
 

Abstract. The application of physics-informed radial basis function networks for solving boundary value 

problems describing piecewise homogeneous media is considered. A meshless algorithm for solving 

boundary value problems for piecewise homogeneous media is proposed, using the solution of individual 

problems for each region with different properties of the medium, and the conditions for the conjugation 

of media. To solve the coefficient inverse problem of determining the properties of a piecewise inhomo-

geneous medium, a parametric optimization algorithm is proposed that uses separate networks to approx-

imate the properties of the medium and solve the direct problem. To train networks, a fast algorithm de-

veloped by the authors based on the Levenberg – Marquardt method was applied. The work of the 

proposed algorithms is demonstrated on model problems. 
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The solving of boundary value problems for 

partial differential equations on neural networks 

has been known for a long time (see, for example, 

[1–2]). This approach is based on a number of the-

orems, first of all, on the universal approximation 

theorem (the Cybenko G. theorem) [3]. The theo-

rem states that a feedforward network with one 

hidden layer, containing neurons with sigmoidal 

activation functions in the hidden layer and a linear 

activation function in the output layer, allows an 

arbitrary continuous function to be approximated 

with any accuracy. It only requires a sufficiently 

large number of neurons in the hidden layer. In [4], 

the theorem was generalized to arbitrary activation 

functions in a hidden layer. However, a network 

with one hidden layer requires a very large number 

of hidden layer neurons, which makes the network 

almost impossible to train. The problem is solved 

by using feedforward fully connected neural net-

works containing a large number of layers of rela-

tively small width. In [5], it was proved that a net-

work with two hidden layers is a universal 

approximator. Finally, it was proved in [6] that 

deep architecture networks with the ReLU activa-

tion function popular in such networks are univer-

sal approximators. All of the above theorems are 

not constructive, that is, they do not allow deter-

mining the structure of the network and choosing a 

learning algorithm. 

At present, interest in solving direct and inverse 

boundary value problems on deep neural networks 

has sharply increased [7]. Networks for solving 



  

boundary value problems are called "Physics-

informed neural networks", which emphasizes that 

such networks are trained not by examples, but by 

minimizing residuals in sets of test points inside and 

at the boundary of the solution domain. The populari-

ty of physics-informed neural networks for solving 

boundary value problems is largely due to the use of 

automatic differentiation [8], implemented in popular 

deep learning libraries, primarily TensorFlow. But 

deep learning libraries are focused mainly on the im-

plementation of convolutional neural networks and 

do not support second-order gradient learning algo-

rithms. The use of first-order gradient algorithms 

does not allow obtaining a high accuracy of the solu-

tion, while the networks are prone to overfitting [9]. 

To solve boundary value problems, we use neural 

networks of a different architecture - radial basis 

function networks (RBFNN) [10]. This paper pre-

sents the results of solving direct and inverse bounda-

ry value problems on RBFNN for piecewise homo-

geneous media. 

Radial basis functions (RBF) [11] are functions 

of the distance between some point in space and a 

parameter of the function, called the center of the 

function. In this paper, consider the Gaussian  
2
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where c  is the vector of coordinates of the center of the 

function, a   is the shape parameter (width). 

In this paper, the Gauss function is used, since 

when solving boundary value problems described 

by second-order partial differential equations, it is 

necessary to calculate the second derivatives of 

RBF. The domain of the Gaussian function is 

comparable to the domain of its derivatives, which 

simplifies calculations. 

RBFs are used in projection methods for solv-

ing boundary value problems [12–13]. Traditional-

ly, we consider the stationary boundary value prob-

lem in the operator form  

 ( ) , Ω,Lu f x x x    ( ) ,   Ω,Bu p x x x  (1) 

where u  is the solution to the problem; L  — line-

ar differential operator; B  — linear operator of 

boundary conditions; Ω  — solution area; Ω  — 

the border of the area; f and p are known functions. 

In projection methods, the solution is represented 

as a weighted sum of basis functions 
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where j  is RBF; jw  — weight, RBFn  — number 

of RBFs. 

The RBF parameters are selected a priori, and 

the weights are calculated as a solution to a system 

of linear algebraic equations obtained from the 

equality of residuals to zero at test points inside 

and on the boundary of the solution domain. When 

solving non-stationary problems, time can be con-

sidered as one of the coordinates, which can signif-

icantly complicate the task. It is easier to replace 

the time derivative with a finite difference and 

solve the stationary problem at each time step. The 

disadvantage of projection methods using RBF is 

the informal choice of RBF parameters. RBFNN 

[10] are free from this drawback, in the process of 

training which it is possible to adjust both the line-

ar parameters of the network - weights, and the 

RBF parameters included in the basis functions 

nonlinearly. 

