Синтез в слабо нелинейной задаче управления на основе SDRE техники на конечном интервале

Д. А. Макаров^{I,II}, М. В. Хачумов^{I,III}

Аннотация. В работе для одного класса слабо нелинейных систем с зависящими от состояния коэффициентами рассматривается эвристический подход к построению нелинейного управления с помощью динамической обратной связи. Особенностью постановки задачи является выделение двух различных векторов: выхода системы и вектора регулируемых координат. Оценки неизмеряемых переменных получаются с помощью наблюдателя состояния полного порядка. Проведены численные эксперименты для задачи управления моделью двухколесной тележки, показывающие работоспособность и эффективность предложенного алгоритма управления.

Ключевые слова: нелинейное управление, наблюдатель состояния, SDRE техника, двухколесный автономный робот.

DOI 10.14357/20718632200402

Введение

Для построения синтезирующего управления в нелинейных задачах применяется множество подходов. Например, линеаризация обратной связью [1], бекстепинг [2], управление с прогнозирующими моделями [3], методы, использующие дифференциальную плоскостность системы [4, 5], и другие. Как правило, их применение ограничено некоторым допустимым классом систем.

Одной из современных техник при построении регуляторов в нелинейных системах является техника SDRE, которая получила в последнее время достаточно большое распространение (об-

зоры [6-8]). Она основана на представлении исходной нелинейной системы в формально линейном виде, в котором матрицы зависят от состояния системы. Для построения управления вводится квадратичный критерий, элементы весовых матриц которого также могут быть функциями состояния системы. Стабилизирующее управление строится с помощью формального применения алгоритма Калмана для линейноквадратичной задачи оптимального управления. Таким образом, вместо решения соответствующего уравнения Гамильтона-Якоби-Беллмана, которое в общем случаи может быть достаточно трудоемким, используется численное решение матричного алгебраического уравнения типа

^I Федеральный исследовательский центр «Информатика и управление» Российской академии наук, г. Москва, Россия

^{II} Московский физико-технический институт, г. Долгопрудный, Россия

^Ⅲ Российский университет дружбы народов, г. Москва, Россия

^{*} Работа выполнена при финансовой поддержке РФФИ (проекты 17-29-07053, 17-07-00281 и 17-29-07003).

Риккати с зависящими от состояния коэффициентами (State-Dependent Riccati Equation - SDRE), поэтому данная техника и получила такое название. Конечно, такой подход является эвристическим, однако он был успешно использован для множества практических задач [7, 8], что обусловлено следующими его преимуществами: широким классом допустимых управляемых систем (требуется лишь стабилизируемость и детектируемость соответствующих матриц системы и критерия для каждого допустимого состояния системы), простотой реализации, некоторой субоптимальностью относительно заданного функционала и др. К недостаткам подхода можно отнести необходимость численного решения SDRE в темпе функционирования объекта управления, что в условиях ограниченных вычислительных ресурсов может быть труднореализуемо.

Данная техника была применена и для решения задач управления на конечном интервале времени, где уже используется дифференциальное матричное уравнение типа Риккати с зависящими от состояния коэффициентами [9, 10]. Приближенное решение этого уравнения осуществлялось с помощью вспомогательного линейного матричного уравнения Ляпунова, для которого известна форма решения. Тем не менее, шаги алгоритма выполняются при условии «замораживания» коэффициентов, что обуславливает повторение всех расчетов с некоторым шагом, зависящим от темпа функционирования объекта, и сопровождаются значительным числом операций, выполняемых при нахождении управления. Этот подход использовался в ряде работ, например, [11-13].

В работе [14] на основе подхода SDRE был предложен численно-аналитический алгоритм построения стабилизирующего синтезирующего управления на полуоси. Его суть заключается в нелинейной коррекции линейного управления на основе подбора матриц квадратичного критерия качества. Преимуществом такого способа является снижение вычислительной сложности по сравнению с обычным подходом SDRE благодаря возможности использования аналитических представлений. На основе метода из [14] в работе [15] был предложен новый подход для решения слабо нелинейной задачи слежения за эталонной траекторией на конеч-

ном интервале времени, позволяющий приближенно решать дифференциальное SDRE. Его достоинством, так же как и метода из [14], является существенное снижение вычислительной сложности алгоритма управления по сравнению с подходом из [9, 10]. В [17, 18] результаты из [15] были перенесены на задачу слежения при частичном измерении вектора состояния. Оценки неизмеряемых координат получались с помощью наблюдателя состояния полного порядка.

