
Inference Method and Parallel Implementation
for MISO Structure Systems for Inputs
with Linguistic Values*

V. G. Sinuk, S. A. Karatach

Belgorod state technological university named after V. G. Shukhov, Belgorod, Russia

Abstract. In fuzzy modeling, both clear and fuzzy values can be given to the inputs of the simulated systems.
The computational complexity of fuzzy inference with fuzzy inputs, which are a formalization of linguistic val-
ues, corresponds to exponential complexity. This paper describes a new method of inference based on the de-
composition theorem of multidimensional fuzzy implication and fuzzy truth value. This method makes it possi-
ble for fuzzy inputs to implement an inference with polynomial computational complexity, which makes it
effective for modeling large-dimensional MISO structure systems. The implementation of this method using
parallel computing technologies is reviewed in detail. As a result of the experiment, conclusions were made
about the feasibility of using a particular implementation, depending on the amount of input data.

Keywords: a logical type of inference, a decomposition theorem, a fuzzy truth value, parallel computations.

DOI 10.14357/20718632200308

Introduction
There are various fuzzy inference methods that

can be divided into three types: logical inference,
Mamdani-type inference, and Takagi-Sugeno-type
inference [1]. All these methods are intended for
modeling systems with clear input values. For sys-
tems with many fuzzy inputs that are consequences
of formalization of terms of linguistic variables [3, 6],
these methods are not applicable in practical prob-
lems due to exponential complexity.

This article develops a method for logical type
inference if the input data are linguistic values that
are formalized by membership functions.

The method is based on the decomposition the-
orem applicable when the composite premise of a
rule is modeled by the t-norm – min. This theorem

makes it possible to reduce the computational
complexity of the inference to polynomial. Im-
provement of this method is carried out by apply-
ing a fuzzy truth value, the definition of which, for
some accessory, functions are performed analyti-
cally [4], and in the case of a piecewise linear rep-
resentation of the accessory function, an effective
algorithm is developed [5].

Much attention is paid to the implementation
where a comparative analysis is made of two ap-
proaches to the implementation of the method: sin-
gle-thread, designed to work on the CPU, and par-
allel, using the CUDA technology. In addition,
issues related to the implementation of a particular
approach while taking into account the specifics of
the target hardware platform are considered.

∗ The work was carried out with the financial support of the RFBR (project no. 20-07-00030).

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020 85

СИСТЕМЫ УПРАВЛЕНИЯ V. G. Sinuk, S. A. Karatach

1. Problem

The linguistic model is a knowledge base of
fuzzy rules 𝑅𝑅𝑘𝑘 , 𝑘𝑘 = 1,𝑁𝑁����� of the form:
𝑅𝑅𝑘𝑘: 𝐼𝐼𝐼𝐼 𝑥𝑥1 𝑖𝑖𝑖𝑖 𝐴𝐴1𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝐴𝐴2𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎, … ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛 𝑖𝑖𝑖𝑖 𝐴𝐴𝑛𝑛𝑘𝑘,

𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵𝑘𝑘 (1)

where 𝑁𝑁 is the number of fuzzy rules,
𝐴𝐴𝑖𝑖𝑘𝑘 ⊆ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, 𝑎𝑎�����,𝐵𝐵𝑘𝑘 ⊆ 𝑌𝑌 are fuzzy sets that are
characterized by membership functions 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)
and 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦) respectively for 𝑖𝑖 = 1, 𝑎𝑎�����. 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
– are linguistic variables of the linguistic model,
and [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]𝑇𝑇 = 𝒙𝒙 ∈ 𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛. The
symbols 𝑋𝑋𝑖𝑖 and 𝑌𝑌 represents the spaces of input
and output variables, respectively. If we denote
𝑿𝑿 = 𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛 and 𝑨𝑨𝒌𝒌 = 𝐴𝐴1𝑘𝑘 × 𝐴𝐴2𝑘𝑘 ×
… × 𝐴𝐴𝑛𝑛𝑘𝑘, then rule (1) is represented as a fuzzy
implication:

