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Abstract. Finding an interpretable non-redundant representation of real-world data is one of the key prob-
lems in Machine Learning. Biological neural networks are known to solve this problem quite well in un-
supervised manner, yet unsupervised artificial neural networks either struggle to do it or require fine-
tuning for each task individually. We associate this with the fact that a biological brain learns in the con-
text of the relationships between observations, while an artificial network does not. We also notice that, 
though a naive data augmentation technique can be very useful for supervised learning problems, autoen-
coders typically fail to generalize transformations from data augmentations. Thus, we believe that provid-
ing additional knowledge about relationships between data samples will improve model's capability of 
finding useful inner data representation. More formally, we consider a dataset not as a manifold, but as a 
category, where the examples are objects. Two these objects are connected by a morphism, if they actual-
ly represent different transformations of the same entity. Following this formalism, we propose a novel 
method of using data augmentations when training autoencoders. We train a Variational Autoencoder in 
such a way, that it makes transformation outcome predictable by auxiliary network in terms of the hidden 
representation. We believe that the classification accuracy of a linear classifier on the learned representa-
tion is a good metric to measure its interpretability. In our experiments, present approach outperforms  
β-VAE and is comparable with Gaussian-mixture VAE. 

Keywords: machine learning, deep learning, neural networks, autoencoder, variational autoencoder, latent data 
representation, interpretability of the latent data representation, applications of the category theory. 
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Introduction  
The performance of machine learning algo-

rithms crucially depends on the representation of 
data they work with. Relevant for the particular 
task data representation can significantly improve 
the performance of machine learning models on 
this task. As it was shown by Schmidhuber el al. in  
[1], Bengio et al. in  [2] and I. Higgins et al. in [3], 
disentangled (or statistically independent) repre-
sentations are particularly valuable, because they 
are useful in a wide range of applied tasks, particu-
larly in computer vision field. 

Advanced supervised machine learning models 
are known to be able to learn high-abstract relevant 
non-redundant representations, but they require 
specific preprocessing and a large amount of la-
beled data to achieve this. However, labeled data 
are usually limited and expensive to obtain. That is 
why the problem of learning good data representa-
tion from unlabeled data is important. 

The requirements to amount of data required for 
learning good representation can be softened by 
using data augmentation technique. Initial dataset 
can be expanded by applying set of transfor-
mations to each training sample, where each of 
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these transformations is known a priori to not af-
fect desired output. However, when using data 
augmentation, we still need decent initial amount 
of labeled data, and only labeled data can be used.  

A frequent situation in practice is when large 
number of unlabeled samples is available, but la-
beling them is expensive. While data augmentation 
helps to significantly improve results in supervised 
tasks and learn good data representation during 
training, it usually does not help to learn more 
meaningful representation when applied naively in 
unsupervised tasks. 

To see the problem, consider an example of 
CNN autoencoder for digit images, and assume we 
want it to extract an interpretable compact image 
representation, such that we can recognize digit 
from it easily (by linear classifier) regardless of ro-
tation, scale, etc. If we provide our model an image 
of 3 and the same image, rotated 45 degrees, it is 
really hard to infer relation between these images 
from training signal (pixel-wise reconstruction 
loss). In a fact, in terms of pixel 𝐿𝐿2 distance (typi-
cally used as reconstruction loss) 3 is closer to 9 
than to 45-degrees rotated 3 (contrary to classifica-
tion task, where rotation invariance is implicitly 
encoded in training signal). Because of this, apply-
ing rotation augmentations will help the autoen-
coder to memorize all rotated variations of digits, 
but it still fails to generalize image classes over ro-
tations. This case was experimentally investigated 
in [4]. This kind of generalization we want to ob-
tain can be equivalently formulated as disentan-
glement of class-related part of image description 
from rotation related part in terms of linear sub-
spaces, i.e. factoring by rotation group. 

More generally, when we work with natural 
images, we want to separate image description 
space into two subspaces of features: the feature 
subspace, representing inherent properties of the 
depicted objects themselves and the feature sub-
space, representing different kinds of transfor-
mations (zooms, rotations, shifts etc.).  

One particular approach to such a separation 
was proposed in [4]. 

