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Abstract. Hot rolling batch scheduling problems are NP-hard and have a large number of multi-criteria 
constraints that do not allow to develop a feasible solution. The goal of this research is to generate plans 
with minor technological violations quickly and efficiently and to avoid any serious violations. A stand-
ardized method of transforming the problem with technological constraints into a constrained optimiza-
tion problem and a heuristic threshold algorithm are proposed. The algorithm threshold system is deter-
mined by penalty constants. An equivalence relation is introduced for threshold systems. The threshold 
algorithm generates the same plan for any two equivalent threshold systems. An effective algorithm for 
automatic selection of penalty constants based on real data is also proposed. The model was tested at plate 
rolling shops of the Magnitogorsk Iron and Steel Works with the purpose of scheduling manufacture, 
storage and shipment of flat rolled products. 
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Introduction 

Issues encountered in the process of hot rolling 
scheduling represent very complex optimization 
problems with multiple constraints and a very large 
size of searching space. Technological constraints 
are ranked according to the “severity” level of vio-
lations. In general, a feasible solution for the actual 
daily order portfolio does not exist. Each solution 
involves certain violations of technological con-
straints. At the same time, any technological viola-
tion results in the rejection of commercial products 
in proportion to the “severity” level of violations.   

This study is mainly devoted to the hot rolling 
scheduling problem. This problem is a well-known 
subject in production scheduling. The traditional 
approach to address such problem is to replace the 
constraints by penalty functions with subsequent 
convolution of individual partial criteria of the ini-
tial multi-criteria problem and then to minimize the 
generalized objective criterion. 

Balas (1989) presented the prize collecting 
traveling salesman problem and distinguished two 
tasks: selection slabs (choosing slabs from an in-
ventory (slab yard)) and sequencing (determining a 
sequence for processing the orders) [1]. Kosiba, 
Right, & Cobbs (1992) minimized the generalized 
objective function that reflected penalties for big 
jumps in width, gauge (thickness) and hardness 
[2]. The plan with the lowest penalty results in the 
lowest damage to the rolls and in the higher prod-
uct quality. They described the scheduling problem 
as an asymmetric TSP where the objective was to 
minimize the total penalty. Cowling (1995) de-
scribed a problem of generating a production plan 
for a steel hot rolling mill as a Prize Collection 
Vehicle Routing Problem (PCVRP) where each 
slab had a “prize” associated with rolling it and 
solved it by a heuristic method based on local 
search and Tabu Search (TS) [3]. Lopez, Carter, & 
Gendreau (1998) formulated the scheduling prob-
lem as a mathematical program and proposed a 
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heuristic method based on Tabu Search [4]. Tang, 
Liu, Rong, & Yang (2000) described the schedul-
ing problem as a multiple traveling salesman prob-
lem (MTSP) and solved it using a modified genetic 
algorithm (MGA) [5]. Jia, Yi, Yang, Du, & Zhu 
(2013) described the problem as a multi-objective 
prize collecting vehicle routing problem (PCVRP) 
[6]. In order to avoid the selection of weight coef-
ficients encountered in single objective optimiza-
tion, they presented the multi-objective optimiza-
tion algorithm based on Pareto-dominance.  

Zixuan, Tieke, & Bailin (2016) proposed a 
batch scheduling model that takes the machine ad-
justment and the idle time as optimization objec-
tive. To solve the problem, a hybrid variable 
neighborhood search combined with simulated an-
nealing is designed [7]. Pan, Wang, Zhou, & Chen 
(2017) considered both integrated scheduling prob-
lem of continuous casting (CC) and hot rolling 
process (HR) and proposed a novel Extremal Op-
timization algorithm which combines an exact 
mathematical model on CC stage and a heuristic 
dispatching algorithm on HR stage [8]. Zhang, 
Pan, Gao, Zhang, & Chen (2018) considered a hot 
rolling batch scheduling problem in compact strip 
production by hybrid variable neighborhood search 
algorithm. This problem aims to determine a se-
quence of the sheet strips in a predetermined num-
ber of rolling turns with the objective of minimiz-
ing average thickness change of adjacent sheet 
strips in all rolling turns [9]. Pan, Gao, & Wang 
(2019) proposed an improved hot-rolling schedul-
ing heuristic for a multi-objective hot-rolling 
scheduling problem in the compact strip produc-
tion [10]. Hu, Zheng, Gao, & Pardalos (2019) max-
imized the total length of all scheduled coils is to 
reduce roll wear by a heuristic method combining 
an improved Ant Colony Extended algorithm with 
local search procedures [11]. Hu, He, Song, & 
Feng (2020) minimized the total penalty incurred 
by the differences in width, thickness, and hard-
ness among adjacent slabs, as well as the electrici-
ty cost of the rolling process by a heuristic method 
based on improved genetic algorithm [12].  

