
ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ

Abstract. The methods of updating central moments are often covered in various works where the large

updating samples are present. However, absolute central moments of odd orders still remain unaddressed.

In online systems and systems that are highly dependent on data transfer speed the issue of updating the

absolute central moment of a time series on a certain constantly updating sample often comes up. In this

paper we will propose a method for fast update of absolute central moments of time series and its pro-

grammatic implementation based on the treap data structure.

Keywords: absolute central moments, treap, online systems, central moments.

DOI 10.14357/20718632210101

When processing large quantities of numerical

data, building predictive models and solving image

processing- and computer vision-related problems,

the moments of time series and samples are applied

as relevant features of objects or phenomena [1].

When developing the algorithms that analyze

changes of the characteristics of the objects over

time, the challenge of updating the values of the

moments of samples arises, i.e., the problem of re-

calculation of the values of the moments with the

increase (or decrease) of the sample size. While

there are effective algorithms for updating the ini-

tial and central moments of samples, the problem

of updating the absolute moments turns out to be

more complex. The objective of this work is to de-

velop an effective method for updating the abso-

lute central moments of the increasing samples and

to study it experimentally.

We will define a sample as a set of values gen-

erated during a certain number of observations of

the time series. Suppose we are given a sample

1{ ,..., }nA a a . A sample moment of order k is

its numerical characteristic that:

1. When it’s initial, is calculated using the

formula
1

1
()

n
k

k i

i

A a
n

 ,

2. When it’s central, is calculated using the

formula 1

1

1
() ()

n
k

k i

i

A a A
n

 .

The following characteristics are called the ab-

solute and the central absolute sample moments,

respectively:

* This work was partially financially supported by RFBR, projects №№ 19-29-09055, 19-29-09092.

3.
1

1
()

n
k

k i

i

A a
n

 ,

4.
1

1

1
() ()

n
k

k i

i

A a A
n

 .

It is also apparent that 1-st initial moment is

equal to sample mean of A, and 2-nd central mo-

ment is equal to a sample variance of A. Also, ab-

solute central moments of even orders and mo-

ments of same even orders are same, that being

) () (k kA A ,) () (k kA A for even k.

Let’s assume that at any point in time a new

value of some time series is observed. This means

that at any point in time there is a sample
nA of

such a size n, where n is the number of previous

observations and it generates a sequence of sam-

ples of increasing size.

Let’s say that the process that generates a num-

ber
1na
 at each new stage is being considered.

This process produces a sequence of increasing

samples
1 2 1, , , nA A A , for each of which it is

necessary to get an absolute central moment of

some order.

When we get a new element of a sample, the

updated sample mean can be calculated using the

following formula:

1 1
1 1

()
() .

1

n n
n

n A a
A

n

 (1)

On the other hand, there is no general form of

such formulas for the third-order and higher-order

moments due to the nature of the formulas for cal-

culating the moments of time series, in which each

component changes (since each component is the

equation 1 1(())k

i na A , while previously this

component 1(())k

i na A was equal), whereas

with the sample mean there is just one component

added. And this raises the problem of fast update

of the absolute moment of a sample with the re-

gards to the procedure of recalculating each of the

1n components.

The obvious way to update the absolute mo-

ments of time series is to update the mean of a

sample, first, by applying the formula (1) to it, and

then calculate the moment itself:

1

1 1

1

() | | .
n

k
k n i n

i

A a a

 (2)

If exponentiation k is performed using the bina-

ry exponentiation algorithm [2], which complexity

is equal to (log)O k , then the complexity of the

algorithm for updating the value of the absolute

central moment at an n+1 stage of the process will

be (log)O n k .

The effectiveness and accuracy results of a few

increment formulas that are applied within the sys-

tems with high demands for accuracy and perfor-

mance speed were produced in this work [3]. The

formulas and methods reviewed in this article were

generated due to the idea of dividing the entire

sample into two sets, and as a result, the increment

formulas themselves were generated through a

special case of the derived formulas, when the first

set is the entire previous sample, and the second

one contains just one new element.

