
МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Abstract. This paper presents a polynomial algorithm for new generalization of the absolute 1-center

problem (A1CP) in general undirected graph with each edge having a positive weight vector (length for

the first coordinate and costs for all the other coordinates) and with each vertex having non-negative

weight vector. We assume that the cost is a linear function of the length on edge. Non-negative cost

boundaries are also given. AA1CP (admissible absolute 1-center problem) minimizes the weighted length

of path between a point on edge and the farthest vertex provided that any weighted cost of path from the

point to any vertex does not exceed the corresponding cost boundary.

Keywords: vertex-weighted absolute 1-center problem, admissible absolute 1-center problem.

DOI 10.14357/20718632200201

Absolute 1-center problem

The absolute 1-center problem is defined as fol-

lows. Undirected connected graph G = <V, E, l,

w> without loops or multiple edges is given, |V| =

n, |E| = m with non-negative vertex weights w(v),

v ϵ V and positive edge lengths l(e), e ϵ E. We refer

to the case of equal weights as the vertex-

unweighted case. An edge (x, y) is identified with a

line segment of length l(x, y). By point τ in G we

mean any point along any edge including its verti-

ces. Point τ = (x, y; t) is characterized by its loca-

tion at a distance of t and at l(x, y) – t from x and y,

respectively. The distance d(t1, t2) between the

points t1 and t2 is defined as the length of the short-

est path in G between t1 and t2. Let us define the

weighted distance between the point τ and the far-

thest vertex as F(τ): F(τ) = max{w(v)d(τ, v): v ϵ V}

where w(v)d(τ, v) is the weighted distance from

point τ to vertex v. Let us assume that τ
*

is a point

in G such that the distance between this point and

the farthest vertex is minimum: F(τ
*
) = min{F(τ):

τ ϵ G}. The point τ
*
 is referred to as the absolute

1-center of G and r1(G) = F(τ
*
) is referred to as the

absolute 1-radius of G.

A1CP for the vertex-unweighted case was orig-

inally stated and solved by Hakimi (1964) [1]. To

find the absolute 1-center of the graph Hakimi used

a graphical procedure for computing local absolute

centers on each edge by determining the minimum

value of the function F(τ) along such edge. The lo-

cal absolute center of the edge corresponds to the

point τ
*
(e) along the edge e such that F(τ

*
(e)) =

min{F(τ(e)): τ ϵ e} and F(τ
*
) = r(e) is the local ab-

solute radius. The absolute 1-center of the graph is

chosen among the local absolute centers of edges

so that r1 = min{r(e): e ϵ E}. Kariv and Hakimi

(1979) later presented an algorithm for the general

vertex-weighted graph with computational com-

plexity O(|E|nlog n) when the distance matrix was

known and O(|E|n

log n + n

3
) when the distance

matrix was unknown [2].

Goldman (1972) first studied A1CP for vertex-

unweighted trees [3]. Kariv and Hakimi (1979)

presented an algorithm with computational com-

plexity O(|E|nlog n) for a weighted tree [2] and

Megiddo (1983) presented a linear O(n) algorithm

[4]. Let us consider the case with weighted trees in

more detail.

Vertex-weighted tree

Let us assume that τ* is the 1-center of the ver-

tex-weighted graph G. It can be easily verified that

there are at least two vertices i and j such that the

weighted distance from τ
*
 to i is equal to that from

τ
*
 to j and the absolute radius: w(i)d(i, τ

*
) = w(j)d(j,

τ
*
) = r1(G). The absolute center is the middle of the

weighted path between i and j. Vertices i and j are

referred to as peripheral vertices. When we add

w(j)d(i, τ
*
) to both sides of the previous equality

we obtain the following expression for the absolute

radius of the graph:

where l(i, j) is the length of the path between the

peripheral vertices provided that it passes through

the absolute center. When the graph G is a tree

T(V, E), the path between the vertices i and j is

unique and l(i, j) = d(i, j) [2]:

 (1)

and the peripheral vertices represent any pair of i

and j such that Δ(i, j) ≥ Δ(u, v) for all u, v ϵ V [2].

