 ϵ e ϵ E′ ⊆ E  and the farthest vertex 

for j = 1 and require to apply the following cost con-

straint for all the other coordinates j ≥ 2: weighted 

cost of path between the point τj and any vertex does 

not exceed Bj. We assume that τ1 = λjτj where  

λj = l1(e)/lj(e). The adaptation of the presented algo-

rithm to the solution of the applied problem (“The 

toll road problem”) is reviewed. 

Computational complexity of the algorithm is 

O(k|E′|n
2
) when the distance matrix is unknown. 

We do not use the technique of “unpromising” 

edge isolation elaborated in the papers of the 

above-cited authors. When k = 1, the algorithm 

finds all the equivalent absolute centers over the 

time O(|E|n
2
). When a finite system of admissible 

disjoint segments S is given in the graph, all the 

equivalent absolute centers in S can be found over 



 

the time of O(|E′|n
2
 + plog n) where p is the num-

ber of admissible segments. 

We can define the local absolute center of a 

segment similar to the definition of the local abso-

lute center of an edge. 

Definition 1. The local absolute center of the 

segment s ϵ e is a point τ*(s) on the segment s such 

that F(τ
*
(s)) = min{F(τ(s)): τ ϵ s}. Let us define 

F(τ
*
(s)) as the local radius of s on the edge e and 

represent it as re(s).  

Let us assume that V′ is a set of non-zero weight 

vertices. We select the edge (x, y) ϵ E′ where l(x, y) is 

the edge length and d(x, v) and d(y, v) are the distanc-

es from the end-points to the vertex v. 

We shall find a point on the edge (x, y), which 

is the farthest from the non-zero weight vertex. It is 

evident that the length of path between the point 

and the vertex v passing through the vertex x is 

equal to the length of path passing through the ver-

tex y: d(v, x) + t = l (x, y) – t + d(y, v) and  

t = (d(v, x) + l(x, y) + d(y, v))/2.  (2) 

The point t(v) has an important property: for any 

point on the edge to the left of the point t(v) the short-

est path to the vertex v passes through the vertex x 

and for any point on the edge to the right of that point 

the shortest path to the vertex v passes through the 

vertex y. For any zero weight vertex v0, v0 ≠ x, v0 ≠ y 

we assume by convention that t(v0) = l(x, y); for the 

end-points of the edge we assume that t(x) = l(x, y) 

and t(y) = 0, regardless of the weight. 

Definition 2. The median point of the vertex v 

on the edge (x, y) is called a point t(v) such that: 

t(v) = (d(v, x) + l(x, y) + d(y, v))/2, v ϵ V′, v0 ≠ x, 

v0 ≠ y; 

t(v) =  l(x, y), v ϵ V\V′, v ≠ x, v ≠ y; 

t(x) = l(x, y), t(y) = 0. 

Based on (2), we shall find all the median points, 

arrange them in non-decreasing order and numerate 

them. We shall note that the median points may be 

the same. Equal median points are arranged in the 

non-increasing order of weights of their generating 

vertices. We shall define the list of median points of 

the edge (x, y) as T(x, y) = {t1, .., tn}, t1 = 0, tn = l(x, y) 

where each point ti is associated with its generating 

vertex v(ti).  

Median points generate median segments. Me-

dian segment of non-zero length is generated by 

adjacent unique points. In case with equal median 

points the first point generated by the largest 

weight vertex is selected as the beginning and/or 

the end of the segment.  

Definition 3. We shall refer to the segment [ti–c, 

ti], ti-c, ti ϵ T(x, y), c  ≥ 1, i ≥ 2 such that the condi-

tions (1)-(3) are satisfied as a median segment 

ms(i) of non-zero length on the edge (x, y): 

1) ti  –  ti–1 > 0; 2) ti–1 –  ti-c = 0, i – c ≥ 1; 3) ti-c –  

ti-c-1 > 0 when i – c ≥ 2. 

The number of median segments will not be 

greater than n – 1. Since t1 = 0 and tn = l(x, y), median 

segments ms(i),  i = 2 ... n completely cover the edge 

(x, y). We shall assume that the local absolute radius 

of the zero length median segment is equal to +∞. 

The local absolute radius of the edge will be selected 

as the minimum of local absolute radii of median 

segments: r(e) = min{r(ms(i)): 2 ≤ i ≤ n}.  

The median segment ms(i) has the following im-

portant property: for any point on this segment the 

path to the vertices v(t1), ..., v(ti-1) passes through the 

vertex x and the path to the vertices v(ti), ..., v(tn) 

passes through the vertex y. All the vertices in the 

graph are divided into two sets with respect to the 

segment ms(i): X0 and Y0. X0 and Y0 contain vertices 

v(t1), ..., v(ti-1) and v(ti), ..., v(tn), respectively. 