В настоящей работе рассматривается некоторая слабо нелинейная задача оптимального управления на конечном интервале, приближенное решение которой осуществляется на подхода из [15-18], разработанного для нелинейных задач слежения. Особенностью рассматриваемой постановки ПО сравнению с [15-18] является отсутствие заданной эталонной траектории движения, а также выделение двух в общем случае различных векторов: вектора регулируемых координат, который входят в минимизируемый критерий качества, и вектора выхода системы, состоящего из измеряемых переменных. Отметим, что, в частности, регулируемые координаты могут совпадать со всем состоянием системы или с ее выходом. Для оценки неизмеряемых координат, как и в [15-18], используется наблюдатель полного порядка. Работоспособность предложенного метода исследуется на примере управления моделью двухколесной тележки.

1. Синтез управления

Рассмотрим следующую задачу оптимального управления. Требуется минимизировать функционал

$$I(u) = \frac{1}{2}z^{T}(t_{1})Fz(t_{1}) + \frac{1}{2}\int_{t_{0}}^{t_{1}} \left(z^{T}Q(z,\mu)z + u^{T}Ru\right)dt \to \min_{u},$$
(1)

где $z=C_2x$, $Q(z,\mu)=Q_0+\mu Q_1(z)$, заданные симметрические весовые матрицы $Q(z,\mu)\geq 0,\,Q_0>0,R>0,\,F>0$ при $z\in Z,\,0<\mu\leq\mu_0$ (здесь и далее знаками >0 (≥ 0) обозначается положительная определенность (полуопределенность) соответствующей мат-

рицы, знак «Т» означает транспонирование), μ_0 – некоторое заданное достаточно малое положительное число, вдоль траекторий системы

$$\dot{x} = A(x, \mu)x + B(x, \mu)u, \quad y = C_1 x, \quad x(t_0) = x^0,
A(x, \mu) = A_0 + \mu A_1(x), B(x, \mu) = B_0 + \mu B_1(x),
x \in X \subseteq \mathbb{R}^n, \quad y \in Y \subseteq \mathbb{R}^m, \quad z \in Z \subseteq \mathbb{R}^t,
u \in \mathbb{R}^r, t \in [t_0, t_1], \quad 0 < \mu \in \mu_0.$$
(2)

Здесь x, y, z и u — векторы состояния, выхода, регулируемых координат и управления соответственно; A_0 , B_0 , C_1 и C_2 — известные постоянные матрицы; $A_1(x) \in \mathbb{R}^{n \times n}$, $B_1(x) \in \mathbb{R}^{n \times r}$ — известные матрицы с достаточно гладкими и ограниченными по аргументу x элементами; X, Y, Z — некоторые ограниченные множества, X, Y и Z включат 0; μ — известный постоянный параметр.

Для приближенного решения (1)-(2) применим алгоритм из [15-18], в котором, однако, предполагалось $z \equiv y$. Здесь обобщим этот алгоритм на случай $z \neq y$. При этом сначала изложим процедуру построения управления при условии, что вектор состояния x являются полностью измеряемым (т.е. C_I — единичная матрица соответствующей размерности), а затем приведем алгоритм построения наблюдателя состояния, оценки которого будут использоваться вместо неизвестного вектора x.

Итак, согласно подходу из [15], синтезирующее управление имеет вид

$$u(x, \mu, t) = -K(x, \mu, t)x = u_0(x) + \mu u_1(x, t, \mu),$$
(3)

где $K(x,\mu,t)=R^{-1}(B_0+\mu B_1(x))^T(P_0+\mu P_1(x,t))$, $u_0(x)=-R^{-1}B_0^{\ T}P_0x$ — линейная часть, а нелинейная коррекция определяется выражением $\mu u_1(x,t,\mu)=-\mu R^{-1}\left(B_1^{\ T}(x)P_0+(B_0+\mu B_1(x))^TP_1(x,\mu,t)\right)x$; матрицы P_0 и $P_1(x,t)$ определяются ниже. Введем условия из [15]:

I. Траектории замкнутой системы (2) существуют, единственны и принадлежат X на $\begin{bmatrix} t_0, t_1 \end{bmatrix}$ для любого непрерывного управления u(t), где X – некоторое ограниченное множество пространства состояний; элементы матриц $A_1(x), B_1(x), Q_1(z)$ ограниченные, непрерывные

и достаточно гладкие при $x \in X, z \in Z, \mu \in (0, \mu_0].$

II. Тройка матриц $\{A_0, B_0, C_2\}$ стабилизируема и наблюдаема.

III. Матрицы системы $A_0,A_1(x),B_0,B_1(x),C_2$ и симметрические матрицы критерия $R>0,\ Q_0\geq 0,\ Q_1(z)\geq 0,\ F>0$, а также $\mu_0>0$ таковы, что $P_0+\mu P_1(x,t)>0$ при $x\in X,z\in Z,t\in [t_0,t_1),\mu\in (0,\ \mu_0]$.

Модифицированный численноаналитический алгоритм построения управления из [15] при условиях I-III состоит из следующих шагов.

