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Abstract. The methods of updating central moments are often covered in various works where the large 

updating samples are present. However, absolute central moments of odd orders still remain unaddressed. 

In online systems and systems that are highly dependent on data transfer speed the issue of updating the 

absolute central moment of a time series on a certain constantly updating sample often comes up. In this 

paper we will propose a method for fast update of absolute central moments of time series and its pro-

grammatic implementation based on the treap data structure. 
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When processing large quantities of numerical 

data, building predictive models and solving image 

processing- and computer vision-related problems, 

the moments of time series and samples are applied 

as relevant features of objects or phenomena [1]. 

When developing the algorithms that analyze 

changes of the characteristics of the objects over 

time, the challenge of updating the values of the 

moments of samples arises, i.e., the problem of re-

calculation of the values of the moments with the 

increase (or decrease) of the sample size. While 

there are effective algorithms for updating the ini-

tial and central moments of samples, the problem 

of updating the absolute moments turns out to be 

more complex. The objective of this work is to de-

velop an effective method for updating the abso-

lute central moments of the increasing samples and 

to study it experimentally. 

We will define a sample as a set of values gen-

erated during a certain number of observations of 

the time series. Suppose we are given a sample

1{ ,..., }nA a a . A sample moment of order k is 

its numerical characteristic that: 

1. When it’s initial, is calculated using the 

formula 
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2. When it’s central, is calculated using the 

formula  1
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The following characteristics are called the ab-

solute and the central absolute sample moments, 

respectively: 
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It is also apparent that 1-st initial moment is 

equal to sample mean of A, and 2-nd central mo-

ment is equal to a sample variance of A. Also, ab-

solute central moments of even orders and mo-

ments of same even orders are same, that being 

) ( ) (k kA A  , ) ( ) (k kA A   for even k. 

Let’s assume that at any point in time a new 

value of some time series is observed. This means 

that at any point in time there is a sample 
nA  of 

such a size n, where n is the number of previous 

observations and it generates a sequence of sam-

ples of increasing size. 

Let’s say that the process that generates a num-

ber 
1na 
 at each new stage is being considered. 

This process produces a sequence of increasing 

samples
1 2 1, , , nA A A  , for each of which it is 

necessary to get an absolute central moment of 

some order. 

When we get a new element of a sample, the 

updated sample mean can be calculated using the 

following formula:  
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On the other hand, there is no general form of 

such formulas for the third-order and higher-order 

moments due to the nature of the formulas for cal-

culating the moments of time series, in which each 

component changes (since each component is the 

equation 1 1( ( ))k

i na A  , while previously this 

component 1( ( ))k

i na A  was equal), whereas 

with the sample mean there is just one component 

added. And this raises the problem of fast update 

of the absolute moment of a sample with the re-

gards to the procedure of recalculating each of the  

1n  components.  

The obvious way to update the absolute mo-

ments of time series is to update the mean of a 

sample, first, by applying the formula (1) to it, and 

then calculate the moment itself: 
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If exponentiation k is performed using the bina-

ry exponentiation algorithm [2], which complexity 

is equal to (log )O k , then the complexity of the 

algorithm for updating the value of the absolute 

central moment at an n+1 stage of the process will 

be ( log )O n k . 

The effectiveness and accuracy results of a few 

increment formulas that are applied within the sys-

tems with high demands for accuracy and perfor-

mance speed were produced in this work [3]. The 

formulas and methods reviewed in this article were 

generated due to the idea of dividing the entire 

sample into two sets, and as a result, the increment 

formulas themselves were generated through a 

special case of the derived formulas, when the first 

set is the entire previous sample, and the second 

one contains just one new element.  

Also the formula presented in the work [3]  
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which is a result of a simple expansion of the cen-

tral moment formula according to which the bino-

mial theorem was not modified by dividing the en-

tire sample into two sets. As part of the 

experiment, the accuracy and effectiveness of such 

a formula for absolute moments will be examined. 

The results produced in the work [3] are im-

portant since they offer stable (i.e. slightly deviat-

ing in terms of accuracy from the classic method of 

going through the entire sample) methods of updat-

ing the central moments, as well as keep continu-

ing and expand into weighted samples (i.e. those 

samples that have a weight 
iw  associated with 

each value 
ia ). 