Özgür, Uygun, & Hütt (2021) reviewed 90 arti-
cles for scheduling at hot rolling mills from 1989 
to 2020 and classified them according to the details 
of the respective investigation [13]. According to 
this review there are two approaches for solving 

multi-objective optimization problems. The first 
approach is the transformation of the multi-
objective optimization problem to a single-
objective optimization problem, then using algo-
rithms designed for single-objective optimization 
problem. The second approach is to use algorithms 
designed for multi-objective optimization prob-
lems. Among the reviewed articles, 12 used the 
multi-objective solution methods, while 64 used 
the single-objective methods. One common ap-
proach for transforming a multi-objective optimi-
zation problem to a single-objective optimization 
problem in the reviewed articles is the following: 
Every objective is multiplied with a weight and 
these weighted objectives are summed up. The dif-
ficulty of this approach is finding the proper 
weights. In almost all of the reviewed articles, the 
answer to this question is rather left to the readers. 

In this research we used the first approach and 
proposed a new and efficient heuristic algorithm 
for automatic selection of “proper weights” (we 
call them penalty constants or adjusting constants). 
The goal of this research is to generate a new 
schedule from scratch with minor technological 
violations in real time mode and to avoid any seri-
ous violations. This problem has two special as-
pects. Firstly, the decision-maker ranks technolog-
ical constraints according to the “severity” level of 
violations. Secondly, due to the large number of 
constraints, every partial criterion corresponds to 
an entire group of a particular type of constraints 
where penalties are charged in proportion to the 
“severity” level of violations. Thus, when replac-
ing constraints with penalty functions in order to 
distinguish between solutions with a large number 
of “minor” violations and solutions involving “se-
rious” technological violations it is not enough to 
control the distribution of penalty amounts be-
tween individual partial criteria. The contribution 
of each individual element to the penalty amount 
must be controlled.   

An adaptive optimization model and a threshold 
algorithm are proposed to achieve the set goal. We 
assigned technological constraints that were ranked 
in increasing order according to the “severity” lev-
el of technological violations to the penalty vector 
{Fi}, Fi ϵ R

+, i = 1, …, v where v was the number 
of technological constraints. The penalty vector 
{Fi} functions as a system of adjusting constants.   
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The penalty vector {Fi} produces a threshold 
system Bv = {0, B[1], ..., B[2v − 1]} for the thresh-
old algorithm. The threshold system functions as a 
system of natural energy levels and allows to con-
trol the cost of placing each separate element in the 
solution. Then, an equivalence relation is intro-
duced for Bv-sequences. The threshold algorithm 
generates the same plan for any two equivalent Bv-
sequences. In addition, a polynomial algorithm for 
automatic selection of penalty constants based on 
real data is proposed.   

The model was tested at plate rolling shops of 
the Magnitogorsk Iron and Steel Works. The appli-
cation of this model allowed to solve problems 
arising during manufacture: Devyatov, S. 
Fainshtein, Belyavsky, & Torchinsky (2009) [14], 
S. Fainshtein (2010) [15]; storage and shipment of 
flat rolled products: S. Fainshtein, Tutarova, 
Kalitayev, Bukreyev, & Kolesnikov (2007) [16], 
Kaplan, Devyatov, S. Fainshtein, Tutarova, & 
Kalitayev (2009) [17], Devyatov, S. Fainshtein, 
Tutarova, & Kalitayev (2008) [18]. However, the 
need for manual selection of penalty constants still 
represented the main disadvantage of the algo-
rithm. Later, an algorithm for automatic selection 
of penalty constants was proposed by S. Fainshtein 
(2013) [19] but, unfortunately, it required too 
much computation time for dynamic scheduling. 