By using properties of the Group Equivariant 
Convolutional Networks, the autoencoder with spe-
cialized architecture can factor its internal representa-
tion space by group of transformations used by group 
equivariant convolutions in encoder network,  

allowing to distill all invariant information. It is 
shown that such representation can successfully dis-
entangle image classes, making them linearly separa-
ble once irrelevant transformation groups are factored 
out. However, that approach has number of disad-
vantages, arising from reliance on group equivariant 
convolutions: group equivariant convolution opera-
tion needs to be implemented manually for desired 
group, which is not always possible or require addi-
tional tricks, set of transformations need to be proper 
algebraic group with known structure, computation 
and memory costs grow with group size. 

In this paper, we introduce new, more flexible 
approach, inspired by observations on how biolog-
ical brains do unsupervised learning. Instead of us-
ing specialized architecture to factor particular 
group of transformations, we change learning pro-
cess to train encoder to produce more predictable 
image descriptions. To do so, we go away from 
training autoencoder on i.i.d. samples, and instead 
train it on conditionally connected samples, repre-
sented as tuples: image, transformation, result. 

1. Biological Inspiration 

Biological neural networks are known to learn 
good data representation in unsupervised manner. 
We suppose that one of the main reasons for it is 
that brain always learns in context. It remembers 
what it has seen before and tries to predict what 
will happen next. Particularly, a brain of an animal 
always knows where the animal is moving at every 
moment due to the signals it exchanges with the 
muscles. 

Incredible importance of such a context was 
shown in paper [5]. 

They described a biological experiment, which 
was performed on pairs of newborn kittens at early 
stage of their post-natal development, which is 
considered as crucial for their learning. Each pair 
was placed into an apparatus, shown on Fig. 1. One 
of the kittens (active subject, 𝐴𝐴) had relative free-
dom to move actively around axes 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐. An-
other one (passive subject, 𝑃𝑃) was fixed inside of 
gondola, which repeated movements of 𝐴𝐴 automat-
ically, due to mechanical transmission system. Pas-
sive subject couldn't influence its own movements. 
In the same time, both subjects could equally ob-
serve their environment. 
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After spending suitable amount of time inside 
this apparatus, kittens were released, and their re-
sponses on visual stimuli were tested. Passive kit-
tens didn't manage to react properly on approach-
ing objects and obstacles, as if they didn't see them 
properly, despite the fact, that their eyes were 
healthy. In the same time, active kittens didn't have 
such a problem. They developed normal response 
on visual environment. Active kittens were able to 
learn relationship between their own movements 
and the visual data they received, and this context 
turned out to be crucial for them to learn, how to 
interpret visual data in a meaningful way. 

But unsupervised machine learning models 
usually don't have such a context. Their sources of 
information are limited to distinct data samples 
from a training set via the loss function. It doesn’t 
have context that biological brain has. Autoencod-
er models «know» that there is some compressed 
data representation and that they “should” find it, 
but found compressed representation isn't neces-
sarily meaningful. Moreover, the task of compress-
ing data can be performed fully without under-
standing the data structure. For example, JPEG 
algorithm is able to compress images, but is fully 
unable to extract useful features from it. 

Having in mind the biological analogy, we 
think, that providing an additional context to auto-
encoder would let it learn more abstract and mean-
ingful features. Particularly, we want to teach it the 
link between transformation (movement) and a 
new picture, which it gets after the movement. 

2. Related Works 

There are several different approaches to the 
described problem known so far. Two especially 
influential of them are 𝛽𝛽-VAE [5] and learning 
factorial codes by predictability minimization [3]. 

Among more recent approaches, we want to 
highlight Multi-Modal Deep Clustering [6], Max-
imizing Mutual Information Across Views [7] and 
Contrastive Learning [8]. 

Let us briefly highlight the insights of these 
works. 

2.1. Factorial Codes 

Factorial Codes are a particular variation of 
lossless encoding. A factorial code of a given data 
piece is a vector of statistically independent fea-
tures, which can be decoded into that original piece 
of data again. In other words, that vector should 
get rid from statistical dependencies inside the data 
piece, but save all the information, which it con-
tained, in the same time. 