In this work [4] a problem was considered of 

finding a stopping rule during the process of text 

field recognition in a video stream which is essen-

tial when developing the systems of document 

recognition with the use of mobile digital cameras 

[5]. The recognition process in a video stream en-

tails combining frame-by-frame recognition results 

using the method described in the work [6]. In the 

work [4] the authors suggest a modified method 

based on the modeling the subsequent result of in-

ter-frame combination [7] taking into account a set 



 

of approximations, and in this simplified combined 

scheme there is a need for an effective update of a 

variable that is similar to the first-order absolute 

central moment in its structure. It was proposed to 

divide the sample into two parts and use balanced 

search trees in order to eliminate the absolute val-

ues in the formula for calculating the absolute cen-

tral moment. Within the framework of this article 

this method will be expanded for a more general 

purpose of a fast update of an absolute central 

moment of any order. 

This scheme is based on the concept of dividing 

an entire sample into two subsets which will make 

it possible to eliminate absolute values. Let 
ia  be 

values from a sample A  and a  an arithmetic 

mean of all the values in this sample, i.e. the mean 

of the reviewed sample. 

Let’s review two subsets of the sample, 

{ | }L a A a a    and { | }R a A a a   . And 

it is obvious that ,A L R L R    . Then, by 

definition: 
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It can be replaced by the following formula:  
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Then, since : 0r R a r     and 

: 0l L a l    , the absolute value bars can be 

eliminated: 

1
( ) ( ) ( ) .k k

k

l L r R

A a l r a
n


 

 
    

 
   (6) 

Then after expanding the brackets using the 

formula of the binomial theorem, we can get 
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where 
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 is a binomial coefficient. 

Let’s note that the inner sum of j  in both double 

sums doesn’t depend on the subset based on which 

we sum up L or R . Moreover, the order of sum-

mation for the finite sums can be altered. It means 
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Then if the summation ( 1) j j

kC   is put outside 

the brackets, we get: 
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Now we can see that the equations 
ja  and 

k ja 
 do not depend on the components or r  or l , 

which means they can be put outside the summa-

tion signs, and as a result we’ll get the final version 

of the formula: 
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As it can be seen from the formula (9), in order 

to get the values of the moment, it is sufficient to 

know the sums of the n-degrees of the elements of 

the subsets L and R. That’s why the data structure 

needed for the implementation of the decision built 

using this formula has to solve the problem of a 

quick component insertion and subsequent genera-

tion of the required sums of the n-degrees of the 

elements of the sets L and R. 

The process of calculating even-order moments 

is the same as calculating non-absolute central 

moments of the same order, however the computa-

tional scheme described further can be applied to 

them as well. 

We propose to use balanced search trees as the 

main data structure in this work. 

A binary search tree is a data structure pre-

sented as a binary tree that meets the following 

requirements: 

1.  Both sub-trees are binary search trees as well. 

2. All the keys of the left subtree nodes of arbi-

trary vertex X are less or equal to the key X. A 

node key is a value stored in this node. Fig. 1 

shows an example of a binary search tree. 



  

 

A balanced binary search tree is a tree which 

height does not exceed (log )O n , where n  is a 

number of nodes. The examples of balanced binary 

trees would be AVL trees [8] and red-black trees [9]. 

Out of all the existing balanced binary trees it is 

worth paying closer attention to a Cartesian tree [10]. 

A binary heap or a pyramid is a binary tree 

with the values of any of its nodes being less than 

the values of its descendants. A cartesian tree [11] 

or a treap is a binary tree with two keys, and it’s 

such a tree that according to one of the keys x it’s a 

binary search tree, and according to the second key 

y, it’s a binary heap. We’ll be referring to x as a 

key and to y as a priority. Fig. 2 demonstrates an 

example of a Cartesian tree. The values in the edg-

es are recorded in the “key, priority” form. 

In order to update the moment using the formu-

la (9) we generated earlier, a vector 

 0 1, , , k

i i ia a a    will be stored in the 

nodes where its each component 
1

m
j
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  is a sum of 

the nth-degrees of all the components in the 

subtree with a root node in a given node (the first 

component in the given data set is equal to the 

number of edges in this subtree). In fact, these 

sums are calculated “recursively”: the sum of each 

node is a sum of all the sums from its child nodes, 

the sum of its child nodes is a sum of its child 

nodes’ child nodes, etc. That’s why when we in-

troduce a new element into a tree, we have to up-

date the sums only for those nodes which subtrees 

are going to be on the way to the edge during the 

insertion process. 