Also the formula presented in the work [3]

1 1

1
() () ,

k n
i p k k

k k

i i

A C a a
n

 (3)

which is a result of a simple expansion of the cen-

tral moment formula according to which the bino-

mial theorem was not modified by dividing the en-

tire sample into two sets. As part of the

experiment, the accuracy and effectiveness of such

a formula for absolute moments will be examined.

The results produced in the work [3] are im-

portant since they offer stable (i.e. slightly deviat-

ing in terms of accuracy from the classic method of

going through the entire sample) methods of updat-

ing the central moments, as well as keep continu-

ing and expand into weighted samples (i.e. those

samples that have a weight
iw associated with

each value
ia).

In this work [4] a problem was considered of

finding a stopping rule during the process of text

field recognition in a video stream which is essen-

tial when developing the systems of document

recognition with the use of mobile digital cameras

[5]. The recognition process in a video stream en-

tails combining frame-by-frame recognition results

using the method described in the work [6]. In the

work [4] the authors suggest a modified method

based on the modeling the subsequent result of in-

ter-frame combination [7] taking into account a set

of approximations, and in this simplified combined

scheme there is a need for an effective update of a

variable that is similar to the first-order absolute

central moment in its structure. It was proposed to

divide the sample into two parts and use balanced

search trees in order to eliminate the absolute val-

ues in the formula for calculating the absolute cen-

tral moment. Within the framework of this article

this method will be expanded for a more general

purpose of a fast update of an absolute central

moment of any order.

This scheme is based on the concept of dividing

an entire sample into two subsets which will make

it possible to eliminate absolute values. Let
ia be

values from a sample A and a an arithmetic

mean of all the values in this sample, i.e. the mean

of the reviewed sample.

Let’s review two subsets of the sample,

{ | }L a A a a and { | }R a A a a . And

it is obvious that ,A L R L R . Then, by

definition:

1

1
() | | .

n
k

k i

i

A a a
n

 (4)

It can be replaced by the following formula:

1
() | | | | .k k

k

l L r R

A a l a r
n

 (5)

Then, since : 0r R a r and

: 0l L a l , the absolute value bars can be

eliminated:

1
() () () .k k

k

l L r R

A a l r a
n

 (6)

Then after expanding the brackets using the

formula of the binomial theorem, we can get

0

1
() ((1)

k
k j j j j

k k

l L j

A a l C
n

0

(1)),
k

k j j j j

k

r R j

r a C

 (7)

where
!

()! !

j

k

k
C

k j j

 is a binomial coefficient.

Let’s note that the inner sum of j in both double

sums doesn’t depend on the subset based on which

we sum up L or R . Moreover, the order of sum-

mation for the finite sums can be altered. It means

0 0

0 0

(1) (1) ,

(1) (1) .

k k
k j j j j k j j j j

k k

l L j j l L

k k
k j j j j k j j j j

k k

r R j j r R

a l C a l C

r a C r a C

Then if the summation (1) j j

kC is put outside

the brackets, we get:

0

1
() (1) .

k
j j k j j j k j

k k

j r R l L

A C r a l a
n

(8)

Now we can see that the equations
ja and

k ja
 do not depend on the components or r or l ,

which means they can be put outside the summa-

tion signs, and as a result we’ll get the final version

of the formula:

0

1
() (1) .

k
j j j k j k j j

k k

j r R l L

A C a r a l
n

 (9)

As it can be seen from the formula (9), in order

to get the values of the moment, it is sufficient to

know the sums of the n-degrees of the elements of

the subsets L and R. That’s why the data structure

needed for the implementation of the decision built

using this formula has to solve the problem of a

quick component insertion and subsequent genera-

tion of the required sums of the n-degrees of the

elements of the sets L and R.

The process of calculating even-order moments

is the same as calculating non-absolute central

moments of the same order, however the computa-

tional scheme described further can be applied to

them as well.

We propose to use balanced search trees as the

main data structure in this work.

A binary search tree is a data structure pre-

sented as a binary tree that meets the following

requirements:

1. Both sub-trees are binary search trees as well.

2. All the keys of the left subtree nodes of arbi-

trary vertex X are less or equal to the key X. A

node key is a value stored in this node. Fig. 1

shows an example of a binary search tree.