A particular way for unsupervised learning of 
such a non-redundant representation was intro-
duced in [3]. There authors consider an abstract 
learner, which learnes a representation of the data, 
using some hidden units. Then they assign an 
adaptive predictor to each hidden (representation) 
unit of this learner. Each predictor learns to predict 
the output of the corresponding unit using the out-
puts of all other units of the same representational 
layer. In turn, each representational unit tries to 
minimize its own predictability. This competition 
encourages each representational unit to learn con-
cepts, statistically independent of those upon 
which the other units focuse. 

Authors also demonstrate particular implemen-
tation of this idea, performing experiments on par-
ticular neural network architecture and a learning 
algorithm for it. 

2.2. β-VAE 

Authors of 𝛽𝛽-VAE adapted well-known varia-
tional autoencoder [9] model for learning factor-
ized interpretable data representations. To achieve 
this, they specify disentangled metric and use it to 
enhance VAE's loss function in a way to make it 
consider the «entanglement» as a part of the loss. 

This enhanced loss function includes a hyperpa-
rameter 𝛽𝛽, which balances latent channel capacity 

Fig. 1. Apparatus for equating motion and consequent visual 
feedback for an actively moving (A) and passively moved (P). 

Reprinted from (R. Held, A. Hein, 1963) 
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and independence constraints with reconstruction 
accuracy (and which gives the model its name). 
The edge case of 𝛽𝛽 = 1 gives classical VAE mod-
el. The further 𝛽𝛽 parameter is from 1, the more the 
“entanglement” part of the loss matters. 

2.3. Multi-Modal Deep Clustering 

In [6] a new algorithm for training a CNN-
based neural network for natural images clustering 
is proposed. This algorithm combines main, unsu-
pervised task of “noise as target” encoding with 
auxiliary task of rotation prediction in order to ob-
tain a representation with meaningful clearly de-
fined clusters. 

“Noise as target” method aligns embeddings of 
images with target points sampled from a Gaussian 
Mixture. For this purpose, it utilizes loss function, 
based on distance between image embedding and 
closest target point. Additional task of rotation pre-
diction encourages rotations of the same image to 
map into close vectors in the representation layer. 

2.4. Maximizing Mutual Information Across 
Views 

Authors of [7] encourage their model to maxim-
ize mutual information between features extracted 
from independently-augmented copies of the same 
image. The purpose of using such augmentations in 
this particular work is to create multiple views of a 
shared context, and then to force neural network to 
extract the most informative features, shared by all 
these views. 

2.5. Simple Framework for Contrastive 
Learning 

Authors of SimCLR [8] also aim to extract 
transformation-independent representations of vis-
ual data. They achieve this goal by combining 
original architecture, composed of encoder and 
auxiliary network, with suitable dataset augmenta-
tion. It's easy to see, that our approaches share 
much in common; however, they have deep differ-
ences as well. We will point out these differences 
below, right after giving brief outline of Contras-
tive Learning framework itself. 

In SimCLR convolutional encoder takes two dif-
ferent transformations of the same image as inde-
pendent inputs and learns representation of each one 
inside of its latent space. In turn, auxiliary fully-
connected network, called “projection head”, learns 

to map (project) representations, corresponding to 
transformations of the same images, into vectors, 
close in terms of cosine similarity. Both networks 
train together by minimizing normalized tempera-
ture-scaled cross entropy loss through gradient de-
scent (see original paper [8] for more details). 

In our work auxiliary network plays another role: 
it learns transformations instead of projections. Be-
sides, [8] operates with representations, which drop 
information about transformations, while our model 
aims to save information about transformations in a 
disentangled manner. It is achieved by basing our 
model on autoencoder instead of just encoder. 

All these results have shown the way in which 
the resulting data representation is useful in a vari-
ety of tasks, especially in the computer vision field. 
However, first two papers attempt to approach the 
problem as solely a part of a compression task. 
Recognizing the huge importance of their results, 
we nevertheless admit that those techniques are not 
sufficient to learn good representation of more 
complicated datasets. In turn, the last three papers 
revolve around extraction of transformation invari-
ants, but without keeping information about trans-
formations themselves in a latent layer. So, despite 
the fact that such representations are proved to be 
useful, they are not decodable. 