𝑅𝑅𝑘𝑘:𝑨𝑨𝒌𝒌 → 𝐵𝐵𝑘𝑘.
The 𝑅𝑅𝑘𝑘 rule can be formalized as a fuzzy rela-

tion defined on the set 𝑿𝑿 × 𝑌𝑌, i. e. 𝑅𝑅𝑘𝑘 ⊆ 𝑿𝑿 × 𝑌𝑌 is a
fuzzy set with the membership function:
𝝁𝝁𝑹𝑹𝒌𝒌(𝒙𝒙,𝑦𝑦) = 𝝁𝝁𝑨𝑨𝒌𝒌→𝑩𝑩𝒌𝒌(𝒙𝒙,𝑦𝑦) = 𝐼𝐼 �𝝁𝝁𝑨𝑨𝒌𝒌(𝒙𝒙), 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)�,

where 𝐼𝐼(∗) is a fuzzy implication.
The task is to determine the fuzzy output

𝐵𝐵′𝑘𝑘 ⊆ 𝑌𝑌 for the system shown in (1), if the inputs
of a fuzzy set 𝑨𝑨′ = 𝐴𝐴′1 × … × 𝐴𝐴′𝑛𝑛 or 𝑥𝑥1 is 𝐴𝐴′1
and … and 𝑥𝑥𝑛𝑛 is 𝐴𝐴′𝑛𝑛.

According to the generalized fuzzy rule modus
ponens [3], the fuzzy set 𝐵𝐵′𝑘𝑘 is defined by the com-
bination of the fuzzy set 𝑨𝑨′ and the relation 𝑅𝑅𝑘𝑘, i. e.

𝐵𝐵′𝑘𝑘 = 𝑨𝑨′ ∘ (𝑨𝑨𝒌𝒌 → 𝐵𝐵𝑘𝑘). (2)

The complexity of expression (2) is exponential
with respect to n, i. e. 𝑂𝑂(|𝑋𝑋|𝑛𝑛 × |𝑌𝑌|).

2. Method of Inference Based
on Fuzzy Truth Value
and Decomposition Theorem

A special case of a composite output rule is the
generalized modus ponens rule, which for systems
with a single input is described by the relation [1]:

=

∈
))(),((*)(sup)('' yxIxy BA

T

A
Xx

B µµµµ , (3)

where 𝜇𝜇𝐴𝐴′(𝑥𝑥), 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵′(𝑦𝑦), 𝜇𝜇𝐵𝐵(𝑦𝑦) are member-

ship functions,
T
* – 𝑡𝑡-norm representing the inter-

section of a fuzzy fact 𝐴𝐴′ and a fuzzy implication 𝐼𝐼,

whose argument is the premise 𝐴𝐴 and the output 𝐵𝐵.
Fuzzy sets are described on the reasoning space 𝑋𝑋
for the premise and fact, and on 𝑌𝑌 for the value 𝐵𝐵
and the inference result 𝐵𝐵′.

Using the true modification rule [6], we can
write:

𝜇𝜇𝐴𝐴′(𝑥𝑥) = 𝜏𝜏𝐴𝐴 𝐴𝐴′⁄ �𝜇𝜇𝐴𝐴(𝑥𝑥)�,
where 𝜏𝜏𝐴𝐴 𝐴𝐴′⁄ (∗) is the fuzzy truth value of a fuzzy
set 𝐴𝐴 relative to 𝐴𝐴′, which represents the member-
ship function of the compatibility 𝐶𝐶𝐶𝐶(𝐴𝐴,𝐴𝐴′) 𝐴𝐴 with
respect to 𝐴𝐴′, and 𝐴𝐴′ is considered reliable [7].

𝜏𝜏𝐴𝐴 𝐴𝐴′⁄ (𝑡𝑡) = 𝜇𝜇𝐶𝐶𝐶𝐶�𝐴𝐴,𝐴𝐴′�(𝑡𝑡) = sup
𝜇𝜇𝐴𝐴(𝑥𝑥)=𝑡𝑡
𝑥𝑥∈𝑋𝑋

[𝜇𝜇𝐴𝐴′(𝑥𝑥)],

𝑡𝑡 ∈ [0,1]
(4)

When passing from variable 𝑥𝑥 to variable 𝑡𝑡, de-
noting 𝑡𝑡 = 𝜇𝜇𝐴𝐴(𝑥𝑥) we get:

𝜇𝜇𝐴𝐴′(𝑥𝑥) = 𝜏𝜏𝐴𝐴 𝐴𝐴′⁄ �𝜇𝜇𝐴𝐴(𝑥𝑥)� = 𝜏𝜏𝐴𝐴 𝐴𝐴′⁄ (𝑡𝑡)
Then (3) is written as follows:

=

∈
))(,(*)(sup)('/

]1,0[
' ytIty B

T

AA
t

B µtµ . (5)

If the membership function 𝜇𝜇𝐴𝐴(𝑥𝑥) and 𝜇𝜇𝐴𝐴′(𝑥𝑥)
are given as Gaussian curves or as a bell-shaped
function, then, as follows from [4], the fuzzy truth
value (4) is determined analytically.

In the case of piecewise linear representation of
membership functions, an algorithm with polyno-
mial computational complexity is developed [5].

Consider the decomposition theorem of a mul-
tidimensional fuzzy implication. The theorem can
be used if the modeling of the linguistic conjunc-
tion «and» in the antecedent of rule (1) applies the
𝑡𝑡-norm – min.

Theorem
If 𝐼𝐼�𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖),𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)�, 𝑖𝑖 = 1,𝑎𝑎����� does not in-

crease by the argument 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), then:

𝐼𝐼 �𝝁𝝁𝑨𝑨𝒌𝒌(𝒙𝒙), 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)� = 𝐼𝐼 �min
𝑖𝑖=1,𝑛𝑛�����

�𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)� , 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)� =

= max𝑖𝑖=1,𝑛𝑛������𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖),𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦))�.

Let’s prove it:
Definition
The function 𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)) is non-growing

by the argument 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), if ∀𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦) ∈ [0,1]

from the condition 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖
𝑙𝑙 (𝑥𝑥𝑖𝑖) > 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖

𝑚𝑚 (𝑥𝑥𝑖𝑖), follows
the inequality:
𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖

𝑙𝑙 (𝑥𝑥𝑖𝑖),𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦)) ≤ 𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖

𝑚𝑚 (𝑥𝑥𝑖𝑖), 𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦)) (6)

86 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020

Inference Method and Parallel Implementation for MISO Structure Systems for Inputs with Linguistic Values

Let’s choose an arbitrary set of argument values
(𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑛𝑛∗) ∈ 𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛 and define the
antecedent of rules (1) for these values, when the
linguistic conjunction «and» is modeled by the
«min» operation:

𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖�𝑥𝑥𝑗𝑗
∗� = min𝑖𝑖=1,𝑛𝑛������𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗)�, (7)

It follows that: 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖�𝑥𝑥𝑗𝑗
∗� ≤ 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗),∀𝑖𝑖 = 1,𝑎𝑎�����.

According to definition (6), the function 𝐼𝐼(∗) is
non-growing. Thus, we have:

𝐼𝐼 �𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖�𝑥𝑥𝑗𝑗
∗�, 𝜇𝜇𝐵𝐵𝑖𝑖

∗ (𝑦𝑦)� ≥ 𝐼𝐼 �𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗), 𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦)�,

∀𝑖𝑖 = 1,𝑎𝑎�����,
(8)

Then, given the ratio (8):

𝐼𝐼 �𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖�𝑥𝑥𝑗𝑗
∗�, 𝜇𝜇𝐵𝐵𝑖𝑖

∗ (𝑦𝑦)� =

= max
𝑖𝑖=1,𝑛𝑛�����

�𝐼𝐼 �𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗), 𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦)��

(9)

Since 𝐼𝐼 �𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖�𝑥𝑥𝑗𝑗
∗�, 𝜇𝜇𝐵𝐵𝑖𝑖

∗ (𝑦𝑦)� exists on the right
side of expression (8), taking into account (7), we
will rewrite (9) as:

𝐼𝐼 �min
𝑖𝑖=1,𝑛𝑛�����

�𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗)� , 𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦)� =

= max
𝑖𝑖=1,𝑛𝑛�����

�𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖∗), 𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦))�

(10)