1. Вычисляется P_0 как положительно определенное решение уравнения

$$P_0 A_0 + A_0^T P_0 - P_0 B_0 R_0^{-1} B_0^T P_0 + C_2^T Q_0 C_2 = 0.$$
 (4)

2. Находится $P_1(x, \mu, t)$ с помощью

$$P_{1}(x,\mu,t) = e^{A_{Pcl,0}^{T}(t_{1}-t)} M_{P} e^{A_{Pcl,0}^{T}(t_{1}-t)} + \int_{0}^{\infty} e^{A_{Pcl,0}^{T}} D_{P}(x) e^{A_{Pcl,0}\sigma} d\sigma,$$
(5)

гле

$$\begin{split} &D_P(x) = P_0 \left(A_{\!\scriptscriptstyle 1} - B_{\!\scriptscriptstyle 1} R^{^{-1}} B_0^{^T} P_0 \right) + \left(A_{\!\scriptscriptstyle 1} - B_{\!\scriptscriptstyle 1} R^{^{-1}} B_0^{^T} P_0 \right)^T P_0 + \\ &+ C_2^{\ T} Q_{\!\scriptscriptstyle 1} C_2 \,, \quad A_{\!{\tiny Pcl},0} = A_0 - B_0 R^{^{-1}} B_0^{^T} P_0 \,, \quad \text{а матрица} \\ &M_P \text{ находится как} \end{split}$$

$$M_{P} = \frac{1}{\mu} (C_{2}^{T} F C_{2} - P_{0}) - \int_{0}^{\infty} e^{A_{Pcl,0}^{T} \sigma} D_{P} (x(t_{1})) \Big|_{x(t_{1})=x(t)} e^{A_{Pcl,0}^{T} \sigma} d\sigma.$$

3. Определяется итоговое управление (3).

Замечание 1. Отметим, что сходимость интегралов в (5) следует из условий I и II, а именно: условия II гарантируют существование матрицы P_0 , такой что $\max_i \operatorname{Re} \lambda_i(A_{Pcl,0}) = -\rho < 0, \quad i = \overline{1,n}$ [19], что, в свою очередь, позволяет говорить о стремлении матричной экспоненты $e^{A_{Pcl,0}\sigma}$ к нулевой матрице при $\sigma \to \infty$ [20]; вместе с тем, ограниченность и непрерывность матриц системы и критерия, определенные в условии I, позволяют говорить об ограниченности элементов матри-

цы D_p при $x \in X, z \in Z$, а, следовательно, и о сходимости несобственных интегралов в (5)

Замечание 2. Условие III в силу наличия условий I-II всегда может быть выполнено при достаточно малом μ_0 [16].

Замечание 3. По аналогии с [21], здесь с помощью функции Ляпунова $V = x^T P_0 x$ можно доказать, что при достаточно малом μ_0 , дополнительных условиях на ограниченность производных матриц системы (2) и весовой матрицы $Q(z,\mu)$ критерия (1) имеет место асимптотическая устойчивость нулевого положения равновесия системы (2), (3).

В общем случае, т.е. когда C_I не является единичной матрицей, применения приведенного алгоритма необходимо построить наблюдатель состояния системы (2).

2. Синтез наблюдателя

Изложим алгоритм построения наблюдателя состояния полного порядка [18]

$$\dot{\chi} = A(\chi, \mu)\chi + B(\chi, \mu)u +
+ \Gamma(\chi, \mu, t)C_1(\chi - \chi), \quad \chi(0) = \chi^0,$$
(6)

где $\chi \in \mathbb{R}^n$ — вектор оценки состояния x, $\chi \in X$, а $\Gamma \in \mathbb{R}^{n \times m}$ — подлежащая определению матрица коэффициентов наблюдателя. Матрица Γ согласно технике SDRE ищется в виде

$$\Gamma(\chi, \mu, t) = N(\chi, \mu, t) C_1^T R_{\gamma}^{-1}, \tag{7}$$

где $N(\chi, \mu)$ есть решение уравнения

$$\dot{N}(\chi, \mu, t) = A(\chi, \mu) N(\chi, \mu, t) + N(\chi, \mu, t) A^{T}(\chi, \mu) - -N(\chi, \mu, t) C_{1}^{T} R_{\chi}^{-1} C_{1} N(\chi, \mu, t) + Q_{\chi}(\chi, \mu),$$

$$N(\chi(t_{0}), \mu, t_{0}) = N^{0} > 0.$$
(8)

В (8) положительно полуопределённая при $\chi \in X$, $t \in [t_0,t_1)$, $\mu \in (0,\mu_0]$ весовая матрица $Q_\chi(\chi,\mu)$, постоянные положительно определённые весовая матрица R_χ и начальное состояние N^0 определяют параметры процедуры синтеза наблюдателя.