Our model, on the other hand, uses these invar-
iants for disentangling learned representation, 
keeping it decodable. To achieve this, we augment 
the underlying VAE model in such a way, that it 
not only solves the compression task, but also tries 
to predict certain objects transformations. We see it 
as a part of important learning context, discussed 
above, which 𝛽𝛽-VAE and factorial codes models 
lack by themselves. 

We also provide formal mathematical descrip-
tion of our idea, using Category Theory language, 
as well as Bayesian inference, justifying our archi-
tectural solutions. 

3. Model Description 

3.1. Categorical Background 

Since we want to take into account the relation-
ships between samples in our dataset, we suggest 
describing our dataset in the terms of the Category 
Theory. To begin, we recall the base definition of 
the category. 
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Definition. A category 𝐶𝐶 is an aggregate of two 
classes - the class of objects 𝑂𝑂𝑏𝑏(𝐶𝐶) and the class of 
morphisms 𝐻𝐻𝐻𝐻𝐻𝐻(𝐶𝐶) with the following properties: 

1. Each pair of objects 𝑎𝑎, 𝑏𝑏 ∈ 𝑂𝑂𝑏𝑏(𝐶𝐶) corre-
sponds to a set 𝐻𝐻𝐶𝐶(𝑎𝑎,𝑏𝑏) ⊂ 𝐻𝐻𝐻𝐻𝐻𝐻(𝐶𝐶) of morphisms. 

2. Each morphism 𝛼𝛼 ∈  𝐻𝐻𝐻𝐻𝐻𝐻(𝐶𝐶) belongs to 
one and only one set 𝐻𝐻𝐶𝐶(𝑥𝑥,𝑦𝑦), where 𝑥𝑥 and 𝑦𝑦 are 
some objects from 𝑂𝑂𝑏𝑏(𝐶𝐶). 

3. There is a composition operation defined  
in the class 𝐻𝐻𝐻𝐻𝐻𝐻(𝐶𝐶). The composition of 
𝛼𝛼 ∈  𝐻𝐻𝐶𝐶(𝑎𝑎, 𝑏𝑏) and 𝛽𝛽 ∈  𝐻𝐻𝐶𝐶(𝑏𝑏, 𝑐𝑐) gives a morphism 
𝛽𝛽𝛼𝛼 ∈  𝐻𝐻𝐶𝐶(𝑎𝑎, 𝑐𝑐). This operation is associative, i.e. 
𝛾𝛾(𝛽𝛽𝛼𝛼)  =  (𝛾𝛾𝛽𝛽)𝛼𝛼 for any three morphisms  

𝛼𝛼 ∈  𝐻𝐻𝐶𝐶(𝑎𝑎, 𝑏𝑏),  𝛽𝛽 ∈  𝐻𝐻𝐶𝐶(𝑏𝑏, 𝑐𝑐),  𝛾𝛾 ∈  𝐻𝐻𝐶𝐶(𝑐𝑐,𝑑𝑑). 
4. Each set 𝐻𝐻𝐶𝐶(𝑎𝑎,𝑎𝑎) contains a special 

morphism 1𝑎𝑎, such that for any morphisms 
𝛼𝛼 ∈  𝐻𝐻𝐶𝐶(𝑥𝑥,𝑎𝑎) and 𝛽𝛽 ∈  𝐻𝐻𝐶𝐶(𝑎𝑎,𝑦𝑦) 1𝑎𝑎 𝛼𝛼 = 𝛼𝛼 and 
𝛽𝛽 1𝑎𝑎  = 𝛽𝛽. This special morphism is called the 
identity morphism of object 𝑎𝑎. 