In this article, the adaptive model and the 
threshold algorithm are modified. A new and effi-
cient heuristic algorithm for automatic selection of 
penalty constants is proposed. A comparison be-
tween the performance of the model and the exist-
ing manual system using real data is also provided. 

1. Problem I with Technological  
Constraints 

The main problem of hot rolling scheduling in-
volves the ordering of the initial n-element array 
according to general and specific technical re-
strictions that function as constraints. We refer to 
such restrictions as technological constraints. One 
of the technological constraints is the limited 
length of an ordered sequence. Therefore, the orig-
inal sequence is divided into m pairwise disjoint 
ordered sets, 1 ≤ m < n.   

In the context of rolling batch scheduling, m re-
fers to the daily number of rolling mill startups. In 
the context of storing finished products, m refers to 

the number of formed piles. The number of piles is 
initially unknown but its maximum value is limited 
since the warehouse has a finite area. Therefore, it 
can be assumed that the initial set A is divided into 
m pairwise disjoint ordered sets some of which can 
happen to be empty.   

Problem I 

An n-element set A is given, positive integer m, 
1 ≤ m < n; k positive integer characteristics, k ≥ 2 
for each a ϵ A. There is also a set of v technological 
constraints, v ≥ k such as the constraints on the se-
quence order of elements, sequence lengths and 
element placement within an unacceptable range. 

Question: Is there any partition of set A into m 
pairwise disjoint ordered sets A1, ..., Am such that 
all the constraints are satisfied? 

Note. Unfortunately, the slab temperature was 
missing from our real data. Therefore, this model 
provides no constraints related to the temperature 
of adjacent slabs. The specific type of constraints 
depends on particular technical instructions. 
Fainshtein (2010) and Devyatov et al. (2009) de-
scribed the types of technological constraints in-
volved with the problem of hot rolling batch 
scheduling in detail; Kaplan et al. (2009), 
Devyatov et al. (2008) and S. Fainshtein et al. 
(2007) described the types of constraints for the 
problem of storing and shipping finished flat rolled 
products. 

2. Substituting Constraints with Cost 
Functions 

We assign technological constraints existing in 
the Problem I, which are ordered based on the “se-
verity” level of technological violations, to the 
penalty vector {Fi}, Fi ϵ R

+, i = 1, …, v arranged in 
increasing order.  

For example, the penalty vector for hot rolling 
mill 2000 of the Magnitogorsk Iron and Steel 
Works had the following structure: F1 – penalty for 
placing an order within an unacceptable range; F2 – 
penalty for exceeding the length of continuously 
rolled orders with the same width (or thickness); F3 

– penalty for exceeding the maximum batch size; 
F4 – penalty for jump in hardness; F5 – penalty for 
jump in thickness; F6 – penalty for jump in width. 

We refer to any splitting of the initial set A into 
m pairwise disjoint ordered sets as the partition U 
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of the Problem I. Then we assign the cost f(U) to 
the partition U of the Problem I: 

݂ሺܷሻ ൌ ∑ ܵܨ,
௩
ୀଵ 	 (1) 

where Si is the number of violations of the i-th 
constraint within the partition U. Thus, for the en-
tire set of partitions U of the Problem I the cost 
function f is defined, which represents the cost of 
penalties for committed violations. The number of 
violations for each constraint {S1(F1,… Fv), …, 
Sv(F1,… Fv)} represents partial criteria. 

We keep the j-th sequence, j = 1, ..., m un-
changed in the partition U and consider two adja-
cent elements ai and ai+1 within this sequence, 
where 1 ≤ i ≤ d(j) – 1 and d(j) is the length of the j-
th sequence. The cost of changeover from ai to ai+1 

Cost(ai, ai+1,  j) is comprised of the amounts of 
penalties charged for the violations of constraints 
on the sequence order and the amount of penalties 
charged separately with ai, and ai+1 for the violation 
of constraints on the sequence length and element 
placement within an unacceptable range. 