The resulting expression (10) is valid for

∀𝜇𝜇𝐵𝐵𝑖𝑖
∗ (𝑦𝑦) ∈ [0,1] and ∀(𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑛𝑛∗) ∈ 𝑋𝑋1 × 𝑋𝑋2 ×

… × 𝑋𝑋𝑛𝑛.
The theorem is proved.
For a system with multiple inputs (3) has the

form:
𝜇𝜇𝐵𝐵′𝑖𝑖 = sup

𝒙𝒙∈𝑿𝑿
�𝝁𝝁𝑨𝑨′(𝒙𝒙) ∗ 𝐼𝐼 �𝝁𝝁𝑨𝑨𝒌𝒌(𝒙𝒙),𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)��

(11)

If the condition of the decomposition theorem
of a multidimensional fuzzy implication of non-
growing 𝐼𝐼(𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), 𝜇𝜇𝐵𝐵(𝑦𝑦)), 1,i n= relative to
𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) and the use of the linguistic conjunction
«and» (11) takes the form:

{ }' '1,
() max sup ()* ((), ())

k i ik k
i i

T

B A i A i Bi n x X
y x I x yµ µ µ µ

= ∈

=

(12)

Expression (12) can be written using a fuzzy
truth value of the degree of truth, as follows from
(4), i. e. (12) will have the form:

=

∈=
))(,(*)(supmax)(/

]1,0[,1
' ytIty

kiik
i

k Bi

T

iAA
tni

B µtµ

(13)

The discrete analog of the relation (13) has
polynomial computational complexity, i. e.
𝑂𝑂(|𝑡𝑡𝑖𝑖| × |𝑌𝑌| × 𝑎𝑎). The non-growing condition
𝐼𝐼 �𝑡𝑡𝑖𝑖 ,𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)� , 𝑖𝑖 = 1,𝑎𝑎����� with respect to 𝑡𝑡𝑖𝑖 is satis-
fied for some implications [2].

3. Inference for the Rule Base

Consider the output values for 𝑁𝑁 rules for the form
(1) using the center of gravity defuzzification
method [1]:

𝑦𝑦� =
∑ 𝑦𝑦�𝑘𝑘 ∗ 𝜇𝜇𝐵𝐵′(𝑦𝑦�𝑘𝑘)𝑘𝑘=1,𝑁𝑁�����

∑ 𝜇𝜇𝐵𝐵′(𝑦𝑦�𝑘𝑘)𝑘𝑘=1,𝑁𝑁�����
 (14)

where 𝑦𝑦� is a clear output of a system consisting of
𝑁𝑁 rules of the form (1); 𝑦𝑦�𝑘𝑘 , 𝑘𝑘 = 1,𝑁𝑁����� are the cen-
ters of the membership functions 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦), i. e. the
values in which max𝑦𝑦 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦) = 1. 𝐵𝐵′ is obtained
by a logical approach using the intersection opera-
tion in accordance with the expression:

𝐵𝐵′ = � 𝐵𝐵′𝑗𝑗
𝑗𝑗=1,𝑁𝑁�����

The membership function 𝐵𝐵′ is calculated using
𝑡𝑡-norm, that is:

𝜇𝜇𝐵𝐵′(𝑦𝑦) = T
𝑗𝑗=1,𝑁𝑁�����

𝜇𝜇𝐵𝐵′𝑗𝑗(𝑦𝑦) (15)

Is the condition of non-increasing implication
𝐼𝐼 �𝑡𝑡𝑖𝑖 ,𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦)� , 𝑖𝑖 = 1,𝑎𝑎����� relative to 𝑡𝑡𝑖𝑖 is met and the
linguistic conjunction «and» is used in (1), then
from the relations (13), (14) and (15) we get the
expression:

{ }
{ }

/ '1, 1, [0,1]1,

/ '1, 1, [0,1]1,

max sup ()* (, ())

max sup ()* (, ())

ik i
i

ik i
i

T

A A i i Bjk kj N i n tk N

T

A A i i Bj kj N i n tk N

y T t I t y
y

T t I t y

t µ

t µ

= = ∈=

= = ∈=

 =

∑

∑
(16)

The relation (16) corresponds to the network
structure (Fig. 1), where the expression is defined
at the second level:

{ }/ '
[0,1]