For more detailed explanation, see [10]. 
Returning to our situation, let's consider the set 

𝐗𝐗 of observations and the set A of allowed trans-
formations between these observations. For exam-
ple, 𝐗𝐗 can be the set of some natural images, and 𝐀𝐀 
– the set of possible rotations, shifts and rescaling 
of each object. Now, we introduce a category 𝑋𝑋 in 
a following way: 

• we use the objects from X as objects of 𝑋𝑋: 
𝑂𝑂𝑏𝑏(𝑋𝑋)  =  𝐗𝐗; 

• the pair of objects 𝑥𝑥1 and 𝑥𝑥2 from 𝑂𝑂𝑏𝑏(𝑋𝑋) is 
connected by a morphism 𝛼𝛼 ∈  𝐻𝐻𝑋𝑋(𝑥𝑥1, 𝑥𝑥2), if and 
only if there exists a transformation 𝑎𝑎 ∈  𝐀𝐀, such 
that 𝑥𝑥2  =  𝑎𝑎(𝑥𝑥1); 

• the composition of morphisms in 𝑋𝑋 is con-
sistent with the composition of transformations 
from 𝐀𝐀. 

Our main object of interest is, however, the la-
tent space 𝐙𝐙 of our model, since we suppose that 

each object from 𝐗𝐗 is generated by some hidden 
variable 𝑧𝑧 ∈  𝐙𝐙. 

Let's introduce a category 𝑍𝑍 in a following way: 
• we use the objects from 𝐙𝐙 as objects of 𝑍𝑍; 
• we say, that there is a morphism 𝑎𝑎′ ∶ 𝑍𝑍1 →

 𝑍𝑍2, if there is a morphism 𝑎𝑎 ∶  𝑋𝑋1 →  𝑋𝑋2. We denote 
this new set of morphisms 𝐻𝐻𝐻𝐻𝐻𝐻(𝑍𝑍)  =  𝐀𝐀′. 

Let's also denote the embedding, learned by our 
model, by 𝑃𝑃 ∶  𝐗𝐗 →  𝐙𝐙. 

Now, let's consider the diagram on Fig. 3. The 
goal of our model in the language of category theo-
ry is to make this diagram commutative. I.e. for 
each 𝑥𝑥1 ∈  𝐗𝐗,𝑎𝑎 ∈  𝐀𝐀, we want the existence  
of 𝑎𝑎′ ∈ 𝐀𝐀′, such that the equality 𝑎𝑎′(𝑃𝑃(𝑥𝑥1))  =
 𝑃𝑃(𝑎𝑎(𝑥𝑥1)) holds. To achieve this, we are using 
graph model, depicted on Fig. 4.  

  

Fig. 2. Set versus Category 

Fig. 3. Diagram we want to be commutative 

Fig. 4. Graph model 
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3.2. Variational Inference 

Let us first remind the main steps of the varia-
tional inference for the classical Variational Auto-
encoder [9] and then derive it for our modified 
model. 

Recall the identity (see, for instance, [11]) 
𝔼𝔼𝑧𝑧∼ 𝑞𝑞(𝑧𝑧|𝑥𝑥) [log 𝑝𝑝(𝑥𝑥|𝑧𝑧)] − 𝒟𝒟KL[𝑞𝑞(𝑧𝑧|𝑥𝑥)||𝑝𝑝(𝑧𝑧)]  =  𝐿𝐿(𝑥𝑥), 

which holds for any distribution 𝑞𝑞(𝑧𝑧|𝑥𝑥) over the 
same domain 𝑍𝑍 as 𝑝𝑝(𝑧𝑧|𝑥𝑥). Here 

𝐿𝐿(𝑥𝑥)  =  log 𝑝𝑝(𝑥𝑥)  −  𝒟𝒟KL[𝑞𝑞(𝑧𝑧|𝑥𝑥)||𝑝𝑝(𝑧𝑧|𝑥𝑥)] 
is the evidence lower bound (ELBO) and 

𝒟𝒟KL[𝑝𝑝1(𝑧𝑧)||𝑝𝑝2(𝑧𝑧)] = 𝔼𝔼𝑧𝑧∼𝑝𝑝1(𝑧𝑧) log
𝑝𝑝1(𝑧𝑧)
𝑝𝑝2(𝑧𝑧)

 

is the Kullback–Leibler divergence between two 
distributions. Since the latter is always non-
negative one can obtain the following lower bound 
of the evidence from the definition (2): 

    log 𝑝𝑝(𝑥𝑥) ≥  𝐿𝐿(𝑥𝑥). 