Extension of the vertex-weighted A1CP

In the above-cited papers the distance from the

point to the farthest vertex is minimized without

any constraints. Therefore, the absolute center can

be located at any point of the edge. This represents

a grave disadvantage from the perspective of prac-

tical applications.

Ding and Qui (2017) presented an extension of

the classic vertex-weighted absolute 1-center problem

(GA1CP) and FPTAS for solving it [5; p.1]: “Given a

vertex-weighted undirected connected graph G = (V,

E, l, p) where each edge e ϵ E has length t(e) > 0 and

each vertex v ϵ V has weight p(v) > 0, a subset T ⊆ V

of vertices and a set S consisting of all the points

along the edges in a subset E′ ⊆ E of edges, the gen-

eralized absolute 1-center problem (GA1CP), an ex-

tension of the classic vertex-weighted absolute 1-

center problem (A1CP), requires to find a point from

S such that the weighted distance to the farthest ver-

tex from T is minimized”.

In real problems, the decision maker must choose

the optimal location using more than just a single cri-

terion. The first approach is to treat the multi-

objective problems as really multi-objective and to

derive the Pareto-set. For example, R.M. Ramos, J.

Sicilia and M.T. Ramos (1997) studied a bi-criteria

problem of determining the absolute center of a graph

with two objective functions using independent

lengths on each edge [6]. The authors proposed a

polynomial time algorithm to obtain the non-

dominated location points on the graph.

Another approach to dealing with multicriteria

discrete location problems is to fix a bound on the

obnoxious effects as a set of constraints. For ex-

ample, Ding and Qui (2015) studied the restricted

absolute center problem (RA1SP) in general undi-

rected graph with each edge having two weights,

cost and delay, where the delay is a separable func-

tion of the cost on edge [7]. The distance involved

in RA1SP is referred to as the length of the re-

stricted shortest path (RSP) between two distinct

nodes. The RSP problem is known to be NP-

complete and has a fully polynomial approxima-

tion scheme (FPAS). RA1SP requires to find a re-

stricted absolute 1-center in P (consisting of all the

points along the edges in a subset E′ ⊆ E) such that

the cost of the most costly RSP from it to a given

node subset is minimized. The problem is solved

by (1 + ε)-approximation when the RSP distance

matrix has a saddle point.

Our results

In this paper we present a restricted vector version

of A1CP for the weighted case. Every edge e  E of

the undirected connected graph G = <V, E> is as-

signed a positive weight vector lj(e) and every vertex

v  V is assigned a non-negative weight vector wj(v),

j = 1 … k. We minimize the weighted length of path

between a point τ1 ϵ e ϵ E′ ⊆ E and the farthest vertex

for j = 1 and require to apply the following cost con-

straint for all the other coordinates j ≥ 2: weighted

cost of path between the point τj and any vertex does

not exceed Bj. We assume that τ1 = λjτj where

λj = l1(e)/lj(e). The adaptation of the presented algo-

rithm to the solution of the applied problem (“The

toll road problem”) is reviewed.

Computational complexity of the algorithm is

O(k|E′|n
2
) when the distance matrix is unknown.

We do not use the technique of “unpromising”

edge isolation elaborated in the papers of the

above-cited authors. When k = 1, the algorithm

finds all the equivalent absolute centers over the

time O(|E|n
2
). When a finite system of admissible

disjoint segments S is given in the graph, all the

equivalent absolute centers in S can be found over

the time of O(|E′|n
2
 + plog n) where p is the num-

ber of admissible segments.

We can define the local absolute center of a

segment similar to the definition of the local abso-

lute center of an edge.

Definition 1. The local absolute center of the

segment s ϵ e is a point τ*(s) on the segment s such

that F(τ
*
(s)) = min{F(τ(s)): τ ϵ s}. Let us define

F(τ
*
(s)) as the local radius of s on the edge e and

represent it as re(s).

Let us assume that V′ is a set of non-zero weight

vertices. We select the edge (x, y) ϵ E′ where l(x, y) is

the edge length and d(x, v) and d(y, v) are the distanc-

es from the end-points to the vertex v.