{ } sup ()* (, ())
ik i

i

T

ijk A A i i Bj k
t

F t I t yt µ
∈

• =

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020 87

СИСТЕМЫ УПРАВЛЕНИЯ V. G. Sinuk, S. A. Karatach

4. Representation of a Fuzzy System in
Computer Memory and Organization
of Computations

The inputs of this type of fuzzy inference sys-
tems represent the values of the corresponding lin-
guistic variables. Each linguistic variable has a val-
id set of its fuzzy values, called a term set. The
elements of such a set are fuzzy variables defined
in the same space as the linguistic variable. The
value of such a fuzzy variable is determined by a
fuzzy set, which is represented in the computer
memory by discretizing the corresponding mem-
bership function. Whereas the entire rule base can
be represented using a pair of tables of discretized
term sets of linguistic variables and a table

of indexes of the values of these discretized term
sets. The row elements of the last table thus form a
fuzzy fact. A fuzzy premise can be formed in a
similar way by discretizing each of the accessory
functions.

Since an additional level of indirection was in-
troduced to represent the rule base in the form of
an index table, each individual element of the term
set of the table of linguistic variables can be
mapped to a different space by some rule. Thus,
for each of the possible values of a given linguistic
variable, the center of the membership function
and a fuzzy truth value for the corresponding input
value can be calculated. As a result of using this
order of calculations for some of them, the de-
pendence of the time complexity function on the

Fig. 1. Network structure for the rule base

88 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020

Inference Method and Parallel Implementation for MISO Structure Systems for Inputs with Linguistic Values

size of the rule block is replaced by the depend-
ence on the power of the term set of the linguistic
variable corresponding to this input.

The efficiency of single-thread implementation is
achieved both by composing effective program code
that provides an optimal sequence of commands that
takes into account the target configuration of the
CPU, and by using the method of organizing data in
memory and accessing it, based on the generally ap-
plicable concept of the memory hierarchy. The opti-
mal set of instructions within this context of program
code execution is provided by most modern compil-
ers at the proper level. At the same time, the data
structure in memory is designed based on the nature
of their use, with certain restrictions on their align-
ment and the size of each data block.

At the same time, parallel implementation using
CUDA technology involves building an applica-
tion consisting of part of the code intended for ex-
ecution on the CPU (host) and part for execution
on the GPU (device). This requires a more specific
approach for organizing efficient calculations both
on the host and on the device [8-10]. In General,
the host performs the necessary preparation actions
before running the code on the device. For exam-
ple, Fig. 2 shows a flowchart for calculations based
on this algorithm, where the blocks including cal-
culations on the GPU are highlighted in gray.

The order of the calculation steps here is the
same as in the single-threaded implementation, but
some of these steps include calculations on the de-
vice. So, the calculation of fuzzy truth values men-
tioned earlier can be performed on the GPU.

In addition, the main cycle of the algorithm
consists of two parts: finding the values of 𝐹𝐹𝑗𝑗𝑖𝑖(𝑦𝑦𝑘𝑘)
for each input independently and convolution of
the obtained values to 𝜇𝜇𝐵𝐵′(𝑦𝑦�𝑘𝑘). The CUDA tech-
nology is designed to guarantee that a number of
types of operations are independent: calculations
on the host, calculations on the device, copying da-
ta from the host to the device, and so on. The inde-
pendence of these types of operations implies the
potential for their overlapping. For example, the
mechanisms provided by the CUDA software in-
terface are used to organize simultaneous calcula-
tions on different inputs, such as streams, asyn-
chronous data copying, and the mechanism for
blocking memory pages.

To achieve asynchronous copying to be per-
formed correctly, memory pages containing the
source data must be locked in RAM. And data
copying itself must be performed using streams,
which is a special concept of CUDA technology.

A set of locked pages can be obtained using the
cudaHostAlloc() function for the entire volume of
input data. In this case, the selection is made using
the cudaHostAllocWriteCombined flag, which al-
lows you to avoid using the memory management
unit of the central processor and accomplish direct
data transfer to the device.

