
 

Abstract. The paper is dedicated to the development of classification method for objects, which have 

their features represented as fuzzy sets. The method is based on computation of the compatibility of the 

composite premise, which defines an individual class, and the fuzzy features of the objects. The compati-

bility is represented by means of fuzzy truth values. The results of defuzzification of these values are used 

to compare the compatibilities and thus to determine the class of the object. 
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Many of proposed classification methods are 

based on soft computing techniques, such as artificial 

neural networks [1] or fuzzy systems [2‒4]. These 

methods assume that the features of the classified ob-

jects take numerical values only. This paper proposes 

a classification method, which is capable of classify-

ing objects, the features of which are represented as 

terms of linguistic variables [5]. An important ad-

vantage of this method is the inference within a sin-

gle space of truthfulness, which reduces the computa-

tional complexity of the inference down to 

polynomial. This is particularly important in prob-

lems such as gene classification based on data min-

ing, which produce fuzzy rules with hundreds of 

premises [6]. 

The article consists of three sections. The problem 

of classification is stated in the first section. The se-

cond section defines the fuzzy truth value of the 

compound premise of rule, which describes a class, 

with respect to an object, defined by a set of terms of 

linguistic variables. The third section introduces the 

principle of determination of the object’s class. 

Let [x1, x2, …, xn] denote the vector of features of 

an object q'. Each of these features is assigned a lin-

guistic variable, terms of which are the values of the 

feature. Then the object q' can be defined in follow-

ing way: 

1 1 2 2 is  and  is  and  and  is ,n nx A x A x A      (1) 

where , 1,i iX nA i   are the fuzzy sets, which 

formalize the terms of the linguistic variables. 

Let us denote the set of classes as 

1 2 }, , ..{ . , n    . The classes are defined by 

means of a fuzzy rule base of the following form: 
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where N is the number of fuzzy rules, 

1,, , 1,k
ji i kA X j P i n    are fuzzy sets, which 

formalize the terms of the linguistic variables used to 

define the features of the object q'. 

The classification problem consists in assigning 

the object q' represented in the form (1), to one of the 

predefined classes in Ω, i.e. mapping 
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Let us define the FTV of a fuzzy set A with re-

spect to another fuzzy set A', which have membership 

functions ( )A x  and ( )A x  correspondingly. Let us 

consider the truth-functional modification principle 

[4], which can be written in the form 

( , )( ) ( ( )),A CP A A Ax x     (3) 

where ( , )( )CP A A   is the membership function of 

the FTV. ( , )CP A A  also represents the compatibility 

of a fuzzy set A with respect to fuzzy set A', where A' 

is considered true [6]: 

( , )
( )

( ) sup { ( .)}
A

x X

CP A A A
x v

v x



 
 
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Let us use variable v instead of x in (3), denoting 

( )Av x . Then we shall obtain the following: 

( , ) ( , )( ) ( ( )) ( ).A CP A A A CP A Ax x v       (4) 

So the FTV ( , )CP A A  precisely describes the 

relative position of the fuzzy set A with respect to the 

fuzzy set A'. An important advantage of using the 

FTV is the containment of fuzzy relation between the 

fact A' and the premise A. A simpler approach is the 

use of the possibility measure [6]: 

( ) sup ( ) ( )),( TA A A
x X

A x x 


     

which reduces the information about the relation be-

tween the fact and the premise down to a scalar val-

ue. If the membership functions ( )A x  and ( )A x  

are Gaussian curves, then the membership function of 

the FTV can be determined analytically as described 

in [5]. If ( )A x  and ( )A x  are piecewise-linear, 

then FTV can be computed according to an efficient 

algorithm proposed in [7]. 

Let us determine the FTV of j-th premise of rule 

(2) with respect to the object q' definition, represent-

ed in as (1). Denote j-th premise of rule R
k
 as 

1 2 ,k k k
j j jnA A A  k

jA  

wherein 
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where 1 2 nX X X   Xx  and i ix X . Let 

us also represent the definition of the object q' as 

1 2 ,nA A A     A  

wherein 

1
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where T1 and T2 are arbitrary t-norms. 

It is required to prove that 
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where 1T  is an extended by means of the extension 

principle n-ary t-norm [8], which is defined as 
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According to the definition of fuzzy truth value 

[5] 
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which has an exponential computational complexity 

21O( )nX X X  , according to (5) and (6) can 

be written as: 
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Let us use variable vi instead of xi according to 

(4), i.e. 

( , )
an) d .( ( ) ( )k k
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Thus we shall obtain (8) and (7) correspondingly. 



 

Expression (7) at the level of membership func-

tions can be written as 
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For example, binary extended t-norm is defined 

as: 
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The latter expression has the order of computa-

tional complexity equal O(|v|
2
). Thus, the computa-

tional complexity of the expression (10) has the order 

of O(n|v|
2
). Therefore, when the conditions (5) and 

(6) are met, exponential complexity of computing 

( , )
( )

CP
v


 k

jA A
 (9) is reduced down to polynomial. 