For segment ms(i) let us assume that Ti = 

T(ms(i)) corresponds to the tree of the lengths of 

the shortest paths connecting ms(i) with all the ver-

tices in the graph. Let us assume that [ti-1, ti] rep-

resents a non-zero length median segment. The tree 

is constructed as follows: first we connect the 

points ti-1 and ti to the vertex set V and then connect 

the vertices ti-1 and ti with all the vertices of the 

sets X0 and Y0, respectively (Fig. 1). We shall as-

sume that d(ti-1, v) = ti-1 + d(x, v) for all v ϵ X0 and 

d(ti, v) = l(x, y) – ti + d(y, v) for all v ϵ Y0. It can be 

easily verified that the length of the path d(τ, v)Ti in 

the distance tree Ti is equal to the length d(τ, v)G in 

the original graph G for any point τ ϵ ms(i) and any 

vertex v ϵ V′. 

Absolute center of the median segment 

Based on (1), a tree has a unique absolute cen-

ter, which is the middle of the weighted path be-

tween two peripheral vertices. We assume that at 

least one vertex of the graph has non-zero weight. 

Otherwise, any point in the graph would corre-



  

spond to its absolute center. We shall consider the 

possible locations of the peripheral vertices and the 

absolute center of the median segment. 

1. Let us assume that each of the sets X0 and Y0 

contains at least one non-zero weight vertex.  

а) Let us assume that the peripheral vertices be-

long to different sets. When the mid-point of the 

weighted path between them belongs to the seg-

ment [ti-1, ti], it represents the local absolute cen-

ter of the i-th median segment and the radius is 

calculated based on (1). 

Let us assume that the mid-point of the path 

does not belong to the segment [ti-1, ti] and, to be 

definite, is located to the left of the vertex ti-1. The 

function F(τ) = max{w(v)d(τ, v): v ϵ V} is convex 

and piecewise linear on every simple path of the 

tree [4]. All the points of the segment [ti-1, ti] are 

located along the path between the two peripheral 

vertices. The convex function F(τ) increases as we 

move away from its absolute minimum point. 

Thus, the local absolute center of the median seg-

ment [ti-1, ti] is located at the point nearest to the 

absolute minimum point, i.e. at the vertex ti-1 and 

the farthest vertex from ti-1 belongs to the set X0. 

Similarly, when the absolute center of the tree is 

located to the right of ti, the local absolute center 

[ti-1, ti] is located at the vertex ti and the farthest 

vertex belongs to the set Y0. 

b) Let us assume that the peripheral vertices of the 

tree Ti belong to one set: X0, to be definite. Then the 

local absolute center of the segment [ti-1, ti] will be 

located at the vertex ti-1. 

Therefore, to find the peripheral vertices we 

take one non-zero weight vertex from the set X0 

and another one from the set Y0. We calculate the 

length dd(u, v) of the unweighted path between 

vertices u ϵ X0 and v ϵ Y0 in the tree Ti. This path 

passes through the edge (x, y): dd(u, v) = d(u, x) + 

l(x, ti-1) + l(ti-1, ti) + l(ti, y) + d(y, v) =  d(u, x) + l(x, y) 

+ d(y, v) and does not depend on the boundaries of 

the segment msi. 

2. Let us assume that one of the sets – X0, to be 

definite – consists of only zero weight vertices. 

Then the local absolute center of the segment is lo-

cated at the vertex ti. Similarly, when Y0 consists 

of only zero weight vertices, the local absolute 

center of the segment is located at the vertex ti-1. 

In the following, by “center” and “radius” of 

the segment (edge) we shall mean the “local abso-

lute center” and the “local absolute radius” of the 

segment (edge). 

We shall consider a classic A1CP. We are given 

the undirected connected graph G = <V, E>, |V| = n, 

|E| = m with non-negative weights of vertices w(v), 

v ϵ V and positive edge lengths l(e), e ϵ E; V′ is a 

set of non-zero weight vertices. It is required to 

find a point in G such that the distance between the 

point and the farthest vertex from V′ is minimum. 

We set the edge (x, y) and precalculate the ma-

trix of weight coefficients         
         

         
    

          and the distance vectors d(x, v) and d(y, v), 

v ϵ V. 

Algorithm 1 

1. We form a set of median points T(x, y) based 

on (2) and arrange it in non-decreasing order. We 

arrange equal points in the non-decreasing order of 

weights of their generating vertices.  

2. We divide all the vertices into two sets X0 

and Y0. Y0 initially contains the following: zero 

weight vertices (except x when w(x) = 0); vertex y; 

vertices whose shortest path to x passes through y.  

For every vertex i ϵ X0, i ϵ V′ we find and 

memorize the farthest vertex j ϵ Y0, j ϵ V′ and half 

of the weighted distance between them: maxd(i) = 

ww(i, j)× (d(x, i) + l(x, y) + d(y, j)); maxv(i) = j. 