Уравнение (8) имеет вид схожий с видом уравнения, получаемого для синтеза управле-

ния [17]. Поэтому для его решения применяется тот же подход, что выше использовался для нахождения u. Представим $N(\chi,\mu,t),\ Q_\chi(\chi,\mu)$ в виде $N(\chi,\mu,t)=N_0+\mu N_1(\chi,\mu,t),\ Q_\chi(\chi,\mu)=$ $=Q_{\chi,0}+\mu Q_{\chi,1}(\chi),\$ где $Q_{\chi,0}\geq 0,\ Q_{\chi,1}(\chi,\mu)\geq 0$ при $\chi\in X,t\in [t_0,t_1),\mu\in (0,\mu_0]$.

Далее введем условия из [17].

IV. Траектории замкнутой системы (6) на $[t_0,t_1]$ существуют, единственны и $\chi\in X$ для любых непрерывных u(t) и $\Gamma(\chi,\mu,t)C_1$ при $x,\chi\in X,\mu\in(0,\mu_0]$; элементы матриц $A_1(\chi),B_1(\chi)$ ограниченные, непрерывные и достаточно гладкие при $\chi,\chi_r\in X$.

V. Тройка матриц $\left\{A_0^T, C_1^T, H_N\right\}$, где $H_N^T H_N = Q_{\chi,0}$, стабилизируема и наблюдаема.

VI. Матрицы системы $A_0^T, A_1^T(\chi), C_1^T$ и симметрические матрицы $R_{\chi} > 0, \ Q_{\chi,0} \ge 0,$ $Q_{\chi,1}(\chi) \ge 0, \ N^0 > 0$, а также $\mu_0 > 0$ таковы, что $N_0 + \mu N_1(\chi, \mu, t) > 0$ при $\chi \in X$, $t \in [t_0, t_1), \mu \in (0, \mu_0]$.

Тогда при условиях IV-VI приведем следующий численно-аналитический алгоритм синтеза наблюдателя (6), аналогичный тому, что выше используется для построения обратной связи (3).

- 1. Вычисляется N_0 как положительно определенное решение матричного уравнения $A_0N_0+N_0A_0^T-N_0C_1^TR_z^{-1}C_1N_0+Q_{z,0}=0 \ .$
- 2. Находится $N_1(\chi, \mu, t)$ с помощью

$$N_{1}(\chi,\mu,t) = e^{A_{Ncl,0}(t_{1}-t)} M_{N} e^{A_{Ncl,0}^{T}(t_{1}-t)} + \int_{0}^{\infty} e^{A_{Ncl,0}\sigma} D_{N}(\chi) e^{A_{Ncl,0}\sigma} d\sigma,$$
(9)

где

$$M_{N} = \frac{1}{\mu} (N^{0} - N_{0}) - \frac{1}{\mu} \left(N^{0} - N_{0} \right) - \frac{1}{\mu} e^{A_{Ncl,0}\sigma} D_{N} \left(\chi(t_{1}) \right) \Big|_{\chi(t_{1}) = \chi(t)} e^{A_{Ncl,0}\sigma} d\sigma.$$

- 3. Определяется $\Gamma(\chi,\mu,t)$ с помощью (7), считая $N(\chi,\mu,t) = N_0 + \mu N_1(\chi,\mu,t)$.
- 4. Задавая произвольное начальное состояние $\chi^0 \in X$, находится наблюдатель (6).

Аналогично замечаниям 1-3, можно сделать следующие утверждения.

Замечание 4. Сходимость интегралов в (9) следует из условий I и V.

Замечание 5. Условие VI силу наличия условий IV-V всегда может быть выполнено при достаточно малом μ_0 [16].

Замечание 6. С помощью функции Ляпунова $V=x^TN_0x$ можно доказать, что при достаточно малом μ_0 , дополнительных условиях на ограниченность производных матриц системы (2) и весовой матрицы $Q_\chi(\chi,\mu)$ имеет место асимптотическая устойчивость ошибки наблюдения $e=x-\chi$ наблюдателя (6), (7).

Теперь после нахождения $\Gamma(\chi,\mu,t)$ с помощью предложенного алгоритма можно, используя вместо неизвестного состояния χ его оценку χ , применить управление (3) для приближенного решения задачи (1)-(2).