Moreover, according to (1), in order to maximize 
the data likelihood (with respect to some trainable 
parameters 𝜃𝜃 hidden in 𝑝𝑝(𝑥𝑥|𝑧𝑧) and 𝑞𝑞(𝑧𝑧|𝑥𝑥) one has to 
maximize objective function 𝐿𝐿(𝑥𝑥) along with mini-
mizing the KL-divergence between 𝑞𝑞(𝑧𝑧|𝑥𝑥) 
and 𝑝𝑝(𝑧𝑧|𝑥𝑥). As usual, we assume that our encoding 
model 𝑞𝑞(𝑧𝑧|𝑥𝑥) is complex enough to nullify the di-
vergence term without affecting the log-likelihood 
term, so it suffices just to maximize 𝐿𝐿(𝑥𝑥). 

In our case the space 𝐗𝐗 of all observable varia-
bles consists of triples (𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) ∈  𝐗𝐗 × 𝐗𝐗 × 𝐀𝐀 of 
two images and a transformation. We want our 
generative process to produce triples for which 
𝑥𝑥2 = 𝑎𝑎(𝑥𝑥1) more likely than other, thus we want to 
maximize 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) for these points. The space 
𝑍𝑍 of all latent variables consists of 
ples (𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′) ∈  𝐙𝐙 × 𝐙𝐙 × 𝐀𝐀. Here 𝑎𝑎′ is a formal 
duplicate of observable variable 𝑎𝑎 in the latent 
space involved in the generative process. Recall 
that the objective of auxiliary encoding function 
𝑞𝑞(𝑧𝑧|𝑥𝑥) is to give us distribution over 𝑧𝑧 values that 
are likely to produce 𝑥𝑥, but its form is completely a 
matter of our choice. We use the following one: 
𝑞𝑞(𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′|𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) = 𝑞𝑞(𝑧𝑧1|𝑥𝑥1) 𝑞𝑞(𝑧𝑧2|𝑥𝑥2) 𝑝𝑝(𝑎𝑎′|𝑎𝑎). 
The conditional distribution 𝑝𝑝(𝑎𝑎′|𝑎𝑎) can be 

written in its explicit form  
𝑝𝑝(𝑎𝑎′|𝑎𝑎) = 𝑝𝑝(𝑎𝑎|𝑎𝑎′) = 𝛿𝛿(𝑎𝑎 −  𝑎𝑎′). 

The equality that follows from our graph model 
depicted on figure 4 will also be useful: 
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎|𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′)  =  𝑝𝑝(𝑥𝑥1|𝑧𝑧1) 𝑝𝑝(𝑥𝑥2|𝑧𝑧2) 𝑝𝑝(𝑎𝑎|𝑎𝑎′). 

Thus the whole generating process in our model 
is the following: 
 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) = 
=  𝔼𝔼𝑧𝑧1,𝑧𝑧2,𝑎𝑎′ ∼  𝑝𝑝�𝑧𝑧1,𝑧𝑧2,𝑎𝑎′� 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎|𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′)= 

 = 𝔼𝔼{𝑧𝑧1∼ 𝑝𝑝(𝑧𝑧1) 𝔼𝔼𝑧𝑧2∼ 𝑝𝑝(𝑧𝑧2|𝑧𝑧1,𝑎𝑎)𝑝𝑝(𝑥𝑥1|𝑧𝑧1)𝑝𝑝(𝑥𝑥2|𝑧𝑧2)𝑝𝑝(𝑎𝑎). 

In order to obtain the computable form of the evi-
dence lower bound to train the model one has to sub-
stitute (5) and (6) into the identity (1) (written for 
specified above observable and hidden variables): 
𝐿𝐿(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) = 𝔼𝔼𝑧𝑧1,𝑧𝑧2,𝑎𝑎′[log 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,𝑎𝑎|𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′)] − 
−𝒟𝒟KL[𝑞𝑞(𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′|𝑥𝑥1, 𝑥𝑥2,𝑎𝑎)||𝑝𝑝(𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′)] = 

= 𝔼𝔼𝑧𝑧1[log 𝑝𝑝(𝑥𝑥1|𝑧𝑧1)] + 𝔼𝔼𝑧𝑧2[log𝑝𝑝(𝑥𝑥2|𝑧𝑧2)] + 
+ log𝑝𝑝(𝑎𝑎) − 𝒟𝒟KL[𝑞𝑞(𝑧𝑧1|𝑥𝑥1)||𝑝𝑝(𝑧𝑧1)] − 
−𝔼𝔼𝑧𝑧1𝒟𝒟KL[𝑞𝑞(𝑧𝑧2|𝑥𝑥2)||𝑝𝑝(𝑧𝑧2|𝑧𝑧1,𝑎𝑎)]. 