The ability to simultaneously copy portions of
data and execute CUDA kernels is achieved by us-
ing streams. In this case, the portion is a set of data
required for calculations for this input. Copying
each such portion is performed by calling the
cudaMemcpyAsync function. After this, a call to

infer_gpu

Find the centers of the
m. f. for terms of the

output l. v.

Find a fuzzy truth value
for a fuzzy fact and
premises on the ith

input

1

Find the Fiji(*) for the ith
entry and the exit center

of the kth rule

Convolution of the
obtained values for the

kth rule in µB’k(y)

End

k=1,N

Perform reduction to
find the center of gravity

1

Fig. 2. A flowchart corresponding to a parallel implementation of the fuzzy output algorithm on the host side

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020 89

СИСТЕМЫ УПРАВЛЕНИЯ V. G. Sinuk, S. A. Karatach

the CUDA kernel is added to the same stream,
which will be executed simultaneously with copy-
ing data for the next inputs. This method of opti-
mizing the use of available hardware resources for
a system with seven inputs is illustrated in Fig. 3.

The optimal configuration of each running CUDA
core will ensure full employment of streaming multi-
processors on the device. To achieve this, the maxi-
mum possible number of thread sets must be execut-
ed on each streaming multiprocessor, which will
compensate for the delays that occur when waiting
for data loading or the result of the execution of the
previous instruction, by instantly switching to work
with a different set of threads. However, it is recom-
mended to keep the block size as small as possible,
and each streaming multiprocessor has a limit on the
maximum number of blocks that can be on it at the
same time, depending on the version of the architec-
ture used for this GPU. For example, we use a device
with compute capability 3.5 which has a limit on the
maximum number of blocks in the multiprocessor
equal to 16, and the maximum number of resident
blocks equal to 64. Initially, each block contains a
single set of threads, but to achieve maximum utiliza-
tion of the streaming multiprocessor, the concept of
“executor” was introduced, according to which the
block size is chosen as the minimum necessary for
full occupancy and is divided into groups of warps
called “executors”. The size of each such group is
equal to the original block size. This approach allows

you to load all streaming multiprocessors with as
many threads as possible.

To reduce the duration of data access delays
that occur during the operation of CUDA kernels,
it is common practice to prefer place data in shared
memory as opposed to global memory. This means
that data is loaded into shared memory from the
global memory, processed, and uploaded back to
the global memory. However, the use of shared
memory is justified if the data is modified or there
is a need to store intermediate results. When data
in global memory is accessed solely for the pur-
pose of retrieving their values, there is a mecha-
nism for automatically caching this data. Data that
is immutable throughout the CUDA kernel can be
manually stored in the read-only data cache by
reading it using the __ldg () function. The same
effect can be achieved by marking the pointer to
such data with the const and __restrict__modifiers.
So, to find the maximum implication value, each
"executor" is allocated a buffer of the required size,
in which parallel convolution is then performed,
and pointers to the tables of fuzzy sets, fuzzy truth
values, and the index table are marked with the
const and __restrict__modifiers.

In addition to memory access delays, the per-
formance of CUDA kernels is negatively affected
by the presence of divergent execution branches
that occur when the execution flow is parameter-
ized by conditional constructs. In some situations,

135 137 139 141 143 145 147

135 137 139 141 143 145 147

Common data stream
Stream for 1st input

Stream for 2nd input
Stream for 3rd input
Stream for 4th input
Stream for 5th input
Stream for 6th input
Stream for 7th input

Default stream

Time, ms

Data copying Computation Reduction

Fig. 3. Overlapped copying of data and calculations to the GPU using streams

90 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020

Inference Method and Parallel Implementation for MISO Structure Systems for Inputs with Linguistic Values

when actions in the body of such blocks can be re-
duced to a single data-modifying instruction, the
compiler can replace the conditional jump through
the instruction block that generates the divergence
with a predicate instruction that performs data
modification if the condition is true. For example,
when calculating a fuzzy truth value for a given
node of the coordinate grid, you should give pref-
erence to performing extra calculations, while en-
suring that the code in the body of the loop is line-
ar (as in the code fragment to the right of the two
shown in Table 1).

Thus, to achieve maximum performance in a
parallel approach to performing calculations, the
following principles of optimization of CUDA ap-
plications were used:

− simultaneous data copying and code execu-
tion on the GPU.