When ( , )CP k
jA A  is computed for each premise 

1, kj P , rule R
k
 can be represented as 
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The antecedent of the rule (11) represents an ex-

pression, which consists of fuzzy truth values 

( , )CP k
jA A , 1, kj P , defined on different unit in-

tervals and united together via linguistic joint “or”. 

This joint is formalized as a t-conorm. 

In order to compute FTV of the compound prem-

ise of the rule R
k
 extension principle is also used, ac-

cording to which: 

1,
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kj P
CP CP k N


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jA A A A  

where S  is an extended by the extension principle 

P
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Computational complexity of the expression (12) 

has order of O(P
k
|v|

2
), as well as (10) does. 
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A A
 is the membership function of 

FTV, which represents the compatibility of the prem-

ise of rule (2), which defines a class ωk, with respect 

to the object q', the features of which are represented 

as a set of terms of linguistic variables. This compati-

bility is formally represented as a fuzzy set, defined 

on a unit interval. In order to determine the class of 

the object q' it is proposed to use method the de-

scribed in [9]. According to this method, every fuzzy 

set defined on [0;1] is associated a value 

max

a 0m x

,
1

( ) ( )F D M D d



 


   (13) 

where αmax is the maximum membership degree of a 

fuzzy set D, Dα is α-level set, i.e. a set of the form 

,[0;1| }( ){ ] DD vv v      

M(Dα) – is the cardinality of α-level set, which, in 

case of discrete representation of μD(v) is defined as 

1

1
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M D v v D


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Let us consider the FTV as a linguistic variable: 

, , [0;1], , ,FTV T G M   

where T is a term-set, [0;1] is the domain of defini-

tion, G is a syntactic rule, M is a semantic rule. 

Let the term-set take the following values: 

{ true , false , absolutely true ,

                absolutely false ,

« » « » « »

« » «unknown }.»

T 
 

The semantics of the terms is defined as: 
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If the expression (13) is used to obtain a numeri-

cal assessment of these values of FTV, then, as 

shown in [9], they are following: 

« »)

« »)

« »

.

3( true ;
4

1( false ;
4

( absolutely true 1;

( absolutely false 0.

1( unkn

)

« »)

« »)own
2

F

F

F

F

F











 

Therefore numerical values correlate to the verbal 

values of terms of linguistic variable FTV. Let us use 

this method to determine the class of the object q'. A 

class with the greatest value of the assessment is con-

sidered as the class of q', i.e. 

1,

, where { ( ( , ))},argmax
ks

Nk

y s F CP


  k
A A  

where ( ( , ))
k

F CP
k

A A  denotes the numerical as-

sessment of the compatibility of the description of 

class ωk by the rule R
k
 with respect to the definition of 

the object q'.  

The network structure of the described method, 

consisting of multiple layers, is depicted in Fig. 1. 

The first layer computes the compatibility of each 

fuzzy input of the corresponding premise to the 

fuzzy set, describing the feature of the object q'. 

Second and third layers implement the convolution 

of FTVs for each premise in rule base (2), the re-

sult of which defines the compatibility of j-th 

premise with respect to the object q', represented in 

the form (1). Fourth and fifth layers computethe 

compatibility of the entire premise of rule (2) with 

respect to object q' by means of the extended by 

extension principle P
k
-ary t-conorm. The last layer 

denotes the computation of numerical assessment 

of the fuzzy set ( , )CP k
A A  using the method of 

comparing of fuzzy sets defined on unit interval. 

The article proposes a classification method for 

case if, in contrast to the traditional approach, non-

singleton (NS) fuzzification [10] is applied to the fea-

tures of the objects. NS fuzzification is used in fuzzy 

systems if the measurements of object features are 

inaccurate or uncertain (due to measurement errors, 

degradation of sensors etc.), or when the features are 

estimated by the terms of linguistic variables. NS 

fuzzification models measurements or terms such as 

fuzzy numbers or more general fuzzy sets, thus re-

gardless of the nature of uncertainty they are handled 

within the fuzzy sets theory. 

The use of fuzzy truth value, which preserves 

fuzziness and accurately describes the relative posi-

tion of one fuzzy set with respect to another, has been 

proposed to estimate the compatibility of terms with 

 



 

respect to input values. In contrast to the application 

of the possibility measure, it doesn’t reduce the in-

formation about the relation between the fact and the 

premise to a scalar value. A proof about the reduction 

of the computational complexity of determining the 

FTV between multidimensional membership func-

tions down to polynomial is given in the article. This 

makes it possible to solve such classification prob-

lems for objects with a large number of attributes. A 

known method of comparison of fuzzy sets defined 

on a unit interval is used to determine the class of the 

object. Development of learning algorithms using 

parallel technologies in accordance with the network 

structure is the subject of further research. 
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