3. Управление моделью двухколесной тележки

Рассмотрим нелинейную систему, описывающую динамику тележки с двумя колесами, управляемыми независимо друг от друга [22]

$$\dot{v}(t) = d\omega(t)^{2} + \frac{\tau_{1}(t)}{m_{0}r} + \frac{\tau_{2}(t)}{m_{0}r},$$

$$\dot{\omega}(t) = -\frac{dm_{0}v(t)\omega(t)}{d^{2}m_{0} + I_{0}} + \frac{b\tau_{1}(t)}{\left(d^{2}m_{0} + I_{0}\right)r} - \frac{b\tau_{2}(t)}{\left(d^{2}m_{0} + I_{0}\right)r},$$

$$\dot{x}(t) = -\sin(\phi(t))v(t),$$

$$\dot{y}(t) = \cos(\phi(t))v(t),$$

$$\dot{\phi}(t) = \omega(t),$$
(10)

где v, ω — линейная и угловая скорости тележки, являющиеся управлением; x, y, ϕ — координаты тележки и угол рыскания в земной декартовой системе координат yOx; τ_1 , τ_1 — крутящие моменты на левом и правом колесах (каналы управления); b — половина расстояния между

колесами тележки, d — расстояние от центра масс (СМ) тележки до оси ее колес; m_0 , I_0 , r — масса, момент вращения и радиус колес тележки соответственно. На Рис. 1 представлена соответствующая системе (10) схема тележки, а используемые значения параметров системы представлены в Табл. 1.

Рассмотрим приближенное решение задачи (1)-(2) для (10) с помощью изложенного выше алгоритма на интервале регулирования от 0 до 5 секунд. Представим систему (10) в виде (2) с помощью следующих матриц и значения параметра

$$A_0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -0.3636 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}, B_0 = \begin{bmatrix} 1 & 1 \\ 2.7273 & -2.7273 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 0 & 0.2000\omega & 0 & 0 & 0 \\ -1.8182\omega & -1.8182\nu + 0.3636 & 0 & 0 & 0 \\ \cos(\phi) - 1 & 0 & 0 & 0 & 0 \\ \sin(\phi) & 0 & 0 & 0 & -0.1000 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, B_1 = 0_{5\times2}, C_2 = I_{5\times5}, \mu = 1,$$

где $I_{\rm nxm}$, $0_{\rm nxm}$ — единичная и нулевая матрицы соответствующих размерностей. Матрицы A_0 , B_0 были найдены путем линеаризации (10) в точке ($\nu=0.1, \omega=0, x=0, y=0, \phi=0$). Определим

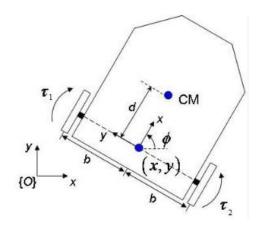


Рис. 1. Схема тележки

Табл. 1. Параметры системы

m_0 , кг	I_0 , $\kappa \Gamma \cdot M^2$	<i>r</i> , M	<i>d</i> , м	<i>b</i> , м
20	0.3	0.05	0.2	0.15

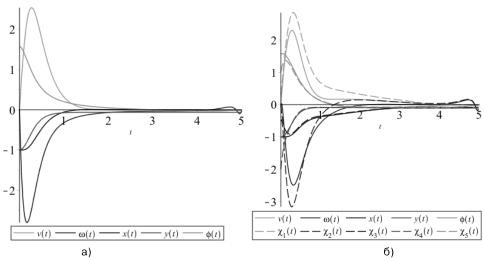


Рис. 2. Графики замкнутой системы для полного и частичного измерения вектора состояния

критерий (1) с помощью матриц $R = I_{2\times 2}, Q_0 = F = \mathrm{diag}\{10,10,50,50,30\}, Q_1 = 0_{5\times 5}.$ Зададим весовые матрицы наблюдателя следующим образом

$$Q_{\chi,1}(\chi) = Q_{\chi,0} = 100I_{5\times5}, \ R_{\tilde{\chi}} = I_{3\times3}, \ N^0 = 100I_{5\times5}.$$

На Рис. 2 для начальных условий v(0) = 0, $\omega(0) = 0$, x(0) = -1, y(0) = -1, $\phi(0) = 0.5\pi$ представлены результаты численного моделирования системы (10), замкнутой регулятором (3), на интервале времени от 0 до 5 секунд при условии полного измерения вектора состояния (случай а)), т.е. при C_1 = I_{5x5} , и при условии измерения только координат x, y, ϕ (случай б)),

т.е. при
$$C_1 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
. В последнем

случае управление строится на основе переменных χ_i , i=1,2,...,5, т.е. на оценках координат v, ω , x, y, ϕ , полученных с помощью построенного наблюдателя состояния. Начальные значения вектора состояния наблюдателя были заданы произвольным образом как $\chi_1(0)=0.3$, $\chi_2(0)=-0.5$, $\chi_3(0)=0$, $\chi_4(0)=-2$, $\chi_5(0)=1$.

Видно, что оценки (обозначены пунктирными кривыми) со временем приближаются к настоящим значениям вектора состояния (непрерывные кривые) при заданных произвольных начальных условиях наблюдателя. Как можно видеть, в случае б) качество переходных процессов ухудшилось из-за возросшей ошибки регулирования в конечный момент времени.