Similarly, the value Cost(a, j, r) of placing ele-
ment a in r-th position of j-th sequence of length d, 
r ≤ d(j) + 1 is calculated. When the element a is 
placed in the r-th position of j-th sequence in U, 
the cost of placing the element a in partition U is 

,ሺܽݐݏܥ ܷሻ ൌ ,ሺܽݐݏܥ ݆,  ሻ (2)ݎ

3. Threshold System 

We assign the ordered penalty vector {Fi}, i = 
1, …, v to an ordered sequence Bv = {0, B[1], ..., 
B[2v − 1]} where B[j],  j = 1, ..., 2v – 1 are the sums 
of different {Fi} coordinates that are taken in se-
quence in the quantity of ܥ௩ଵ, … , ௩ܥ ௩௩ whereܥ  rep-
resents a binomial coefficient (the number of these 
sums is 2v – 1 since this is the sum of binomial co-
efficients). We refer to this sequence as a complete 
B-sequence.  

For example, when v = 3, the complete B-
sequence can be represented as B3 = {0, a, b, c, a + 
b, a + c, b + c, a + b + c} for the penalty system 
{F1 = a, F2 = b, F3 = c}. 

We arrange the complete B-sequence in lexico-
graphical order and name it a complete lexico-
graphical B-sequence.  When v = 3, the complete 
lexicographical sequence is B3 = {0, a, b, b + a, c, 
c + a, c + b, c + a + b}.  

It is obvious that {Fi}, Fi ϵ R
+, i =1, …, v, can 

always be chosen in such a way that:  
a) elements of the complete B-sequence are all 

different;  
b) the complete B-sequence in increasing order 

matches with the complete lexicographical B-
sequence.  

We refer to a complete B-sequence as regular 
when it satisfies (a)-(b).  

For example, when v = 3, the penalty vector {a = 
1, b = 1.5, c = 2} forms a non-regular complete B-
sequence since a + b = 2.5 > c = 2. We increase the 
value of c. The penalty vector {1, 1.5, 3} forms the 
following regular B-sequence: {0, a = 1, b = 1.5, a + 
b = 2.5, c = 3, c + a = 4, b + c = 4.5, c + b + a = 5.5}. 

The regular B-sequence will be used as a 
threshold system of the algorithm and function as a 
natural system of energy levels.  

Now we define a discrete function p(t), t = 0, 1, 
... 2v–1, for which 

ሻݐሺ ൌ  ሿ (3)ݐሾܤ

The parameter t has the meaning of iteration in-
dex of the threshold algorithm; the value p(t) 
(threshold value) sets a limit on the cost of placing 
an element in the current iteration. For example, 
when v = 3 and the threshold value p(t) equals a + 
b for the current iteration, an element can be placed 
with violations of the first and/or the second con-
straint whereas more “serious” violations of the 
third constraint are forbidden at this iteration. 

4. Threshold Algorithm 

Initially, all the elements of set A are not 
placed. We create the partition for Problem I (i.e. 
form m ordered sequences) gradually by starting 
with empty sequences. Specific cost formulas for 
placing individual elements and ordered sequences 
depend on particular technological instructions. 

Initialization. We form a vector of positive real 
penalties that corresponds to the constraints of the 
problem and is arranged in a strictly ascending or-
der. We produce a regular B-sequence (algorithm 
threshold system) based on the penalty vector. 

Step 1. We set t = 0, p(t) = B[t] (threshold cost 
of placing an element). We set minimum and max-
imum cut values as MinCut = B[t] and MаxCut = 
B[x0], respectively.  
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Note. The x0 value is selected based on specific 
technological constraints. MаxCut value must be 
lower than the value of any penalty corresponding 
to a serious technological violation.  

Step 2. We rank all the unplaced elements ac-
cording to any of k integer positive characteristics 
of the elements. Ranking characteristic and direc-
tion are selected depending on the content of spe-
cific technological instructions.  

When MinCut ≥ MaxCut, we move on to Step 
4. Otherwise, when the cost Cost(ai, ai+1, j) of 
changeover from ai to ai+1 > MinCut, we cut the se-
quence between elements ai and ai+1, i =1, ..., d − 1 
where d refers to the length of the sequence of un-
placed elements.  