When updating the absolute central moments 

according to the procedure described in the Algo-

rithm description section, it is necessary to get the 

sums of the j-th degrees of the components of the 

subsets L and R and the original sample A for 

{0, , }j k   to calculate the formula (9). And the 

set L is defined as a subset of the original sample 

with the components that are less than the average 

value of a component in the sample A. In order to 

calculate such degrees using a balanced search 

tree, let’s introduce an additional operation 

SUMM (root,value,ACC )L L
. Originally, the 

vector  0,0, ,0  consisting out of k zeroes is 

expressed as ACCL
. 

SUMM (root,value,ACC )L L
 finds all the 

components of the subset L, starting with the root 

node of the tree. It checks the key value of the root 

node, then, if the key value is lesser, we can defi-

nitely state that the entire left subtree (including 

the root) belongs to L. Then the vector stored in 

the node that is the root of this tree is added to the 

vector ACCL
. If the  node key is higher than the 

value which is transferred to the operation, then  

SUMM (root,value,ACC )L L
 is run from the left 

descendant of the tree root node until (i.e. 

root rootl , the new root node transferred to the 

operation is a left descendant) the transferred node 

has the key lesser than value . 

As the next step, we need to determine which 

components of the right subtree belong to L as 

well. In order to do that, after we add the values to 

the data set ACCL
, the operation 

SUMM (root,value,ACC )L L
 is run for the right 

descendant by the earlier determined edge with a 

key lesser than value , and it’s run until the trans-

ferred node doesn’t have any descendants left. 

The complexity of the operation 

SUMM (root,value,ACC )L L
is equal to ( ),O h k  



 

where h is a tree height since this operation will be 

initiated not more than h times, and each time it 

will be performed in k (because we need to stack 

two vectors of the size k). 

Therefore, as a result of the performance of the 

function SUMM (root,value,ACC )L L , we’ll be able 

to find out both the sums of the j-th degrees of the 

subset L and the sums of the j-th degrees of the sub-

set R through the substraction of the sums of the sub-

set L out of the sums of the root node of the tree, i.e.  

ACC ACC ACC ,R L   (10) 

where ACC  is a vector of the j-th degrees of all 

the tree nodes that is stored in the root node. 

The process described in the observation pro-

cess section moves to a k-th stage, and it is vital to 

update the k-th absolute moment. 

1. To add a new element 
1na 
 to the data struc-

ture. 

2. To get the values of the sums of the k-th  

degrees for 
1nL 
 and 

1nR 
. The sums for 

1nL 
 

 are generated by the operation 

1 1
SUMM (root,value,ACC )

n nL L 
 described in sec-

tion 7, the sums for 
1nR 
 can be recovered out of 

the total sums for the sample A stored in the root 

node of the tree and calculated sums of 
1nL 
. 

3. To perform an addition with the help of the 

formula (9).  

In order to solve these problems, a new edge 

with the key 
1na 
 and with the priority 

1ny 
 gener-

ated for it is inserted into a Cartesian tree, and after 

that the sums of the k-th degrees in the affected by 

this insertion edges are updated. 

Then after the operation 

SUMM (root,value,ACC )L L
 is applied to the 

tree, the data set ACCL
 is calculated and then the 

data set ACCR
 is calculated using the formula (10). 

As the next step, the formula (9) is applied with 

the substitution  

ACC , ACC .k j k j j j

R L

r R l L

r l 

 

    (11) 

The updated absolute moment is the value of 

the formula (9) with the substitute values. 

The complexity of this algorithm is 

( log )O k n . There is a block-scheme of the algo-

rithm demonstrated in Fig. 3. It shows the process 

starting from the moment of the process transition 

into the next step and ending with the moment  

update. 