На Рис. 3 представлены результаты эксперимента для системы (10), замкнутой линейно-квадратичным регулятором u_0 из (3), т.е. регулятором оптимальным для линеаризованной задачи (1), (10) при полном измерении вектора состояния. В этом случае наблюдатель состояния не строится и в управление подставляется непосредственно вектор состояния системы. Из проведённого эксперимента видно, что качество управления линейного регулятора существенно уступает построенному нелинейному регулятору из-за достаточно большой статической ошибки. Очевидно, достигнутое улучшение обеспечивается нелинейной коррекцией μu_1 , которая присутствует в нелинейном управлении (3).

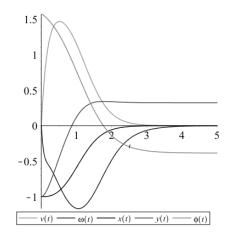


Рис. 3. Графики замкнутой системы с линейным управлением при полном измерении вектора состояния

Теперь рассмотрим задачу управления, когда $z \neq x$. Предположим, нужно перевести в окрестность нулевого положения пространственные координаты тележки и ее угол ориентации. Таким образом, вектор регулируемых координат и матрица C_2 имеют следующие значения

$$z = y = [x, y, \phi]^T$$
, $C_2 = C_1 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

На Рис. 4 представлены результаты моделирования замкнутого контура управления при тех же начальных условиях системы и наблюдателя. Как видно, регулируемые координаты переводятся в окрестность начала координат достаточно точно, тогда как оставшиеся координаты, а именно ν и ω , имеют относительно большие значения в конечный момент управления. Отметим, что, как и ранее, с течением времени имеется сходимость оценок наблюдателя к истинным значениям вектора состояния системы.

Заключение

В данной работе рассмотрено построение приближенного управления и наблюдателя в слабо нелинейной задаче оптимального управления на конечном интервале времени, в которой матрицы системы и квадратичного критерия представлены в псевдолинейном виде. Особенностью рассмотренной задачи является выделение двух векторов: вектора выхода и вектора регулируемых координат. Достоинством предложенного подхода является получение аналитических выражений, которые существенно снижают вычислительные затраты. Проведенные численные эксперименты для задачи управления нелинейной моделью двухколесной тележкой продемонстрировали работоспособность и эффективность предложенного алгоритма.

Литература

- A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 1995.
- Khalil H. K., Grizzle J. W. Nonlinear systems. 3-ed. NJ: Prentice hall, 2002.
- Camacho E. F., Alba C. B. Model predictive control. Springer Science & Business Media, 2013.

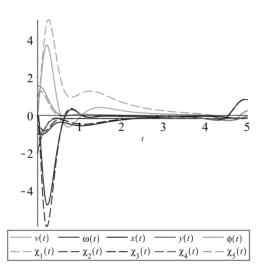


Рис. 4. Графики замкнутой системы при z = y

- 4. Четвериков В.Н. Плоскостность динамически линеаризуемых систем // Дифференциальные уравнения. 2004. Т. 40, № 12. С. 1665-1674.
- Belinskaya Yu. S., Chetverikov V. N. Covering Method for Point-to-Point Control of Constrained Flat System // IFAC-Papers OnLine. 2015. Vol. 48 (11). Pp. 924–929.
- Nekoo S. R. Tutorial and Review on the State-dependent Riccati Equation //Journal of Applied Nonlinear Dynamics. 2019. Vol. 8(2). Pp. 109-166.
- Çimen T. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis // Journal of Guidance, Control, and Dynamics. 2012. Vol. 35(4). Pp. 1025-1047.
- Cloutier J.R. State-Dependent Riccati Equation Techniques: An Overview // Proc. American Control Conference. 1997. Vol. 2. Pp. 932-936.
- Heydari A., Balakrishnan S.N. Path Planning Using a Novel Finite Horizon Suboptimal Controller // Journal of guidance, control, and dynamics. 2013. Vol. 36(4). Pp. 1210-1214.
- Heydari A., Balakrishnan S.N. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems // International Journal of Robust and Nonlinear Control. 2015. Vol. 25(15). Pp. 2687-2704.
- Naidu D. S., Paul S., Rieger C. R. A Simplified SDRE Technique for Regulation in Optimal Control Systems //2019 IEEE International Conference on Electro Information Technology (EIT). – IEEE, 2019. Pp. 327-332.
- Khamis A., Naidu D.S., Kamel A.M. Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete State Information Using Differential State Dependent Riccati Equation // International Journal of Aerospace Engineering. Vol. 2014 (2014). 12 pages. http://dx.doi.org/10.1155/2014/178628.
- 13. Khamis A., Chen C. H., Naidu D. S. Tracking of a robotic hand via SD-DRE and SD-DVE strategies // Control (CONTROL), 2016 UKACC 11th International Conference on. IEEE. 2016. Pp. 1-6.