We shall find a point on the edge (x, y), which

is the farthest from the non-zero weight vertex. It is

evident that the length of path between the point

and the vertex v passing through the vertex x is

equal to the length of path passing through the ver-

tex y: d(v, x) + t = l (x, y) – t + d(y, v) and

t = (d(v, x) + l(x, y) + d(y, v))/2. (2)

The point t(v) has an important property: for any

point on the edge to the left of the point t(v) the short-

est path to the vertex v passes through the vertex x

and for any point on the edge to the right of that point

the shortest path to the vertex v passes through the

vertex y. For any zero weight vertex v0, v0 ≠ x, v0 ≠ y

we assume by convention that t(v0) = l(x, y); for the

end-points of the edge we assume that t(x) = l(x, y)

and t(y) = 0, regardless of the weight.

Definition 2. The median point of the vertex v

on the edge (x, y) is called a point t(v) such that:

t(v) = (d(v, x) + l(x, y) + d(y, v))/2, v ϵ V′, v0 ≠ x,

v0 ≠ y;

t(v) = l(x, y), v ϵ V\V′, v ≠ x, v ≠ y;

t(x) = l(x, y), t(y) = 0.

Based on (2), we shall find all the median points,

arrange them in non-decreasing order and numerate

them. We shall note that the median points may be

the same. Equal median points are arranged in the

non-increasing order of weights of their generating

vertices. We shall define the list of median points of

the edge (x, y) as T(x, y) = {t1, .., tn}, t1 = 0, tn = l(x, y)

where each point ti is associated with its generating

vertex v(ti).

Median points generate median segments. Me-

dian segment of non-zero length is generated by

adjacent unique points. In case with equal median

points the first point generated by the largest

weight vertex is selected as the beginning and/or

the end of the segment.

Definition 3. We shall refer to the segment [ti–c,

ti], ti-c, ti ϵ T(x, y), c ≥ 1, i ≥ 2 such that the condi-

tions (1)-(3) are satisfied as a median segment

ms(i) of non-zero length on the edge (x, y):

1) ti – ti–1 > 0; 2) ti–1 – ti-c = 0, i – c ≥ 1; 3) ti-c –

ti-c-1 > 0 when i – c ≥ 2.

The number of median segments will not be

greater than n – 1. Since t1 = 0 and tn = l(x, y), median

segments ms(i), i = 2 ... n completely cover the edge

(x, y). We shall assume that the local absolute radius

of the zero length median segment is equal to +∞.

The local absolute radius of the edge will be selected

as the minimum of local absolute radii of median

segments: r(e) = min{r(ms(i)): 2 ≤ i ≤ n}.

The median segment ms(i) has the following im-

portant property: for any point on this segment the

path to the vertices v(t1), ..., v(ti-1) passes through the

vertex x and the path to the vertices v(ti), ..., v(tn)

passes through the vertex y. All the vertices in the

graph are divided into two sets with respect to the

segment ms(i): X0 and Y0. X0 and Y0 contain vertices

v(t1), ..., v(ti-1) and v(ti), ..., v(tn), respectively.

For segment ms(i) let us assume that Ti =

T(ms(i)) corresponds to the tree of the lengths of

the shortest paths connecting ms(i) with all the ver-

tices in the graph. Let us assume that [ti-1, ti] rep-

resents a non-zero length median segment. The tree

is constructed as follows: first we connect the

points ti-1 and ti to the vertex set V and then connect

the vertices ti-1 and ti with all the vertices of the

sets X0 and Y0, respectively (Fig. 1). We shall as-

sume that d(ti-1, v) = ti-1 + d(x, v) for all v ϵ X0 and

d(ti, v) = l(x, y) – ti + d(y, v) for all v ϵ Y0. It can be

easily verified that the length of the path d(τ, v)Ti in

the distance tree Ti is equal to the length d(τ, v)G in

the original graph G for any point τ ϵ ms(i) and any

vertex v ϵ V′.