A balanced binary search tree is a tree which

height does not exceed (log)O n , where n is a

number of nodes. The examples of balanced binary

trees would be AVL trees [8] and red-black trees [9].

Out of all the existing balanced binary trees it is

worth paying closer attention to a Cartesian tree [10].

A binary heap or a pyramid is a binary tree

with the values of any of its nodes being less than

the values of its descendants. A cartesian tree [11]

or a treap is a binary tree with two keys, and it’s

such a tree that according to one of the keys x it’s a

binary search tree, and according to the second key

y, it’s a binary heap. We’ll be referring to x as a

key and to y as a priority. Fig. 2 demonstrates an

example of a Cartesian tree. The values in the edg-

es are recorded in the “key, priority” form.

In order to update the moment using the formu-

la (9) we generated earlier, a vector

 0 1, , , k

i i ia a a will be stored in the

nodes where its each component
1

m
j

i

i

a

 is a sum of

the nth-degrees of all the components in the

subtree with a root node in a given node (the first

component in the given data set is equal to the

number of edges in this subtree). In fact, these

sums are calculated “recursively”: the sum of each

node is a sum of all the sums from its child nodes,

the sum of its child nodes is a sum of its child

nodes’ child nodes, etc. That’s why when we in-

troduce a new element into a tree, we have to up-

date the sums only for those nodes which subtrees

are going to be on the way to the edge during the

insertion process.

When updating the absolute central moments

according to the procedure described in the Algo-

rithm description section, it is necessary to get the

sums of the j-th degrees of the components of the

subsets L and R and the original sample A for

{0, , }j k to calculate the formula (9). And the

set L is defined as a subset of the original sample

with the components that are less than the average

value of a component in the sample A. In order to

calculate such degrees using a balanced search

tree, let’s introduce an additional operation

SUMM (root,value,ACC)L L
. Originally, the

vector 0,0, ,0 consisting out of k zeroes is

expressed as ACCL
.

SUMM (root,value,ACC)L L
 finds all the

components of the subset L, starting with the root

node of the tree. It checks the key value of the root

node, then, if the key value is lesser, we can defi-

nitely state that the entire left subtree (including

the root) belongs to L. Then the vector stored in

the node that is the root of this tree is added to the

vector ACCL
. If the node key is higher than the

value which is transferred to the operation, then

SUMM (root,value,ACC)L L
 is run from the left

descendant of the tree root node until (i.e.

root rootl , the new root node transferred to the

operation is a left descendant) the transferred node

has the key lesser than value .

As the next step, we need to determine which

components of the right subtree belong to L as

well. In order to do that, after we add the values to

the data set ACCL
, the operation

SUMM (root,value,ACC)L L
 is run for the right

descendant by the earlier determined edge with a

key lesser than value , and it’s run until the trans-

ferred node doesn’t have any descendants left.

The complexity of the operation

SUMM (root,value,ACC)L L
is equal to (),O h k

where h is a tree height since this operation will be

initiated not more than h times, and each time it

will be performed in k (because we need to stack

two vectors of the size k).

Therefore, as a result of the performance of the

function SUMM (root,value,ACC)L L , we’ll be able

to find out both the sums of the j-th degrees of the

subset L and the sums of the j-th degrees of the sub-

set R through the substraction of the sums of the sub-

set L out of the sums of the root node of the tree, i.e.

ACC ACC ACC ,R L (10)

where ACC is a vector of the j-th degrees of all

the tree nodes that is stored in the root node.

The process described in the observation pro-

cess section moves to a k-th stage, and it is vital to

update the k-th absolute moment.

1. To add a new element
1na
 to the data struc-

ture.

2. To get the values of the sums of the k-th

degrees for
1nL
 and

1nR
. The sums for

1nL

 are generated by the operation

1 1
SUMM (root,value,ACC)

n nL L
 described in sec-

tion 7, the sums for
1nR
 can be recovered out of

the total sums for the sample A stored in the root

node of the tree and calculated sums of
1nL
.

3. To perform an addition with the help of the

formula (9).

In order to solve these problems, a new edge

with the key
1na
 and with the priority

1ny
 gener-

ated for it is inserted into a Cartesian tree, and after

that the sums of the k-th degrees in the affected by

this insertion edges are updated.