The RBFNN structure is shown in Fig. 1. The 

network output is described by expression (2). 

When solving problem (1) in the process of train-

ing the network, the loss function is minimized 
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( ; , ) ( )j RBF j jr Bu p x w p x , j x  is the resid-

ual at the sample points on the boundary of the so-

lution area, N and K  is the number of test points 

in the solution area and on the boundary of the so-

lution area, respectively. 

As a result of network training, vectors of 

weights and RBF parameters are found. 

In the well-known works [2, 14–15], the first-

order gradient method - the gradient descent algo-

rithm - is used for RBFNN training. This algorithm 

does not provide a high solution accuracy. In [16], 

a fast RBFNN learning algorithm based on the 

trust region method was developed. The method is 

complex, since it requires solving a conditional op-

timization problem at each step of training the 

network. In [17], an RBFNN learning algorithm 



 

based on the Levenberg – Marquardt optimization 

method is proposed. It is known [18] that the 

Levenberg – Marquardt method is equivalent to the 

confidence region method, but does not require 

solving constrained optimization problems. 

Let us consider the algorithm of the Levenberg 

– Marquardt method using the example of solving 

the two-dimensional stationary problem (1). 

RBFNN parameters can be represented as a vector 

 
T

1 1, , ,Θ w c c a , (4) 

where 
1 1, , ,w c c a  are the vectors of the weights, 

the first and second coordinates of the centers, and 

the RBF network width, respectively. 

At the kth iteration of RBFNN training, the vec-

tor of parameters (4) is corrected by the formula
     1k k k
 θ θ θ , in which the vector of correc-

tion of parameters  k
θ  is calculated as a result of 

solving the system of linear algebraic equations 
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where 1kJ  is the Jacobi matrix calculated from the 

values of the network parameters in the  1k  th 

iteration, E is the unit matrix, k  is the regulariza-

tion parameter, 
T

1 2 N Kr r r 
   r  is the vector of 

residuals at sample points in the solution domain 

and at the boundary of the solution domain. 

We represent the Jacobi matrix in block form 
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ces of residual derivatives with respect to the net-

work parameters. For example, the matrix 
wJ  has 

the form 
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The elements of the Jacobi matrix are easy to 

calculate analytically [17]. The regularization pa-

rameter  should decrease as the network learns, 

for example, linearly [18]. If the loss function de-

creases, then the current value of the regularization 

parameter is divided by the coefficient 1  . If the 

loss function increases, then the current value of 

the regularization parameter is multiplied by  . 

The   coefficient must be selected. 

Many diffusion problems, for example, prob-

lems of modeling oil fields [19], thermal conduc-

tivity [20], and modeling groundwater [21] require 

consideration of piecewise homogeneous medium. 

The presence of a piecewise homogeneous medium 

means that the properties of the medium are con-

stant in some regions, and the conjugation condi-

tions are satisfied at the boundaries of the media. 

As a rule, the conditions of ideal conjugation 

should be fulfilled at the interface between the me-

 

 



  

dia [22]: equality of solutions and fluxes at the in-

terface between the media. Equality of flows 

means a discontinuity of the derivative of the solu-

tion at the interface between the media. 

When solving problems describing processes in 

piecewise homogeneous media, two restrictions 

arise on RBFNN: the impossibility of simulating 

the discontinuity of the derivative of the solution at 

the interfaces between the media and the nonlocal 

nature of the influence of RBF - RBF with an un-

bounded domain of definition, for example, Gauss-

ian, affect the solution in all domains. The first 

limitation is removed by using a finite difference 

approximation [23]. But with this approach, an ad-

ditional error of the difference approximation is 

introduced and the advantages of the gridless 

method are lost. The second limitation can be 

overcome by applying in each region RBFs with 

compactly supported functions, when RBFs of 

each region affect the solution only in its own re-

gion, and by introducing additional conjugation 

conditions at the boundaries of regions [24]. 

In [25], an approach to solving boundary value 

problems for piecewise homogeneous media is 

proposed, in which separate problems are solved 

for each domain with different properties of the 

medium, related by the conjugation conditions, 

which makes it possible to apply RBF with un-

bounded domains of definition. For RBFNN train-

ing, the fast algorithm of the Levenberg-Marquardt 

method [17] is used. 

Let us consider the algorithm for solving the 

problem using the example of a problem for two 

subdomains described by the equation 
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( , ) ( , ), ( , )u x y p x y x y  , (7) 

where   is the computational area;   — the 

boundary of the computational domain; 
i  —  a 

function that describes the properties of the envi-

ronment. 