Absolute center of the median segment

Based on (1), a tree has a unique absolute cen-

ter, which is the middle of the weighted path be-

tween two peripheral vertices. We assume that at

least one vertex of the graph has non-zero weight.

Otherwise, any point in the graph would corre-

spond to its absolute center. We shall consider the

possible locations of the peripheral vertices and the

absolute center of the median segment.

1. Let us assume that each of the sets X0 and Y0

contains at least one non-zero weight vertex.

а) Let us assume that the peripheral vertices be-

long to different sets. When the mid-point of the

weighted path between them belongs to the seg-

ment [ti-1, ti], it represents the local absolute cen-

ter of the i-th median segment and the radius is

calculated based on (1).

Let us assume that the mid-point of the path

does not belong to the segment [ti-1, ti] and, to be

definite, is located to the left of the vertex ti-1. The

function F(τ) = max{w(v)d(τ, v): v ϵ V} is convex

and piecewise linear on every simple path of the

tree [4]. All the points of the segment [ti-1, ti] are

located along the path between the two peripheral

vertices. The convex function F(τ) increases as we

move away from its absolute minimum point.

Thus, the local absolute center of the median seg-

ment [ti-1, ti] is located at the point nearest to the

absolute minimum point, i.e. at the vertex ti-1 and

the farthest vertex from ti-1 belongs to the set X0.

Similarly, when the absolute center of the tree is

located to the right of ti, the local absolute center

[ti-1, ti] is located at the vertex ti and the farthest

vertex belongs to the set Y0.

b) Let us assume that the peripheral vertices of the

tree Ti belong to one set: X0, to be definite. Then the

local absolute center of the segment [ti-1, ti] will be

located at the vertex ti-1.

Therefore, to find the peripheral vertices we

take one non-zero weight vertex from the set X0

and another one from the set Y0. We calculate the

length dd(u, v) of the unweighted path between

vertices u ϵ X0 and v ϵ Y0 in the tree Ti. This path

passes through the edge (x, y): dd(u, v) = d(u, x) +

l(x, ti-1) + l(ti-1, ti) + l(ti, y) + d(y, v) = d(u, x) + l(x, y)

+ d(y, v) and does not depend on the boundaries of

the segment msi.

2. Let us assume that one of the sets – X0, to be

definite – consists of only zero weight vertices.

Then the local absolute center of the segment is lo-

cated at the vertex ti. Similarly, when Y0 consists

of only zero weight vertices, the local absolute

center of the segment is located at the vertex ti-1.

In the following, by “center” and “radius” of

the segment (edge) we shall mean the “local abso-

lute center” and the “local absolute radius” of the

segment (edge).

We shall consider a classic A1CP. We are given

the undirected connected graph G = <V, E>, |V| = n,

|E| = m with non-negative weights of vertices w(v),

v ϵ V and positive edge lengths l(e), e ϵ E; V′ is a

set of non-zero weight vertices. It is required to

find a point in G such that the distance between the

point and the farthest vertex from V′ is minimum.

We set the edge (x, y) and precalculate the ma-

trix of weight coefficients

 and the distance vectors d(x, v) and d(y, v),

v ϵ V.

Algorithm 1

1. We form a set of median points T(x, y) based

on (2) and arrange it in non-decreasing order. We

arrange equal points in the non-decreasing order of

weights of their generating vertices.

2. We divide all the vertices into two sets X0

and Y0. Y0 initially contains the following: zero

weight vertices (except x when w(x) = 0); vertex y;

vertices whose shortest path to x passes through y.

For every vertex i ϵ X0, i ϵ V′ we find and

memorize the farthest vertex j ϵ Y0, j ϵ V′ and half

of the weighted distance between them: maxd(i) =

ww(i, j)× (d(x, i) + l(x, y) + d(y, j)); maxv(i) = j.

3. We pass through the median points of the

edge (x, y) from point x to point y. After visiting

the point t we transfer its associated vertex v(t)

from X0 to Y0 and recalculate maxd(i) at this ver-

tex for all i ϵ X0, i ϵ V′: maxd(i) = max{maxd(i),

ww(i, v(t))× (d(x, i) + l(x, y) + d(y, v(t))}.