- 14. Дмитриев М.Г., Макаров Д.А. Гладкий нелинейный регулятор в слабо нелинейной системе управления с коэффициентами, зависящими от состояния. // Труды Института системного анализа РАН. Т. 64. №4. 2014. С. 53-58.
- 15. Макаров Д.А. Подход к построению нелинейного управления в задаче слежения с коэффициентами, зависящими от состояния Часть І. Алгоритм // Информационные технологии и вычислительные системы. 2017. №3. С. 10-19.
- 16. Макаров Д.А. Синтез управления и наблюдателя для слабо нелинейных систем на основе техники псевдолинеаризации // Моделирование и анализ информационных систем. 2017. Т. 24, № 6. С. 802–810.
- 17. Макаров Д.А. Построение управления и наблюдателя в слабо нелинейной задаче слежения с помощью дифференциальных матричных уравнений Риккати // Информационные технологии и вычислительные системы. 2018. № 4. С. 63-71.
- Макаров Д.А. Численное моделирование следящего управления с наблюдением для модели продольной

- динамики самолета вертикального взлета и посадки. Математика и математическое моделирование. 2018. N = 6. C. 72-87.
- Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. Москва: МИР, 1977. 653 с.
- Б.Т. Поляк, М.В. Хлебников, Л.Б. Рапопорт. Математическая теория автоматического управления: Учебное пособие. М.: ЛЕНАНД, 2019. 504 с.
- Dmitriev M. G., Makarov D. A. The stabilizing composite control in a weakly nonlinear singularly perturbed control system // Proceedings of 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2017. Pp. 589-594, doi: 10.1109/ICSTCC.2017.8107099.
- 22. Tang C. P. Differential flatness-based kinematic and dynamic control of a differentially driven wheeled mobile robot //2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2009. Pp. 2267-2272.

Макаров Дмитрий Александрович. Старший научный сотрудник Федерального исследовательского центра «Информатика и управление» Российской академии наук (ФИЦ ИУ РАН), г. Москва, пр-т 60-летия Октября, 9. Старший научный сотрудник Московского физико-технический института (МФТИ), г. Долгопрудный, Институтский пер., 9, Россия. Количество печатных работ: более 50. Область научных интересов: управление сложными динамическими системами, робастные методы устойчивости и стабилизируемости, искусственный интеллект, экспертные системы. E-mail: makarov@isa.ru

Хачумов Михаил Вячеславович. Старший научный сотрудник Федерального исследовательского центра «Информатика и управление» Российской академии наук (ФИЦ ИУ РАН), г. Москва, пр-т 60-летия Октября, 9. Старший преподаватель Российского университета дружбы народов (РУДН), г. Москва, ул. Миклухо-Маклая, 6. Кандидат физикоматематических наук. Количество печатных работ: более 60. Область научных интересов: интеллектуальное управление, беспилотные летательные аппараты, бортовые вычисления, траекторное движение летательные аппаратов, искусственный интеллект. E-mail: khmike@inbox.ru

SDRE-Based Synthesis in a Weakly Nonlinear Control Problem on a Finite Interval

D. A. Makarov I,III, M.V. Khachumov I,III

Abstract. In this work, for one class of weakly nonlinear systems with state-dependent coefficients, a heuristic approach to constructing a nonlinear control using dynamic feedback is considered. A feature of the problem statement is the selection of two different vectors: the system output vector and the vector of adjustable coordinates. Estimates of unmeasured variables are obtained using a full-order state observer. Numerical experiments for control of the differentially driven wheeled mobile robot were carried out. The operability and effectiveness of the proposed control algorithm were shown.

Keywords: terminal control problem, nonlinear control, full-order state observer, SDRE technique, differentially driven wheeled mobile robot.