Step 3. We place the columns obtained at Step 
2. We place a column in the j-th sequence, j =1, ..., 
m when the cost of its placement is less than p(t). 
We repeat Step 3 for as long as there are any re-
maining placement costs that are ≤ p(t). If there are 
any unplaced columns remaining we move on to 
Step 4 or, otherwise, Stop. 

Step 4. We split unplaced columns into separate 
elements and place an element in the j-th sequence, 
j =1, ..., m when the cost of its placement is ≤ p(t). 
We repeat Step 4 for as long as there are any re-
maining placement costs that are ≤  p(t). If there 
are any unplaced elements remaining we move on 
to Step 5 or, otherwise, Stop. 

Step 5. t = t + 1. When t ≤ 2v – 1, MinCut = 
B[t]; p(t) = B[t] and we return to Step 2 or, other-
wise, Stop.  

Note 1. The upper threshold p(2v – 1) is equal to 
the sum of penalties for all kinds of technological 
violations, which guarantees the placement of all 
elements. 

Note 2. The penalty vector {Fi} represents a 
vector of adjusting constants. By changing their 
values, the number of violations {S1(F1,…, Fv), …, 
Sv(F1,…, Fv)} for each type of constraints can be 
changed. 

Computational complexity. The computational 
complexity of the algorithm is O(2v n3), v is the 
fixed number of technological constraints and n is 
the number of placed elements.   

5. Constrained Optimization Problem II 

Now we transform the Problem I with con-
straints into the Constrained Optimization Problem 

II, which allows us to generate solutions with a 
certain number of violations. 

We assume that U refers to a partition of the 
Problem I; u(t) refers to the current partition of 
Problem I formed by the threshold algorithm at the 
t-th iteration; f(u), u ϵ U refers to the cost of u cal-
culated according to (1); Cost(a, u(t)) refers to the 
cost of placing a in u(t) calculated according to (2); 
p(t) refers to the threshold cost of placing a in the 
t-th iteration calculated according to (3). 

Constrained Optimization Problem II 
Solve the problem to minimize f(u), u ϵ U, sub-

ject to the constraints Cost(a, u( t)) ≤ p(t) for any a 
ϵ A, t = 0, 1, ..., 2v – 1 where v is the number of 
technological constraints. 

Thus, using the algorithm thresholds we control 
the number of possible violations for each placed 
element. 

6. Automatic Selection  
of Adjusting Constants  
of the Threshold Algorithm 

We denote subset Rv with positive coordinates 
as D. We assign each point included in D to the 
penalty vector {Fi}, Fi ϵ R

+, i = 1, …, v arranged in 
non-decreasing order and to the complete B-
sequence Bv. 

Definition 1. Two complete B-sequences X and 
Y are referred to as isomorphic X ~ Y when the fol-
lowing takes place for any k indices 1 ≤ i(1) < ...< 
i(k) < n and m indices 1 ≤ j(1) < ...< j(m) < n:  

Xi(1) + ... + Xi(k) < (or >, or =) Xj(1) + ... + Xj(m) 
  

Yi(1) + ... + Yi(k) < (or >, or =) Yj(1) + ... + Yj(m). 
Definition 2. When any two points taken from 

D form isomorphic sequences, they are referred to 
as equivalent.  

The relationship defined in this way provides a 
partition of D into equivalence classes. It can be easi-
ly observed that the following statements are true: 

Statement 1. The number of equivalence classes 
is finite. 

Statement 2. D is a disjoint union of convex 
equivalence classes (classes are described as a fi-
nite system of linear inequalities). 

Statement 3. For any two equivalent sequences 
the Threshold algorithm generates the same plan 
(violations of constraints allowed at the current itera-
tion of the algorithm depend only on the sequence 
order of B[i], i =1, ..., 2v–1 and not on their values). 
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It is worth reminding that in regular B-
sequences all elements are different and the as-
cending order matches with lexicographic order. 
To generate new plans without changing the order 
of the penalty vector components, lexicographic 
order of the B-sequence elements must be inverted. 
The given ranking of criteria allows to apply the 
idea of the successive concession method devel-
oped by Wentzel (1983) [20]. Our goal is to reduce 
the number of violations for the i-th partial criteri-
on Si  without increasing the number of violations 
for criteria with greater importance {Si+1, …, Sv}.  