Note. The distance is also recalculated for all

equal median points since the maximum distance

does not necessarily have to be achieved at the

largest weight vertex.

4. We find and memorize the radius and the

center for every passed non-zero length segment

ms(i). For this purpose, we find the vertex i0 with

maximum value of maxd(i0) among the vertices i ϵ

X0, i ϵ V′. When the mid-point of the weighted

path between i0 and maxv(i0) does not belong to

ms(i), we shift the center to the nearest end of the

segment and find the weighted distance to the far-

thest vertex.

5. r(x, y) = min{r(ms(i)): 2 ≤ i ≤ n}. To print all

the equivalent centers of the edge we pass through

the median segments and compare the memorized

radius of the segment with the edge radius.

Computational complexity for a single edge

O(n
2
). We shall mention that the idea of dividing

the vertices into the two sets X and Y as well as the

vertex transfer from X to Y is adopted in the

Minieka’s algorithm (1981) [8].
Algorithm 1 layout represented in the model

graph

We shall find the local absolute radius and all

the local absolute centers of the edge (4, 5) for the

model graph (Fig. 2). The weights of all the verti-

ces are equal to 1.

Graph radius = 9, the center is located at the

vertex 1.

Set of median points with generating vertices:

T(4, 5) = {0.0 (5), 0.0 (7), 2.5 (2), 3.5 (1), 4.5

(3), 7.0 (4), 7.0 (6)}.

Set X0 = {1, 2, 3, 4, 6}; set Y0 = {5, 7}.

Non-zero length segments, their radii, centers

and peripheral vertices px and py:

[0.0, 2.5], r = 8.0, center = 2.0, px = 2, py = 7,

transferred to Y0 vertex 2;

[2.5, 3.5], r = 8.0, center = 3.0, px = 1, py = 2,

transferred to Y0 vertex 1;

[3.5, 4.5], r = 8.0, center = 4.0, px = 3, py = 1,

transferred to Y0 vertex 3;

[4.5, 7.0], r = 8.5, center = 4.5, px = 6, py = 3.

Local absolute radius of the edge (4, 5) = 8.0,

centers are located at points {2.0; 3.0; 4.0}.

Instance. Undirected connected graph G = <V,

E>, |V| = n, |E| = m is given. Every edge e  E is

assigned a positive weight vector lj(e) and every

vertex v  V is assigned a non-negative weight

vector wj(v), j = 1 … k. Set S, is given, which con-

tains all the edge points from the specified subset

E′ ⊆ E. The non-negative cost boundaries Bj are

given for all j ≥ 2.

Question. It is required to find the point τ1 ϵ e ϵ

S that minimizes the function max{w1(v)d1(τ1, v): v

ϵ V} provided that for all j ≥ 2 and all v ϵ V

wj(v)dj(τj, v) ≤ Bj, dj(τj, v) is the length of shortest

path from τj to v taken for the j-th coordinate and

τ1 = λjτj where λj = l1(e)/lj(e).

We shall set the edge (x, y) ϵ E′ and the coordinate

j ≥ 2. We shall precalculate the matrices of coeffi-

cients wwj and the distance vectors dj(x, v) and dj(y,

v), v ϵ V. We shall calculate the radii and the centers

of the median segments (msj(i)), i = 2 … n using the

Algorithm 1.

Finding admissible segments based on one

coordinate

Algorithm 2

1. We use the Algorithm 1 to calculate the local

absolute radii and the centers of the median seg-

ments (msj(i)), i = 2 … n.

2. pj:= 0; //current number of the admissible

segment.

3. We pass through the median points of the

edge (x, y) from point x to point y. When the radius

of the i-th segment r(msj(i)) ≤ Bj, go to step 4.

4. We find the admissible segment of msj(i),

which satisfies the j-th constraint.

All the vertices associated with the median

points ii = 1 … i – 1 belong to the set Y0. We find

the left boundary of the admissible segment, i.e.

the maximum distance

Similarly, all the vertices associated with the

median points ii = i … n belong to the set X0. We

find the right boundary of the admissible segment,

i.e. the minimum distance

When lb ≤ rb and [lb, rb] ∩ msj(i) ≠ , pj:= pj + 1

and asj(pj):= [lb, rb] ∩ msj(i).