3. We pass through the median points of the 

edge (x, y) from point x to point y. After visiting 

the point t we transfer its associated vertex v(t) 

from X0 to Y0 and recalculate maxd(i) at this ver-

tex for all i ϵ X0, i ϵ V′: maxd(i) = max{maxd(i), 

ww(i, v(t))× (d(x, i) + l(x, y) + d(y, v(t))}.   



 

Note. The distance is also recalculated for all 

equal median points since the maximum distance 

does not necessarily have to be achieved at the 

largest weight vertex.  

4. We find and memorize the radius and the 

center for every passed non-zero length segment 

ms(i). For this purpose, we find the vertex i0 with 

maximum value of maxd(i0) among the vertices i ϵ 

X0, i ϵ V′. When the mid-point of the weighted 

path between i0 and maxv(i0) does not belong to 

ms(i), we shift the center to the nearest end of the 

segment and find the weighted distance to the far-

thest vertex. 

5. r(x, y) = min{r(ms(i)): 2 ≤ i ≤ n}. To print all 

the equivalent centers of the edge we pass through 

the median segments and compare the memorized 

radius of the segment with the edge radius.  

Computational complexity for a single edge 

O(n
2
). We shall mention that the idea of dividing 

the vertices into the two sets X and Y as well as the 

vertex transfer from X to Y is adopted in the 

Minieka’s algorithm (1981) [8]. 
Algorithm 1 layout represented in the model 

graph 

We shall find the local absolute radius and all 

the local absolute centers of the edge (4, 5) for the 

model graph (Fig. 2). The weights of all the verti-

ces are equal to 1.  

Graph radius = 9, the center is located at the 

vertex 1.  

Set of median points with generating vertices: 

T(4, 5) = {0.0 (5), 0.0 (7), 2.5 (2), 3.5 (1), 4.5 

(3), 7.0 (4), 7.0 (6)}. 

Set X0 = {1, 2, 3, 4, 6}; set Y0 = {5, 7}. 

Non-zero length segments, their radii, centers 

and peripheral vertices px and py: 

[0.0, 2.5], r = 8.0, center = 2.0, px = 2, py = 7, 

transferred to Y0 vertex 2; 

[2.5, 3.5], r = 8.0, center = 3.0, px = 1, py = 2, 

transferred to Y0 vertex 1; 

[3.5, 4.5], r = 8.0, center = 4.0, px = 3, py = 1, 

transferred to Y0 vertex 3; 

[4.5, 7.0], r = 8.5, center = 4.5, px = 6, py = 3. 

Local absolute radius of the edge (4, 5) = 8.0, 

centers are located at points {2.0; 3.0; 4.0}. 

Instance. Undirected connected graph G = <V, 

E>, |V| = n, |E| = m is given. Every edge e  E is 

assigned a positive weight vector lj(e) and every 

vertex v  V is assigned a non-negative weight 

vector wj(v), j = 1 … k. Set S, is given, which con-

tains all the edge points from the specified subset 

E′ ⊆ E. The non-negative cost boundaries Bj are 

given for all j ≥ 2. 

Question. It is required to find the point τ1 ϵ e ϵ 

S that minimizes the function max{w1(v)d1(τ1, v): v 

ϵ V} provided that for all j ≥ 2 and all v ϵ V 

wj(v)dj(τj, v) ≤ Bj, dj(τj, v) is the length of shortest 

path from τj to v taken for the j-th coordinate and  

τ1 = λjτj where λj = l1(e)/lj(e).  

We shall set the edge (x, y) ϵ E′ and the coordinate 

j ≥ 2. We shall precalculate the matrices of coeffi-

cients wwj and the distance vectors dj(x, v) and dj(y, 

v), v ϵ V. We shall calculate the radii and the centers 

of the median segments (msj(i)), i = 2 … n using the 

Algorithm 1.  

Finding admissible segments based on one  

coordinate 

Algorithm 2 

1. We use the Algorithm 1 to calculate the local 

absolute radii and the centers of the median seg-

ments (msj(i)), i = 2 … n.  

2. pj:= 0; //current number of the admissible 

segment. 

3. We pass through the median points of the 

edge (x, y) from point x to point y. When the radius 

of the i-th segment r(msj(i)) ≤ Bj, go to step 4. 

4. We find the admissible segment of msj(i), 

which satisfies the j-th constraint. 

All the vertices associated with the median 

points ii = 1 … i – 1 belong to the set Y0. We find 

the left boundary of the admissible segment, i.e. 

the maximum distance  

       
  

          
                           



  

Similarly, all the vertices associated with the 

median points ii = i … n belong to the set X0. We 

find the right boundary of the admissible segment, 

i.e. the minimum distance 

       
  

          
                          

When lb ≤ rb and [lb, rb] ∩ msj(i) ≠ , pj:= pj + 1 

and asj(pj):=  [lb, rb] ∩ msj(i). 