For example, when v = 4 for penalty vector {a, b, 
c, d}, c > a + b in a regular B-sequence. This means 
that the Threshold algorithm first places elements 
with technological violation of the first and/or the 
second type and only then it places the elements with 
violation of the third type. When we want to reduce 
the number of violations of the fourth type, there is 
no point to increase the penalty value d since it is the 
highest one already. By decreasing c to the value b ≤ 
c ≤ a + b we change the order of element placement 
and obtain a new plan with more violations of the 
third type but less violations of the fourth type. Cer-
tainly, this is not always possible.  

Thus, we obtain a heuristic algorithm for auto-
matic selection of values for a single adjusting 
constant. When the number of violations Si (F1,… 
Fv) for the i-th partial criterion is too high in the 
resulting plan, the value of the previous penalty  
Fi-1 should be shifted from the initial value of 
ିଵܨ  ∑ ܨ

ିଶ
ୀଵ  to the value of ܨିଶ ൏ ିଵܨ ൏ ଵܨ 

,ଶܨ ݅  3. Then the plan with minimum Si value 
should be chosen from the resulting plans provided 
that the values of criteria with greater importance 
{Si+1, …, Sv} have not decreased.   

Automatic selection of a single adjusting con-
stant value takes no longer than 2v-1 – v runs of the 
threshold algorithm where v is the number of tech-
nological constraints. During dynamic scheduling 
the Fi-1 values can be changed incrementally to re-
duce the number of runs. 

7. Practical Application of the Model 

We consider one of the practical applications of 
the proposed model, which is the hot rolling batch 
scheduling applied at the hot rolling mill 2000 of 
the Magnitogorsk Iron and Steel Works [14]-[15]. 
Informally, this problem can be stated in the  

following way. The maximum number of 7 ordered 
sequences (batches) – a daily working plan of the 
mill – must be generated from the order portfolio 
for the current day (about 250-300 slabs). It is 
worth noting that the slabs have already been se-
lected from an inventory and the daily order port-
folio has already been generated. 

Every order has a certain set of attributes such 
as width, gauge (thickness), rolled strip length, 
rolling group (hardness), application and so on. 
The most important constraints include change in 
width, gauge (thickness) and hardness (rolling 
group). There are six rolling groups and the al-
lowed transitions between them are described in 
operating procedures. For example, only groups 5 
or 6 are allowed to be rolled after groups 1 and 2. 
Other constraints such as the total rolling length, 
the length of continuously rolled orders with the 
same width (thickness) and placing an order within 
an unacceptable range also affect product quality.  

The production is scheduled by a highly qualified 
operator. The analysis of daily plans prepared by the 
operator showed that the real plans always included a 
certain number of violations. We can say that the op-
erator is guided by the following heuristic rule when 
scheduling the rolling sequence: “rolling from wide 
to narrow and from thin to thick”. Also, there are lim-
its on kilometric ranges for orders included in the 
production batch, depending on their parameters or 
application. In addition, there are limits on the length 
of continuously rolled slabs with the same attributes 
where orders with the same width or thickness cannot 
be rolled for too long. 

We had plans prepared by the operator for a daily 
order portfolio (7 production batches) at our disposal. 
We preliminarily removed the starting sections (the 
warming-up section in which the slabs are arranged 
from narrow to wide to warm up the rolls) from these 
production batches, then combined all the orders into 
a single sequence, randomly shuffled them and ran 
the Threshold algorithm 8 times (with different set-
tings). The algorithm execution during each of the 8 
runs took about one second.  

The analysis of the plans (Tables 1 and 2) 
showed that the application of the software  
allowed to decrease the number of most serious 
technological violations (0 vs. 3), decrease the total 
number of all violations and increase the produc-
tion batch length without rolling turns 
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Table 1. Plan comparison based on the number of violations 

Number of violations Operator Software 

Width 3 0 

Thickness 16 17 

Rolling group 17 8 

Total: 36 25 

Table 2. Distribution of production batch lengths 

Production 
batch 

1 2 3 4 5 6 7 

Operator 
(km) 

46 96 95 96 101 96 105

Software 
(km) 

168 150 112 70 123 5 6 

 
It is also interesting to compare the plans gen-

erated by the operator and the algorithm on a daily 
order portfolio provided that the number of the 
production batch where a slab must be rolled is 
known for each order. This process is called “hot 
charging” [21]: if a slab can be sent to the hot roll-
ing mill without going to the slab yard, a lot of 
heating energy could be saved. We shall consider 
the example below. The penalty constants used by 
the algorithm are given in Table 3. The highest 
penalties (200 and 80) are imposed for violations 
associated with width. 