Here expectation 𝔼𝔼𝑧𝑧1,𝑧𝑧2,𝑎𝑎′  is taken over distribu-
tion 𝑞𝑞(𝑧𝑧1, 𝑧𝑧2,𝑎𝑎′|𝑥𝑥1, 𝑥𝑥2,𝑎𝑎) and expectations 𝔼𝔼𝑧𝑧𝑖𝑖 
over distributions 𝑞𝑞(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖) respectively. 

In our experiments we did not use naturally aug-
mented dataset  𝒟𝒟 =  ��𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 ,𝑎𝑎𝑖𝑖� � 𝑖𝑖 ∈  𝐼𝐼}, but did 
the augmentation by picking a transformation 𝑎𝑎 from 
finite predefined set 𝐴𝐴 =  �𝑎𝑎𝑖𝑖  � 𝑖𝑖 ∈  𝐼𝐼′}. Thus, given 
sampled 𝑧𝑧𝑖𝑖 ∼ 𝑞𝑞(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖) and 𝑎𝑎 ∼  𝑝𝑝(𝑎𝑎) = 𝒰𝒰𝐴𝐴(𝑎𝑎) for 
every data point 𝑥𝑥 ∈  𝒟𝒟, the objective (8) to max-
imize takes the form 
𝐿𝐿(𝑥𝑥, 𝑎𝑎(𝑥𝑥),𝑎𝑎|𝑧𝑧1, 𝑧𝑧2) = 

= log𝑝𝑝(𝑥𝑥|𝑧𝑧1) + log𝑝𝑝(𝑎𝑎(𝑥𝑥)|𝑧𝑧2)  + log𝑝𝑝(𝑎𝑎) − 
−𝒟𝒟KL[𝑞𝑞(𝑧𝑧1|𝑥𝑥)||𝑝𝑝(𝑧𝑧1)] − 
− 𝒟𝒟KL[𝑞𝑞(𝑧𝑧2|𝑎𝑎(𝑥𝑥))||𝑝𝑝(𝑧𝑧2|𝑧𝑧1,𝑎𝑎)]. 

Here constant (with respect to trainable parame-
ters) term log 𝑝𝑝(𝑎𝑎) does not affect the maximiza-
tion and can be omitted. However, one has to keep 
it if the distribution over possible transformations 
𝑝𝑝(𝑎𝑎) is trainable itself. 

3.3. Details of Implementation 

More specifically, our model consists of two 
CNN encoders and two CNN decoders with the 
common parameter set and one full-connected 
network, which learns transformations (i.e. mor-
phisms 𝑎𝑎′ from 𝐴𝐴′) in their latent space 𝐙𝐙. All these 
networks are learning together via gradient descent 
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with Adam optimizer, maximizing variational low-
er estimate of data likelihood (9). 

In our particular implementation we used the 
following set 𝐴𝐴 of allowed transformations: 

• up, down, left and right shifts by 3 px and 6px; 
• scaling with coefficients 1.15 and 1.32; 
• rotations by 12° and 24°. 
We assigned unique number for each transfor-

mation from this list. After it, at each training step 
we pick an object 𝑥𝑥1 from our dataset with a par-
ticular transformation 𝑎𝑎 from 𝐀𝐀 and obtain 
ject 𝑥𝑥2 by applying 𝑎𝑎 to 𝑥𝑥1. Next, we compute the 
output of variational autoencoder on both objects – 
 𝑥𝑥1 and 𝑥𝑥2. 

Simultaneously we estimate a probability 
𝑝𝑝(𝑧𝑧2|𝑧𝑧1,𝑎𝑎) of the object 𝑧𝑧2 given 𝑧𝑧1 and its desira-
ble transformation 𝑎𝑎 with fully-connected network, 
mentioned above. 