Finding admissible absolute centers that satisfy 

all the constraints 

Algorithm 3 

1. We use the Algorithm 2 for all j ≥ 2 to find 

the admissible segments asj(i), i = 1 … pj that satis-

fy the j-th constraint.  

2. We convert the boundaries of all the admissi-

ble segments asj(i).lb and asj(i).rb, i = 1 … pj, j ≥ 2 

into the edge measurement units for j = 1:  

      
       

       
   

                             

                            

3. We apply the binary search to find the inter-

sections of the admissible segments for all the co-

ordinates j ≥ 2. The number of the resulting admis-

sible segments as(i), i = 1 … p will not be greater 

than n – 1 and all the cost constraints will be satis-

fied for every point on any segment. 

4. We use the Algorithm 1 to find the median 

segments ms1(ii), ii = 2 … n, their local absolute 

radii and centers for j = 1. 

5. We apply the binary search to find the inter-

sections between the median segments ms1(ii),  

ii = 2 … n and the admissible segments as(i),  

i = 1 … p. We define the local absolute radius and 

the center for every non-empty intersection. The 

minimum radius will correspond to the local abso-

lute radius of the edge and the respective centers 

will satisfy all the cost constraints. 

Computational complexity of the algorithm is 

O(k|E′|n
2
) when the distance matrix is unknown. 

Toll road problem 

Let us assume that the edges of the model graph 

represent toll roads and the vertices represent clients. 

The road lengths (j = 1) and the fares (j = 2) are 

shown in Fig. 2 and Fig. 3, respectively. The weights 

of all the vertices are equal to 1. It is required to lo-

cate the service center on the edge (4, 5) in such a 

way that the fare for travelling there does not  

exceed 5.5 for any client and the distance to the 

farthest client is minimum. 

Set X0 = {1, 2, 3, 4, 6}; set Y0 = {5, 7}. 

Set of median points with generating vertices: 

T(4, 5) = {0.0 (5), 1.00 (3), 1.00 (7), 2.00 (1), 

3.00 (2), 3.00 (6), 7.00 (4)}. 

Radii, centers and peripheral vertices px and py 

of non-zero length segments: 

[0.00, 1.00], r = 5.00, center = 0.00, px = 3, py = 5, 

transferred to Y0 vertices 3 and 7; 

[1.00, 2.00], r = 5.00, center = 2.00, px = 2, py = 3, 

transferred to Y0 vertex 1; 

[2.00, 3.00], r = 5.00, center = 2.00, px = 2,py = 3, 

transferred to Y0 vertices 2 and 6; 

[3.00, 4.00], r = 5.00, center = 4.00, px = 4, py = 2. 

Local absolute radius of the edge (4, 5) = 5.00, 

the centers = {0.00; 2.00; 4.00}. 

Admissible segments (in two measurement 

units), their centers and radii 

[0.00, 0.50]  [0.00, 0.88], r = 9.13, center = 0.88; 

[1.50, 2.00]  [2.63, 3.50], r = 8.00, center = 3.00; 

[2.00, 2.50]  [3.50, 4.38], r = 8.00, center = 4.00; 

[3.50, 4.00]  [6.13, 7.00], r = 10.13, center = 6.13. 

Local absolute radius of the edge (4, 5) = 8.00, 

the admissible centers = {3.00; 4.00}. 

1. An edge of the undirected connected graph 

over the time O(|V′|log |V′|) can be divided into not 

more than n – 1 median segments of non-zero 

length and each segment has a unique local abso-

lute center where |V′| is the number of non-zero 

weight vertices. 

2. The admissible vector version of the absolute 

center problem (AA1CP) allows to find all the 

equivalent admissible absolute centers of the 

graph, which satisfy all the k – 1 constraints of the 

problem over the time O(k|E′|n
2
) where |E′| is the 



 

number of admissible edges. The bound of cost Bj, 

j ≥ 2 considered in this paper is uniform for all 

nodes in V′. In fact, Algorithm 2 also can be ap-

plied to scenarios where the cost bounds of nodes 

in V′ are nonuniform. 

3. When a finite system of admissible disjoint 

segments S is given for a classic A1CP, all the equiv-

alent admissible absolute centers of the graph can be 

found from S over the time O(plog |V′| + |E′|n
2
) where 

p is the number of admissible segments. 

4. The review of our study materials and trans-

lated textbooks [9]-[10] shows that either the 

graphic Hakimi algorithm is used for the classical 

A1CP or such problem is completely eliminated 

from consideration, for example [11]. The pro-

posed Algorithm 1 features simple program im-

plementation without using special data structures 

and can be used for educational purposes when 

studying the problems of optimum location for 

service centers.  
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