The conjugation conditions must be met at the 

interface between the media 

1 2S S
u u , 1 2

1 2

S S

du du

dx dx
   . (8) 

Two problems (6)–(7) are solved for regions 1 

and 2, taking into account the conjugation conditions 

(8). The loss function for problem 1 has the form (the 

function for problem 2 has a similar form) 
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where 1L  is the differential operator, 1B  is the op-

erator of boundary conditions, 1N  is the number of 

sample points inside area 1, 1K  is the number of 

sample points, on the boundary of area 1, T  is the 

number of sample points at the interface between 

the media, 
1 2 3 4, , ,     are penalty factors 

1x i
,  

1x j , and xSj  are the coordinates of the test points 

inside, on the border of the region and at the inter-

face of the media. 

The solution process is iterative and uses two 

RBFNNs. At each iteration using the first RBFNN, 

one step is taken to minimize the loss function (9) 

for region 1, using the solution at the interface be-

tween the media and the flow  2 2 Sju x  x  of 

region 2 from the previous iteration. Then the step 

of training the second network for region 2 is per-

formed in a similar way, using the obtained values 

of the solution at the interface between the media 

and the flow for region 1. For RBFNN training, it 

is proposed to use the Levenberg – Marquardt al-

gorithm. Jacobi matrices differ from the one con-

sidered in Section 1 by the presence of derivatives 

with respect to network parameters from residuals 

with respect to conjugation conditions. Analytical 

expressions are obtained to calculate the elements 

of Jacobi matrices. The iterations of training the 

networks continue until the loss functions for re-

gions 1 and 2 become small. 

Let us consider the coefficient inverse problem 

of determining the unknown properties of a piece-

wise homogeneous medium from the results of 



 

measuring the solution at several points. Coeffi-

cient inverse problems arise when determining the 

properties of materials, detecting anomalies in a 

certain environment, detecting objects, and many 

others. Solving such problems is very difficult. The 

problem was not solved in the gridless setting. In 

[26], using a neural network, the unknown diffu-

sion coefficient was determined by the finite dif-

ference method. For a piecewise homogeneous 

medium, the problem was not solved. 

To solve the problem in a meshless setting, we 

assume that the properties of the medium are ap-

proximately described by a continuous differentia-

ble function. The problem is described by the 

equation 

     
1 1 2 2

, Ω
u u

k k f
x x x x
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with boundary conditions 

( ) ( ),   ΩBu p x x x , (11) 

where  k x  is a continuous unknown function  

describing the medium, x  is the coordinate vector, 

  is the solution area,   is the boundary of the 

area. 

It is necessary to find the solution u  and the 

function  k x  by the solution, approximately 

known at some set of points 

 ( ) ,   , Ω Ωu Z Z   z z z .  (12) 

To solve the inverse problem, we will apply an 

approach known as parametric optimization [27]. 

For this, the unknown function  k x  is approxi-

mated by RBFNN 
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where 
kM  is the number of radial basis functions, 

k

mw , k

mp   are the weights and parameters of radial 

basis functions, k

m  is RBF. 

The solution u  of problem (10)(11), in which 

the function  k x  is approximated by the network 

(13), we approximate the second RBFNN 
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Let us construct the loss function in the form, tak-

ing into account the fulfillment of conditions (12) 
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where   ,i iLu kx x  is the differential operator of 

Eq. (10), ( )jBu x  is the operator of boundary con-

ditions (11), N  is the number of sample points in-

side the region, K  is the number of sample points 

on the boundary of the region, S  is the number of 

points of additional conditions, ,B D   are penalty 

factors, ix , jx  and mx — coordinates of test 

points inside, on the border of the area and coordi-

nates of points of additional conditions. 

As a regularizer of an ill-posed inverse prob-

lem, we use the iterative regularization method 

(Morozov's condition) [28]: the training of the 

network continues until 
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where   is the absolute measurement error of the 

solution at the points of conditions (12). 

Let us take boundary conditions of the first kind 

( ) ( ),   Ωu p x x x , and use the Gaussian func-

tion as radial basis functions. Then the differential 

operator of equation (10) takes the form 
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To train the network, the algorithm of the 

LevenbergMarquardt method [17] was used. To 

apply this algorithm, a single vector of parameters 

of the RBFu  and RBFk  networks is formed 
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where the superscript means the network belongs 

to RBFu  or  RBFk , 
u

RBFn  and 
k

RBFn  are the number of 

basis functions (neurons) in the networks. 