4. Experiment Results 

In this section we compare the proposed model 
with several standard unsupervised algorithms that 
allow one to obtain a compressed representation of 
data in the latent space. We use the achievable accu-
racy of a linear classifier in the latent space as a 
measure of disentanglement of the obtained represen-
tation. We perform all the experiments on the 
MNIST dataset. 

4.1. 2-Dimensional Latent Space 

To demonstrate the distinctive features of the 
used algorithms we display the MNIST dataset 
embedded in 2-dimensional latent space by each of 
them (Fig. 5 – Fig. 8). To explore stability of such 
representation we also encode a sample of each of 
the ten handwritten digits from the dataset rotated 
360∘ with the step 3∘. We call the obtained trajec-
tories the orbits of these digits in the latent space. 

Fig. 5. PCA embedding (first two components) 
оn the left - the MNIST dataset in the latent space, оn the right - an orbit of each sample digit in the latent space 

Fig. 6. UMAP embedding (with default hyperparameters) 
оn the left - the MNIST dataset in the latent space, оn the right - an orbit of each sample digit in the latent space 
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One can see measured accuracy on the testing 
set of a linear classifier trained on the training set 
embedded in the latent representation by each al-
gorithm in the Table 1. Our algorithm along with 
classical VAE is not well-suited for data visualiza-
tion task, thus it is outperformed by UMAP [12], 
which is. 

4.2. 64-Dimensional Latent Space 

Once the latent space is large enough, our algo-
rithm outperforms all the baselines and allows us 
to obtain better visualization (by projecting onto 

the first two principal components in the latent 
space). The smoothness and stability of the orbits 
indicates that the latent code changes well-
predictable under geometric transformations. 

Conclusion and Future Work 

In this paper we have described a particular ap-
proach that allows a model to learn transformation-
aware representation of real-world objects without 
using labeled data. We have also shown that our 
model outperforms other well-known models in 
high-dimensional latent space in some aspects. We 
have provided mathematical generalization of the 
proposed principle, using the language of the Cate-
gory theory, and described Bayesian inference for 
our model. 

We believe that our ideas can be developed fur-
ther in several directions and can be useful in other 
applications: 

  
Fig. 7. VAE embedding 

оn the left - the MNIST dataset in the latent space, оn the right - an orbit of each sample digit in the latent space 

  
Fig.  8. Our embedding (with hyperparameters β = 0.01, γ = 5.0) 

оn the left - the MNIST dataset in the latent space, оn the right - an orbit of each sample digit in the latent space 

Table 1. Accuracy of a linear classifier on the 2-dimensional 
latent space of different algorithms 

Algorithm Linear separability 
PCA 44.7% 

UMAP 95.5% 
VAE 63.0% 
Our 65.7% 
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• Being generalized to the wider class of 
transformations (beyond Gaussian), our model can 
learn to perform stochastic multi-modal transfor-
mations properly. Now if new objects appear on 
the scene after applying particular transformation, 
our model tends to predict many inconsistent in-
termediate states, that look like partially appeared 
objects. One of the possibilities here is to adapt 
Generative Adversarial Network for our purposes, 
or use variations of VAE-like models with more 
flexible distribution families. 

• Learning geometry of observed world and 
unsupervised scene understanding. Trained on a 
video sequence labeled with observer's move-
ments, our model will require deep understanding 
of the scene in order to predict the next frame of 
the video. Such labeled observation sequences may 
be automatically generated and extracted from 3D 
simulations. In this class of tasks multi-modal 
probability models described above can be espe-
cially useful. 

  
Fig. 9. First two principal components projection of the 64-dimensional VAE embedding 

оn the left - the MNIST dataset, оn the right - an orbit of each sample digit 

  
Fig.  10. First two principal components projection of our 64-dimnesional embedding 

оn the left - the MNIST dataset, on the right - an orbit of each sample digit  

 

Table 2. Accuracy of a linear classifier on the 64-dimensional latent space of different algorithms 

Algorithm Linear separability 

PCA 91.7% 

UMAP 96.0% 

VAE 96.2% 

Our 98.4% 
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