Then after the operation

SUMM (root,value,ACC)L L
 is applied to the

tree, the data set ACCL
 is calculated and then the

data set ACCR
 is calculated using the formula (10).

As the next step, the formula (9) is applied with

the substitution

ACC , ACC .k j k j j j

R L

r R l L

r l

 (11)

The updated absolute moment is the value of

the formula (9) with the substitute values.

The complexity of this algorithm is

(log)O k n . There is a block-scheme of the algo-

rithm demonstrated in Fig. 3. It shows the process

starting from the moment of the process transition

into the next step and ending with the moment

update.

The experiment is carried out by performing the

actions described in the previous solutions section

(hereinafter referred to as basic) and running the al-

gorithm proposed in the article and described in the

Algorithm description section (hereinafter referred to

as an algorithm for treaps). For each cross-section of

the sample as big as 100000 units (i.e, from the first

element to the first one, from the first one to the se-

cond one, from the first one to the third one, etc.) the

time performance for each of the algorithms is meas-

ured 21 times. After that the mid-points for each

measurement are compared. For each of the 21 run-

throughs the identical numbers taken from the even

distribution on the interval [0,1] are generated. The

time in the tables is presented in milliseconds, if not

specified otherwise.

Fig. 4 shows the results of time measurements of

the 7th degree moment update. The Table 1 exhibits

the results of time measurements of the 1st, 3rd, 5th

and 7th degree moment updates. In order to reflect

the differences, the logarithmic scale of time was

used.

Fig. 5 and Table 2 show the results of time meas-

urement for the 7th order moment update with a

small-sized sample (1-100).

Fig. 6 and Table 3 represent the results of the

measurements of the total performance time of the

algorithms for updating the moments of the 1st to the

50th order.

Table 4 demonstrates the treap algorithm devia-

tion compared to the basic algorithm using double-

precision floating-point arithmetic. | | reflects the

absolute difference between produced values.

Experimental time measurements were performed

on a PC (Intel Core i5 6600 processor, Microsoft

Visual C++ Compiler v14.25). The original code

needed for the reproduction of the experiments is

available here: https://github.com/devourers/absolute-

moment-computation.

The experimental data demonstrates the treap al-

gorithm superiority over the classic algorithm when it

comes to performance time, and the largest deviation

is compared to (as we can see from Table 4).

In addition, Figure 6 shows that the treap algo-

rithm performance time is slowly increasing rela-

tive to the moment order which is updating. The

time of the 9th order moment measurement is

compared to the time of the 1st order moment

measurement for the treap algorithm, while the

basic algorithm time performance for the 8th order

is 4 times higher than for the 1st order.

When working with smaller-sized samples (up

to 80 elements), the classic algorithm performs bet-

ter time-wise due to the fact that the treap algo-

rithm spends additional time for insertion which is

commensurable for the samples of this size.

In this work we reviewed the existing results of

the fast update of the central moments in samples

and developed an effective method for updating

the absolute moments in a sample. The method de-

scribed in this article demonstrates the accuracy of

the order and a low logarithmic increase

relative to the number of elements in a sample and

a low logarithmic increase relative to the moment

order.