Finding admissible absolute centers that satisfy

all the constraints

Algorithm 3

1. We use the Algorithm 2 for all j ≥ 2 to find

the admissible segments asj(i), i = 1 … pj that satis-

fy the j-th constraint.

2. We convert the boundaries of all the admissi-

ble segments asj(i).lb and asj(i).rb, i = 1 … pj, j ≥ 2

into the edge measurement units for j = 1:

3. We apply the binary search to find the inter-

sections of the admissible segments for all the co-

ordinates j ≥ 2. The number of the resulting admis-

sible segments as(i), i = 1 … p will not be greater

than n – 1 and all the cost constraints will be satis-

fied for every point on any segment.

4. We use the Algorithm 1 to find the median

segments ms1(ii), ii = 2 … n, their local absolute

radii and centers for j = 1.

5. We apply the binary search to find the inter-

sections between the median segments ms1(ii),

ii = 2 … n and the admissible segments as(i),

i = 1 … p. We define the local absolute radius and

the center for every non-empty intersection. The

minimum radius will correspond to the local abso-

lute radius of the edge and the respective centers

will satisfy all the cost constraints.

Computational complexity of the algorithm is

O(k|E′|n
2
) when the distance matrix is unknown.

Toll road problem

Let us assume that the edges of the model graph

represent toll roads and the vertices represent clients.

The road lengths (j = 1) and the fares (j = 2) are

shown in Fig. 2 and Fig. 3, respectively. The weights

of all the vertices are equal to 1. It is required to lo-

cate the service center on the edge (4, 5) in such a

way that the fare for travelling there does not

exceed 5.5 for any client and the distance to the

farthest client is minimum.

Set X0 = {1, 2, 3, 4, 6}; set Y0 = {5, 7}.

Set of median points with generating vertices:

T(4, 5) = {0.0 (5), 1.00 (3), 1.00 (7), 2.00 (1),

3.00 (2), 3.00 (6), 7.00 (4)}.

Radii, centers and peripheral vertices px and py

of non-zero length segments:

[0.00, 1.00], r = 5.00, center = 0.00, px = 3, py = 5,

transferred to Y0 vertices 3 and 7;

[1.00, 2.00], r = 5.00, center = 2.00, px = 2, py = 3,

transferred to Y0 vertex 1;

[2.00, 3.00], r = 5.00, center = 2.00, px = 2,py = 3,

transferred to Y0 vertices 2 and 6;

[3.00, 4.00], r = 5.00, center = 4.00, px = 4, py = 2.

Local absolute radius of the edge (4, 5) = 5.00,

the centers = {0.00; 2.00; 4.00}.

Admissible segments (in two measurement

units), their centers and radii

[0.00, 0.50]  [0.00, 0.88], r = 9.13, center = 0.88;

[1.50, 2.00]  [2.63, 3.50], r = 8.00, center = 3.00;

[2.00, 2.50]  [3.50, 4.38], r = 8.00, center = 4.00;

[3.50, 4.00]  [6.13, 7.00], r = 10.13, center = 6.13.

Local absolute radius of the edge (4, 5) = 8.00,

the admissible centers = {3.00; 4.00}.

1. An edge of the undirected connected graph

over the time O(|V′|log |V′|) can be divided into not

more than n – 1 median segments of non-zero

length and each segment has a unique local abso-

lute center where |V′| is the number of non-zero

weight vertices.

2. The admissible vector version of the absolute

center problem (AA1CP) allows to find all the

equivalent admissible absolute centers of the

graph, which satisfy all the k – 1 constraints of the

problem over the time O(k|E′|n
2
) where |E′| is the

number of admissible edges. The bound of cost Bj,

j ≥ 2 considered in this paper is uniform for all

nodes in V′. In fact, Algorithm 2 also can be ap-

plied to scenarios where the cost bounds of nodes

in V′ are nonuniform.