Analysis of the number of violations committed 
by the operator and the software is shown  
in Table 4. The software managed to significantly 
decrease the number of violations related to width 
(1 vs 5) due to a certain increase in the number of 
violations related to thickness and rolling group. 

Analysis of the production batches showed that 
the first three batches were the same in both plans but 
there were some differences in the fourth installation 
batch. Starting sections of the fourth production batch 
generated by the operator and the software are pre-
sented in Tables 5 and 6. The "Changeover cost" col-
umn in the i-th row shows the cost of changeover 
from (i-1)-th order to i-th one. This cost is composed 
of penalties charged for the following three main 
types of violations: width, thickness and rolling 
group. The operator committed the following three 
width-related violations: during changeovers from 
item 3 to item 4, item 4 to item 5 and item 5 to item 6 
as well as one rolling group change during the 
changeover from item 4 to item 5. 

Table 3. Penalty constants of the algorithm 

Type of violation Penalty 

From narrow to wide 200 

From wide to narrow at intervals of 
> 250 mm 

80 

Jump in rolling group  40 

From thick to thin 25 

The length of continuously rolled 
slabs with the same width or 
thickness is too high 

20 

Unacceptable range 10 

 

Table 4. Plan comparison based on the number of violations 

Number of violations Operator Software 

Width (any) 5 1 

Jump in rolling group  7 8 

Jump in thickness  0 2 

Unacceptable Range 0 0 

Total: 12 11 

 

Table 5. Starting section of the fourth production batch (Operator) 

Item Order
Thickness

(mm) 
Width 
(mm) 

Rolling 
group 

Changeover
cost 

1 71 6.00 1040 2 0 

2 72 7.00 1040 2 0 

3 73 6.00 1040 2 0 

4 74 4.70 1060 2 200 

5 75 3.00 1248 1 225 

6 76 2.50 1311 1 200 

7 77 2.00 1310 1 0 

8 78 2.00 1310 1 0 

9 79 2.60 1243 1 0 

10 80 2.60 1243 1 0 

11 81 2.60 1233 1 0 

12 82 2.00 1213 1 0 

13 83 1.80 1060 1 0 

14 84 1.80 1060 1 0 

15 85 1.50 1000 1 0 

Total     625 
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Table 6. Starting section of the fourth production batch (Software) 

Item Order 
Thickness 

(mm) 
Width 
(mm) 

Rolling 
group 

Changeover 
cost 

1 76 2.50 1311 1 0 

2 77 2.00 1310 1 0 

3 78 2.00 1310 1 0 

4 75 3.00 1248 1 200 

5 79 2.60 1243 1 225 

6 80 2.60 1243 1 200 

7 81 2.60 1233 1 0 

8 82 2.00 1213 1 0 

9 83 1.80 1060 1 0 

10 84 1.80 1060 1 0 

11 74 4.70 1060 2 25 

12 71 6.00 1040 2 0 

13 72 1.50 1040 2 0 

14 73 1.50 1040 2 0 

15 85 1.50 1000 1 25 

Total     50 

 
The software generated the following two roll-

ing group changes: during changeovers from item 
11 to item 12 and item 14 to item 15. The total 
penalty cost is 625 and 50 for the first and the sec-
ond plans, respectively. 

Conclusion 

An adaptive optimization model and an effec-
tive threshold algorithm for addressing problems 
involved with hot rolling scheduling are created. 
The proposed model has the following advantages: 

• a standardized method of transforming the 
problem with technological constraints into a con-
strained optimization problem allows to generate 
plans with minor technological violations; 

• controlling the cost of placing each separate 
element in the solution allows to avoid serious 
technological violations; 

• a flexible system of penalty constants allows 
to adapt the algorithm to real data;  

• automatic selection of penalty constants 
based on real data; 

• generating solutions in real time mode.  
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