https://github.com/devourers/absolute-moment-computation

Moment Order Number of Elements Treap algorithm time Basic algorithm time

1 100 0.0003 0.0004

1000 0.0004 0.0037

10000 0.0015 0.0366

50000 0.0022 0.1844

75000 0.0026 0.2809

100000 0.0029 0.3717

3 100 0.0005 0.0006

1000 0.0005 0.0053

10000 0.0019 0.0509

50000 0.0027 0.2704

75000 0.0034 0.4156

100000 0.0034 0.5166

5 100 0.0006 0.0008

1000 0.0007 0.0068

10000 0.0024 0.0672

50000 0.0029 0.3497

75000 0.0039 0.5674

100000 0.0041 0.7086

7 100 0.0007 0.0008

1000 0.0009 0.0068

10000 0.0028 0.0693

50000 0.0036 0.3426

75000 0.0046 0.5327

100000 0.0047 0.7254

Number of elements Treap algorithm time Basic algorithm time

20 0.00043 0.00019

40 0.00045 0.00024

60 0.00057 0.00053

80 0.00063 0.00057

1 2 3, , , nA A A A

Moment order Treap algorithm time Basic algorithm time

1 10.0366 62.5009

2 8.0027 87.2331

3 9.9450 85.6776

4 10.3507 114.3370

5 9.9535 113.5313

6 9.5546 129.8519

7 10.9674 118.8513

8 11.2111 244.9523

9 12.4585 169.0804

Order Number of elements Basic algorithm | |
Treap algorithm

1 1000 241.9220

241.9220

3 10000 306.7266

306.7266

5 8 0.0372 0

0.0372

7 100 0.0935

0.0935

9 3 0.0000 1

0.0000

9 1 0.0000

0.0000

1. G. Kramer. Matematicheskie metodi statistiki. — 2-nd

publ. — M.: Mir, 1975. — P. 196-197, 284. — 648 p.

2. Gueron S. Efficient software implementations of modular

exponentiation //Journal of Cryptographic Engineering. –

2012. – Т. 2. – №. 1. – С. 31-43.

3. Pébay P. et al. Numerically stable, scalable formulas for

parallel and online computation of higher-order multivari-

ate central moments with arbitrary weights

//Computational Statistics. – 2016. – Т. 31. – №. 4. –

С.1305-1325.

4. K. Bulatov, N. Fedotova, V. V. Arlazarov, Fast Approxi-

mate Modelling of the Next Combination Result for Stop-

ping the Text Recognition in a Video //In Proc. 2020 25th

International Conference on Pattern Recognition (ICPR)

Milan, Italy, Jan 10-15, 2021, p. 239-246.

5. V. V. Arlazarov, A. E. Zhukovskiy, V. E. Krivtsov, D. P.

Nikolaev and D. V. Polevoy, “Analiz osobennostey

ispolzovaniya statsionarnykh i mobilnykh malorazmernykh

tsifrovykh video kamer dlya raspoznavaniya dokumentov,”

ITiVS, no 3, pp. 71-81, 2014.

6. Bulatov K. B. A Method to Reduce Errors of String

Recognition Based on Combination of Several Recogni-

tion Results with Per-Character Alternatives // Вестник

ЮУрГУ ММП. — 2019. — Т. 12. — № 3. — С. 74-88.

— DOI: 10.14529/mmp190307.

7. Bulatov K., Savelyev B., Arlazarov V. V. Next integrated

result modelling for stopping the text field recognition

process in a video using a result model with per-character

alternatives // ICMV 2019 / Wolfgang Osten, Dmitry

Nikolaev, Jianhong Zhou. — SPIE. — янв. 2020. — Т.

11433. — ISSN 0277-786X. — ISBN 978-15-10636-44-6.

— 2020. — Т. 11433. — 11433 2M. — С. 1-7. — DOI:

10.1117/12.2559447.

8. Adelson-Velsky, Georgy; Landis, Evgenii (1962). "An

algorithm for the organization of information". Proceed-

ings of the USSR Academy of Sciences (in Russian). 146:

263–266.

9. Storer J. A. An introduction to data structures and algo-

rithms. – Springer Science & Business Media, 2012.

10. Blelloch G. E., Reid-Miller M. Fast set operations using

treaps //Proceedings of the tenth annual ACM symposium on

Parallel algorithms and architectures. – 1998. – С. 16-26.

11. Seidel R., Aragon C. R. Randomized search trees

//Algorithmica. – 1996. – Т. 16. – №. 4-5. – С. 464-497.

Rybalko D. Z. Student of NUST “MISiS”. Fields of interest: computer vision, object recognition, topological data analysis.

E-mail: d.rybalko@smartengines.com

Bulatov K. B. PhD, senior researcher at Federal Research Center "Computer Science and Control" of Russian Academy of Sci-

ences. Graduated from NUST "MISIS" in 2013. Fields of interest: pattern recognition, machine learning, information systems.

E-mail: kbulatov@smartengines.com

Polevoy D. V. PhD, senior researcher at Federal Research Center "Computer Science and Control" of Russian Academy

of Sciences, graduated from MIPT in 2004. Fields of interest: computer vision, image processing, information systems.

E-mail: polevoy@smartengines.com