− maximization of employment (occupation)
of computing blocks.

− data caching.
− getting rid of diverging branches of execution.

5. The Results of Computational
Experiment

A test data set taken from the UC Irvine Ma-
chine Learning Repository electronic resource was
selected to perform computational experiments
[11]. The set contains 45211 entries. The data is
related with direct marketing campaigns of a Por-
tuguese banking institution. The marketing cam-
paigns were based on phone calls. Often, more
than one contact to the same client was required, in
order to access if the product (bank term deposit)

would be ('yes') or not ('no') subscribed. The pur-
pose of classification is to predict whether the cli-
ent will subscribe ("yes"/"no") a term deposit.

Thus, the system has the following list of input
variables (attributes of the bank's client): age (nu-
meric), type of activity (categorical), marital status
(categorical), availability of another loan (categori-
cal), average annual balance in euros (numeric),
availability of a mortgage (categorical), has a pri-
vate loan (categorical), selected method of com-
munication (categorical), and so on. The system
also has a single output variable: whether the client
will subscribe a term deposit (binary).

A program in Python was written for perform-
ing computational experiments. This program con-
sists of two stages: preparing the source data and
directly measuring the execution time of a specific
implementation of the output algorithm. The im-
plementations themselves were written in C/C++
with the CUDA extension and compiled into ma-
chine code to achieve the maximum level of con-
trol over hardware resources.

The process of preparing source data consists of
building a database of rules. For this purpose, each
of the parameters described above is considered as
a linguistic variable, the list of values of which is
made up of a set of categories associated with each
parameter. In the case of numeric parameters, the
range of their values is divided into sub-ranges,
each of which is treated as a category. The dimen-
sion of the base set of each linguistic variable co-
incides with the dimension of the set of values.
And each of its values is assigned a membership
function, with a peak value at the point corre-
sponding to it.

Table 1. Influence of the method of organizing high-level calculations on the possibility of diverging execution branches

for (i = 0; i < length(a) - 1; ++i) {
 float a1 = a[i];
 float a2 = a[i+1];

 if (a1 <= t && t <= a2) {
 float y = /* … */;
 if (y > ftv) ftv = y;
 }
}

for (i = 0; i < length(a) - 1; ++i) {
 float a1 = a[i];
 float a2 = a[i+1];

 float y = /* … */;
 if (a1 <= t && t <= a2 && y > ftv) {
 ftv = y;
 }
}

There is a divergence. There is no divergence (the conditional
assignment statement is used).

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020 91

СИСТЕМЫ УПРАВЛЕНИЯ V. G. Sinuk, S. A. Karatach

Next, computational experiments were per-
formed for n=1.16 inputs. The calculations were
performed on a device with a Central processor –
Intel (R) Core(TM) i7-3930K CPU @ 3.20 GHz
and a graphics processor – Nvidia Titan K20c. The
result of the experiments is shown in the Fig. 4.

After analyzing the graphs in the figure, you can
give a number of comments explaining their form.

When the number of inputs is up to four, there
is an advantage in execution time for the single-
threaded implementation of the algorithm. This
situation in relation to a parallel implementation is
related to the need to copy data to a range of
locked pages, the locking of which is a system call,
and may take a different amount of time, depend-
ing on the implementation of a particular operating
system. In addition, there is latency (the running
time of the algorithm for zero data volume) when
preparing for the launch of the CUDA kernel and
performing launch itself.

With more inputs, there is a sharp "leap" in ex-
ecution time for both single-threaded and parallel
implementations. In the case of a single-threaded
implementation, this can be explained by the rela-
tively small amount of L1 cache available to a sin-
gle processor core. In this case, if the base data set
is large enough, i.e. data that is referenced by other
data structures, there will be a large number of
cache misses. A similar situation with bandwidth
restriction can occur on the GPU. In addition, a
high level of difference in the dimensions of fuzzy
sets for each specific input can also contribute a
fraction of the distortion to the final graph.

Thus, the choice between single-thread or paral-
lel implementation depends on the characteristics
of the hardware used and must take into account
the latency when accessing the GPU driver.