Residuals at sample points: 

1, 2, , , 1, , , 1, ,N N N K N K N K S     

 are numbered sequentially, and the Jacobi matrix 

is represented in block form 
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   w wJ J J J J J J J J . (15) 

The elements of the Jacobi matrix (15) were 

calculated analytically. For example, the elements 

of the u

w
J  matrix for internal sample points are cal-

culated by the formula 

 
   

 

 
   

 

   
 

 

1 1

1 2

2 2

3 2

22

5 4

2
,

1, 2, , ,

u u

p i i pi
iu

u
p

p

u u

p i i p

i
u

p

u u

i p pu

i p i
u

p

x cr
S

w a

x c
S

a

a
S

a

i N

  
  



  
  

 
  



x
x

x
x

x c
x x

 

where  u

p i x  is the value of the p-th basic function 

of the network RBFu  at sample point ix , u

pc  and u

pa  

are the parameters of the p-th basic function of the 

network ccc at the sample point ix .For boundary 

sample points, calculations are performed using the 

formula  , 1, 2, ,
j u

p ju

p

r
j K
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
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
x . For the 

points of the additional condition, the elements of 
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The elements of the 
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sample points have the form 
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For boundary sample points, the elements of the 

1c
J  matrix are written in the form 
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For the points of the additional condition, the 

elements of the 
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J matrix have the form 
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Other elements of the Jacobi matrix are calcu-

lated similarly. 

The direct problem for a piecewise homogeneous 

medium (6)(8) was solved for the region 1 1,   

divided at 0.5x   by a vertical line into two subdo-

mains with constant values of the function describing 

the medium 1 2k   and 2 5k  . The Gaussian func-

tion is used as RBF. For each area, the number of 

RBFs is 64. The number of internal sample points for 

each area is N = 80. The number of boundary sam-

pling points for the two regions is K = 80. 



 

The number of sample points on the media in-

terface is 20. RBFNN was initialized with zero 

weights and constant widths of 0.2. The network 

was trained by the developed algorithm of the 

Levenberg – Marquardt method to the root mean 

square of the loss function equal to 1210 . Regular-

ization parameters kk are selected for each region: 

1 220, 40    . The specified value of the loss 

function was reached in 1500 iterations. The result 

of the solution is shown in Fig. 2. 

The centers, width, and weights before and after 

training the network for the two regions are shown in 

Fig. 3. The fill intensity of the circles shows the val-

ues of the weights. The radius of the circles is propor-

tional to the width of the RBF. A significant change 

in RBF parameters after network training shows the 

importance of adjusting RBF parameters. 

The inverse problem (10)(11) was solved under 

the same conditions as the direct problem. In the do-

main of solving the direct problem, 40 points located 

on the grid were taken, the solution in which was tak-

en as the values at the points of additional conditions 

(12). Moreover, the points were not located on the 

interface line of the media. RBFNN, modeling the 

environment function and the solution of the direct 

problem, each contained 64 RBF, the number of test 

points inside the solution area, on the boundary and 

additional conditions, respectively, is equal to 

80N K  , 40.S   Penalty coefficients are equal 

10.B D     

The network parameters were the same as for 

solving the direct problem. Both networks were 

trained by the Levenberg-Marquardt algorithm up 

to the mean square value of the loss function (14), 

taking into account the Morozov condition equal to 
310 . Although the properties of the medium are 

approximated by a continuous function, from the 

results of solving the inverse problem it is possible 

to approximately determine the position of the 

boundary of the media (Fig. 4) and to quite accu-

rately reconstruct the values of the medium func-

tion in different regions. 

 



  

As shown in Fig. 5, the solution to the direct prob-

lem coincides with the solution obtained earlier. 

For the first time, a meshless algorithm for 

solving inverse coefficient boundary value prob-

lems for piecewise homogeneous media on radial 

basis functions networks is developed. The algo-

rithm for solving the inverse problem is based on 

the approximation of the properties of the envi-

ronment by a radial basis functions networks and 

joint training of networks that approximate the so-

lution of the direct problem and the properties of 

the environment. To train radial basis functions 

networks, we used an algorithm previously devel-

oped by the authors and based on the Levenberg-

Marquardt method. Analytical expressions are ob-

tained for elements of Jacobi matrices used for 

training networks. Additional conditions for solv-

ing the inverse problem are obtained as a result of 

solving the direct problem using the algorithm pre-

viously proposed by the authors on radial basis 

functions network. Despite the approximation of a 

piecewise homogeneous medium by a smooth 

function, the proposed algorithm made it possible 

to approximately identify the properties of the me-

dium and restore the solution of the direct problem 

with high accuracy. 

In the future, experiments with various 

inhomogeneities of the medium are planned. It is 

planned to improve the algorithm for solving the 

inverse problem in order to determine the position 

of the the border of areas. To reduce preparatory 

work and simplify programming, it is proposed to 

use machine learning libraries, in particular, 

TensorFlow, which implement automatic differen-

tiation. This will require the development of cus-

tom library extensions. 
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