  

The experiment is carried out by performing the 

actions described in the previous solutions section 

(hereinafter referred to as basic) and running the al-

gorithm proposed in the article and described in the 

Algorithm description section (hereinafter referred to 

as an algorithm for treaps). For each cross-section of 

the sample as big as 100000 units (i.e, from the first 

element to the first one, from the first one to the se-

cond one, from the first one to the third one, etc.) the 

time performance for each of the algorithms is meas-

ured 21 times. After that the mid-points for each 

measurement are compared. For each of the 21 run-

throughs the identical numbers taken from the even 

distribution on the interval [0,1]  are generated. The 

time in the tables is presented in milliseconds, if not 

specified otherwise. 

Fig. 4 shows the results of time measurements of 

the 7th degree moment update. The Table 1 exhibits 

the results of time measurements of the 1st, 3rd, 5th 

and 7th degree moment updates. In order to reflect 

the differences, the logarithmic scale of time was 

used. 

Fig. 5 and Table 2 show the results of time meas-

urement for the 7th order moment update with a 

small-sized sample (1-100). 

Fig. 6 and Table 3 represent the results of the 

measurements of the total performance time of the 

algorithms for updating the moments of the 1st to the 

50th order. 

Table 4 demonstrates the treap algorithm devia-

tion compared to the basic algorithm using double-

precision floating-point arithmetic. | |  reflects the 

absolute difference between produced values. 

Experimental time measurements were performed 

on a PC (Intel Core i5 6600 processor, Microsoft 

Visual C++ Compiler v14.25). The original code 

needed for the reproduction of the experiments is 

available here: https://github.com/devourers/absolute-

moment-computation. 

The experimental data demonstrates the treap al-

gorithm superiority over the classic algorithm when it 

comes to performance time, and the largest deviation 

is compared to       (as we can see from Table 4). 

In addition, Figure 6 shows that the treap algo-

rithm performance time is slowly increasing rela-

tive to the moment order which is updating. The 

time of the 9th order moment measurement is 

compared to the time of the 1st order moment 

measurement for the treap algorithm, while the 

basic algorithm time performance for the 8th order 

is 4 times higher than for the 1st order. 

When working with smaller-sized samples (up 

to 80 elements), the classic algorithm performs bet-

ter time-wise due to the fact that the treap algo-

rithm spends additional time for insertion which is 

commensurable for the samples of this size. 

In this work we reviewed the existing results of 

the fast update of the central moments in samples 

and developed an effective method for updating 

the absolute moments in a sample. The method de-

scribed in this article demonstrates the accuracy of 

the       order and a low logarithmic increase 

relative to the number of elements in a sample and 

a low logarithmic increase relative to the moment 

order. 
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Moment Order Number of Elements Treap algorithm time Basic algorithm time 

1 100 0.0003 0.0004 

1000 0.0004 0.0037 

10000 0.0015 0.0366 

50000 0.0022 0.1844 

75000 0.0026 0.2809 

100000 0.0029 0.3717 

3 100 0.0005 0.0006 

1000 0.0005 0.0053 

10000 0.0019 0.0509 

50000 0.0027 0.2704 

75000 0.0034 0.4156 

100000 0.0034 0.5166 

5 100 0.0006 0.0008 

1000 0.0007 0.0068 

10000 0.0024 0.0672 

50000 0.0029 0.3497 

75000 0.0039 0.5674 

100000 0.0041 0.7086 

7 100 0.0007 0.0008 

1000 0.0009 0.0068 

10000 0.0028 0.0693 

50000 0.0036 0.3426 

75000 0.0046 0.5327 

100000 0.0047 0.7254 

 

Number of elements Treap algorithm time Basic algorithm time 

20 0.00043 0.00019 

40 0.00045 0.00024 

60 0.00057 0.00053 

80 0.00063 0.00057 

 



  

 

 

1 2 3, , , nA A A A

Moment order Treap algorithm time Basic algorithm time 

1 10.0366 62.5009 

2 8.0027 87.2331 

3 9.9450 85.6776 

4 10.3507 114.3370 

5 9.9535 113.5313 

6 9.5546 129.8519 

7 10.9674 118.8513 

8 11.2111 244.9523 

9 12.4585 169.0804 

Order Number of elements Basic algorithm | |  
Treap algorithm 

1 1000 241.9220              

241.9220 

3 10000 306.7266              

306.7266 

5 8 0.0372 0 

0.0372 

7 100 0.0935              

0.0935 

9 3 0.0000  1       

0.0000 

9 1 0.0000          

0.0000 
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