DOI 10.14357/20718632200402

¹ Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

The Peoples' Friendship University of Russia, Moscow, Russia

References

- A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 1995.
- Khalil H. K., Grizzle J. W. Nonlinear systems. 3-ed. NJ: Prentice hall, 2002.
- 3. Camacho E. F., Alba C. B. Model predictive control. Springer Science & Business Media, 2013.
- Chetverikov V. N. Flatness of dynamically linearizable systems //Differential equations. 2004. Vol. 40(12). Pp. 1747-1756.
- Belinskaya Yu. S., Chetverikov V. N. Covering Method for Point-to-Point Control of Constrained Flat System // IFAC-Papers OnLine. 2015. Vol. 48(11). Pp. 924–929.
- Nekoo S. R. Tutorial and Review on the State-dependent Riccati Equation //Journal of Applied Nonlinear Dynamics. 1919. Vol. 8(2). Pp. 109-166.
- Çimen T. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis // Journal of Guidance, Control, and Dynamics. 2012. Vol. 35(4). Pp. 1025-1047.
- Cloutier J.R. State-Dependent Riccati Equation Techniques: An Overview // Proc. American Control Conference. 1997. Vol. 2. Pp. 932-936.
- Heydari A., Balakrishnan S.N. Path Planning Using a Novel Finite Horizon Suboptimal Controller // Journal of guidance, control, and dynamics. 2013. Vol. 36, No. 4. Pp. 1210-1214
- Heydari A., Balakrishnan S.N. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems // International Journal of Robust and Nonlinear Control. 2015. Vol. 25. No 15. Pp. 2687-2704.
- Naidu D. S., Paul S., Rieger C. R. A Simplified SDRE Technique for Regulation in Optimal Control Systems //2019 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2019. Pp. 327-332.
- Khamis A., Naidu D.S., Kamel A.M. Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete State Information Using Differential State Dependent Riccati Equation // International Journal of Aerospace Engineering. Vol. 2014 (2014). 12 pages. http://dx.doi.org/10.1155/2014/178628.
- 13. Khamis A., Chen C. H., Naidu D. S. Tracking of a robotic hand via SD-DRE and SD-DVE strategies // Control (CONTROL), 2016 UKACC 11th International Conference on. IEEE. 2016. Pp. 1-6.
- 14. Dmitriev M.G., Makarov D.A. Smooth nonlinear controller in a weakly nonlinear control system with state-dependent coefficients [Gladkij nelinejnyj regulyator v slabo nelinejnoj sisteme upravleniya s koefficientami, zavisyashchimi ot sostoyaniya]. // Proceedings of the Institute for System Anal-

- ysis of RAN [Trudy Instituta sistemnogo analiza RAN]. 2014. Vol. 64(4). Pp. 53-58. In Russian.
- 15. Makarov D.A. Podhod k postroeniyu nelinejnogo upravleniya v zadache slezheniya s koehfficientami, zavisyashchimi ot sostoyaniya CHast' I. Algoritm [A nonlinear approach to a feedback control design for a tracking state-dependent problem. I. An algorithm]. Informacionnye tekhnologii i vychislitel'nye sistemy [Information technology and computer systems]. 2017. No. 3. Pp. 10-19. In Russian.
- 16. Makarov D.A. Postroenie upravleniya i nablyudatelya v slabo nelinejnoj zadache slezheniya s pomoshch'yu differencial'nyh matrichnyh uravnenij Rikkati [The design of observer based tracking control for weakly nonlinear systems using differential matrix equations Riccati]. Informacionnye tekhnologii i vychislitel'nye sistemy [Information technology and computer systems]. 2018. No 4. Pp. 63-71. In Russian.
- 17. Makarov D.A. The simulation of observer based tracking control for the model of the longitudinal dynamics of a vertical takeoff and landing aircraft [CHislennoe modelirovanie sledyashchego upravleniya s nablyudeniem dlya modeli prodol'noj dinamiki samoleta vertikal'nogo vzleta i posadk]. Mathematics and Mathematical Modeling [Matematika i matematicheskoe modelirovanie]. 2018. No 6. Pp. 72-87. In Russian.
- Dmitriev M. G., Makarov D. A. The stabilizing composite control in a weakly nonlinear singularly perturbed control system // Proceedings of 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2017. Pp. 589-594, doi: 10.1109/ICSTCC.2017.8107099.
- H. Kwakernaak, R. Sivan. Linear Optimal Control Systems. New York: Wiley-Interscience. 1972. 600 p.
- B.T. Polyak, M.V. Khlebnikov, L.B. Rapoport. Mathematical theory of automatic control: Textbook [Matematicheskaya teoriya avtomaticheskogo upravleniya: Uchebnoe posobie]. Moscow: LENAND, 2019. 504 p. (in Russian).
- Dmitriev M. G., Makarov D. A. The stabilizing composite control in a weakly nonlinear singularly perturbed control system // Proceedings of 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2017. Pp. 589-594, doi: 10.1109/ICSTCC.2017.8107099.
- Tang C. P. Differential flatness-based kinematic and dynamic control of a differentially driven wheeled mobile robot //2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2009. Pp. 2267-2272.

Makarov D. A. Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, senior researcher, Moscow, pr-t 60-letiya Oktyabrya, 9. Moscow Institute of Physics and Technology, senior researcher, Dolgoprudny, Institutsky per., 9. Russia. Cand. Sci. (Physics and Mathematics). Author of 50 scientific papers. Research interests: nonlinear and robust control, composite control, artificial intelligence.E-mail: makarov@isa.ru

Khachumov M. V. Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, senior researcher, Moscow, pr-t 60-letiya Oktyabrya, 9. The Peoples' Friendship University of Russia, senior researcher, Moscow, st. Miklouho-Maclay, 6. Cand. Sci. (Physics and Mathematics). Research interests: intelligent control, unmanned aerial vehicles, airborne computing, trajectory movement of aircraft, artificial intelligence. Author of 60 scientific papers. E-mail: khmike@inbox.ru