Conclusion

The inference based on the decomposition theo-
rem makes it possible to extend the logical ap-
proach for systems with many fuzzy inputs, which
is a formalization of the terms of a linguistic varia-
ble, with polynomial computational complexity.

This paper also describes a single-threaded and
parallel method for implementing the fuzzy infer-
ence method based on the fuzzy truth value and the
decomposition theorem. For each method, a list of
key points for organizing calculations and working
with memory that allow you to achieve maximum
performance of the final implementation is provid-
ed. Then computational experiments were per-
formed to compare the running time of a particular
implementation of the algorithm for different
amounts of input data. As a result of the experi-
ment, conclusions were made about the feasibility
of using a particular implementation, depending on
the volume of input data.

References

1. Rutkowski L. 2009. Methods and techniques of artificial
intelligence. PWN. 452 p.

2. V. G. Sinuk, M. V. Panchenko. 2017. Methody
nechetkogo vivoda dlya odnogo klassa system MISO-
struktury pri nechetkih vhodah [Fuzzy inference method
for a one class of MISO structure systems with fuzzy in-

Fig. 4. Execution time graph for two implementations depending on the number of inputs

92 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020

Inference Method and Parallel Implementation for MISO Structure Systems for Inputs with Linguistic Values

puts.]. Iskustvenniy intellect i prinyatie resheniy [Artificial
intelligence and decision making]. 4:33-39.

3. Zadeh L. 1976. Ponyatie lingvisticheskoy peremennoy i
ego primenenie k prinyatiyu pribligennih resheniy [The
concept of a linguistic variable and its application to ap-
proximate decision making]. Mir. 168 p.

4. V. G. Sinuk, E. V. Pivnenko. 2006. Ob analiticheskom
vichislenii nechetkogo znacheniya istinnosti [On analyti-
cal calculation of a fuzzy truth value]. Sbornik trudov Vse-
rossiyskoy nauchnoy konferencii po nechetkim sistemam i
myagkim vichisleniyam (NSMV-2006)[Proceedings of the
all-Russian scientific conference on fuzzy systems and
soft computing (NSMV-2006)]. 129-133.

5. D. A. Kucenko, V. G. Sinuk. 2008. Algoritmi nahogdeni-
ya CP pri kusochno-lineynom predstavlenii funkciy
prinadlegnosti[Algorithms for finding CP in piecewise lin-
ear representation of membership functions]. Sbornik tru-
dov vtoroy Vserossiyskoy nauchnoy konferencii po
nechetkim sistemam I myagkim vichisleniyam (NSMV-
2008) [Proceedings of the second all-Russian scientific
conference on fuzzy systems and soft computing (NSMV-
2008)]. 87-92.

6. A. N. Borisov, A. V. Alekseev, O. A. Krumberg. 1982.
Decision models based on a linguistic variable. Riga: Zi-
natne. 256 p.

7. D. Dobua, A. Prad. 1990. Theoriya vozmognostey. Prilogenie
k predstavleniyu znaniy v informatike[Theory of possibilities.
Applications to knowledge representation in computer sci-
ence]. Moskow: Radio and communications. 228 p.

8. Jason Sanders, Edward Kandrot. 2010. CUDA by exam-
ple: An introduction to general-purpose GPU program-
ming. Addison-Wesley Professional. 320 p.

9. CUDA Programming Guide. Available at:
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html (accessed July 3, 2020)

10. CUDA Best Practices Guide. Available at:
https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html (accessed July 3, 2020)

11. Bank Marketing Data Set. Available at:
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
(accessed July 3, 2020)

Sinuk V. G. Professor, Belgorod state technological university named after V. G. Shukhov, 46 Kostukova str., Belgorod,
308012, Russia, email: vgsinuk@mail.ru

Karatach S. A. Student, Belgorod state technological university named after V. G. Shukhov, 46 Kostukova str., Belgorod,
308012, Russia, email: karatach1998@yandex.ru

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2020 93

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

	Introduction
	1. Problem
	2. Method of Inference Based on Fuzzy Truth Value and Decomposition Theorem
	3. Inference for the Rule Base
	4. Representation of a Fuzzy System in Computer Memory and Organization of Computations
	5. The Results of Computational Experiment
	Conclusion
	References