3. When a finite system of admissible disjoint

segments S is given for a classic A1CP, all the equiv-

alent admissible absolute centers of the graph can be

found from S over the time O(plog |V′| + |E′|n
2
) where

p is the number of admissible segments.

4. The review of our study materials and trans-

lated textbooks [9]-[10] shows that either the

graphic Hakimi algorithm is used for the classical

A1CP or such problem is completely eliminated

from consideration, for example [11]. The pro-

posed Algorithm 1 features simple program im-

plementation without using special data structures

and can be used for educational purposes when

studying the problems of optimum location for

service centers.

Acknowledgements. The authors wish to thank

Victor S. Shulman for his helpful discussions.

1. Hakimi, S.L. 1964. Optimum Locations of Switching Centers

and the Absolute Centers and Medians of a Graph. Operations

Research 12:450–459. doi:10.1287/opre.12.3.450.

2. Kariv, O. & Hakimi, S.L. 1979. Algorithmic approach to

network location problems, I: The p-Centers, SIAM J.

Appl. Math. 37(3):513–537. doi:10.1137/0137040.

3. Goldman, A.J. Minimax location of a facility in a network.

Transp. Sci. 6(4):407–418. doi:10.1287/trsc.6.4.407.

4. Megiddo, N. 1983. Linear-time algorithms for linear pro-

gramming in R3 and related problems. SIAMJ. Comput.

12(4): 759–776. doi:10.1137/0212052.

5. Ding, W. & Qiu., K. 2017. FPTAS for generalized abso-

lute 1-center problem in vertex-weighted graphs. Journal

of Combinatorial Optimization. 34(4):1084–1095. doi:

10.1007/s10878-017-0130-4.

6. Ramos, R.M., Sicilia, J. & Ramos, M.T. 1997. The

biobjective absolute center problem. TOP, 5(2): 187-199.

doi: 10.1007/BF02568548.

7. Ding, W. & Qiu., K. 2015. Approximating the Restricted

1-Center in Graphs. In: Lu Z., Kim D., Wu W., Li W., Du

DZ. (eds) Combinatorial Optimization and Applications.

Lecture Notes in Computer Science, vol 9486: 647-659.

doi: 10.1007/978-3-319-26626-8_47.

8. Minieka, E. 1981. Polynomial Time Algorithm for Finding

the Absolute Center of a Network. Networks, 11: 351-355.

doi:10.1002/net.3230110404

9. Minieka, E. 1978. Optimization Algorithms for Networks

and Graphs. New York: Marcel Dekker. 356 p.

10. Christofides, N. 1975. Graph Theory: Algorithmic Ap-

proach. New York: Academic. 400 p.

11. Torchinsky, V.E. & Fainshtein, S.I. 2007. Struktury i

algoritmy obrabotki dannykh na EVM [Structures and al-

gorithms of computer data processing]. Magnitogorsk:

Magnitogorsk State Univ. 139 p.

Fainshtein S. I. Assistant professor of G.I. Nosov Magnitogorsk State Technical University, Magnitogorsk, 38 Lenina Ave. As-

sociate professor. Graduated from Lomonosov Moscow State University in 1982. 10 published articles. Topics of interest: dis-

crete optimization, information technologies. Corresponding author. E-mail: sfainshtein@yandex.ru

Fainshtein A. S. Assistant professor of G.I. Nosov Magnitogorsk State Technical University, Magnitogorsk, 38 Lenina Ave.

PhD, associate professor. Graduated from Azerbaijan State University in 1976. 40 published articles. Topics of interest: operators

on Banach spaces, Lie algebras of operators, discrete mathematics. E-mail: swetlana@mgn.ru

Torchinsky V. E. Assistant professor of G.I. Nosov Magnitogorsk State Technical University, Magnitogorsk, 38 Lenina Ave.

Associate professor, leading software engineer. Graduated from G.I. Nosov Magnitogorsk Mining and Metallurgical Institute in

1984. 8 published articles. Topics of interest: optimization and evolution algorithms, information technologies.

E-mail: vet@magtu.ru

