
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

62 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022

S�Modeling: an Introduction to Updated Theory

V. D. Ilyin

Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences, Moscow, Russia

Abstract. The review describes the basics of updated theory of symbolic modeling of arbitrary objects in
a human-machine environment (S-modeling). The theory of S-modeling includes languages for a formal-
ized description of an extensible system of S-modeling notions, a description of the core of this system
and classes of basic tasks for constructing and manipulating S-models. The theory of S-modeling is con-
sidered as a methodological platform for the scientifically based development of information technologies
and the human-machine environment of S-modeling and digitalization of various types of activities (S-
environment). S-modeling uses all kinds of symbols (audio, visual, etc.) implementable in the S-
environment. S-models are studied as entities having three interrelated representations in the
S-environment: symbolic, code and signal. The construction of S-models is carried out according to the
rules corresponding to the classes of basic S-modeling tasks. The typing of s-modeled objects is defined.
Refined definitions of classes of basic S-modeling tasks are given.

Keywords: Symbolic Modeling (S-modeling), S-modeling Theory, S-symbol, S-code, S-signal,
S-environment, Basic Tasks of S-modeling.

DOI 10.14357/20718632220406

Introduction

Without effective symbolic modeling of the
studied entities, the development of science,
technology and other types of intellectual activity
is impossible [1–2]. Achieving a goal in the course
of some activity implies a clear idea of the
problems to be solved. When achieving non-trivial
goals (to design a machine, develop information
technology, etc.), the symbolic representation of
the idea in the human-machine environment for
problem solving (S-environment) is the most
productive [3–4].

This approach has a number of proven
advantages. Firstly, by analyzing the symbolic
model of the idea (device scheme, task
specification, etc.), we can check whether the
model corresponds to the idea, and if it does not,
make corrections to the model. Secondly, on a
model recognized as corresponding to the idea, it is

possible to verify the validity of the idea itself.
And if verification is successful, it is possible to
make a decision on the feasibility of implementing
the idea. Otherwise – to engage in a change of
idea. The idea of achieving a goal using symbolic
models is embodied in many technologies for
various types of activities. The most successful
technologies prohibit behavior that does not
comply the rules (attempts of unacceptable
behavior have as much chance of success as
attempts to play poker against a chess program).

A distinctive features of S-objects that exist in
the S-environment (files of books, articles, videos,
electronic maps, computer programs, etc.) are easy
copying without distortion, easy distribution and
storage of copies (in comparison with physical
models, layouts of scientific and technical
facilities, etc.) [3–4].

Markuping text fragments and writing
formulas. For markuping text fragments, the

S�Modeling: an Introduction to Updated Theory

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022 63

S-modeling language TSM (Textual Symbolic
Modeling) is used:
□<text fragment>□ means a definition;
:=: is a separator which is placed after the

defined notion (before the definition);
≈ is a substitute for the phrase "the same as";
￮ <text fragment>￮ means an example;
◊<text fragment>◊ means a note.
Italics are used to highlight the concepts and

sentences, to which the author wants to attract the
attention, and also for variables names [3–4].

The presented results. The results were
obtained in the performance of research work
"Modeling of social, economic and environmental
processes" (№ 0063-2016-0005) under the state
task of FANO of Russia for the Federal research
center “Informatics and control” of the Russian
Academy of Sciences.

1. S�Modeling: Basic Notions

□ S-symbol :=: a substitute for a natural or
invented object, denoting this object and being an
element of the system for constructing symbolic
messages (texts, computer programs, etc.),
designed for human or robot perception. □

￮ In S-modeling, the Russian alphabet together
with punctuation marks is considered as a system
of text symbols for constructing messages
according to the rules of the grammar of the
Russian language (each element of the alphabet is
a substitute for the sound used in speech
messages); Braille for the blind – as a system of
textured symbols for constructing text messages
designed to be perceived with the touch of the
fingers; musical notation, a system of musical
symbols – as a means of constructing graphically
presented musical messages; a system of chess
graphic symbols – as a means of visual
representation of chess positions. ￮

In computers, smartphones, and other S-
machines [3–4], the S-symbol is represented in the
form of S-code, intended for constructing, storing,
transmitting and interpreting symbolic messages.

□ S-code :=: a substitute for an S-symbol or
symbolic message, designed to construct, store,
transmit and interpret symbolic messages using S-
machines. □ ￮ Morse codes, codes of The Unicode
Standard. ￮

□ S-signal :=: a physically realized
representation of S-symbol, designed for
perception by human senses (or robot sensors), or
an S-code representation, designed to be received
by hardware of S-machines.

In S-modeling, the definition of a system of
notions is considered as a description of its S-
model, accompanied by an indication of the
application area.
□ S-model of a system sc of notions :=:

< collection set sc of notions >, < family rel (set sc)
of dependencies given on set sc >.

For each notion of system sc, a set of values is
defined.

The application area of the definition is
specified by the description of the types:

– the correspondent (for whom the definition is
intended to be interpreted);

– the purpose, in the process of achieving the
one the definition is advisable to be applied
(￮ tasks, in the study of which the definition can
be useful ￮);

– the stage where it makes sense to use the
definition (￮ problem statement, development of a
solution method ￮). □

￮ System tr of notions named a triangle :=:
< set tr ≈ collection of notions >, < rel (set tr) ≈
family of dependencies defined on set tr >.

In tr, the elements of settr are the sides (a, b, c),
angles (α, β, γ), perimeter p, etc. The family rel (set tr

) includes p = a + b + c; α + β + γ = π, etc.￮
￮ The system trπ/2 of notions of a right triangle

can be defined as a specialization of tr:
trπ/2 ≈ tr [:: α = π/2] (by adding the restriction α = π/2,
which distinguishes a subset of triangles where the
value of one of the angles is equal to π/2). ￮

The representation of dependencies between
notions in the form of solvable tasks is a necessary
condition for constructing quantitative S-models of
notions systems.

□ S-task :=: { Formul, Rulsys, Alg, Prog },
where Formul is the statement of the task; Rulsys
is the set of systems of mandatory and orienting
requirements for solving the task, aligned with
Formul; Alg is the union of sets of algorithms, each
of which corresponds to one element from Rulsys;
Prog is the union of sets of programs, each of
which is assigned to one of the elements of Alg.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ V. D. Ilyin

64 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022

The task statement Formul is a pair { Mem, Rel },
where Mem is the set of notions of the task, where the
partition Mem = Inp U Out (Inp ^ Out = 0) and the
set Rel of dependencies between notions are
specified, where Rel defines the binary relation Rel
< Inp * Out. The set Mem is named the task
memory; Inp and Out are its input and output, the
values of which are supposed to be set and found,
respectively. □

□ S-algorithm :=: a system of rules for solving a
task (corresponding to one element of Rulsys),
which allows, in a finite number of steps, to put the
resulting set belonging to Out to one-to-one
correspondence with a given data set belonging to
Inp. □
□ S-program :=: S-algorithm implemented (in a

high-level programming language, machine-
oriented language and/or in a system of machine
instructions), presented in the form of a message
that determines the behavior of S-machine task
solver with specified properties. The S-algorithm
exists in symbolic, code and signal forms
connected by the translation relations]. □

◊ In general case, the sets Rulsys, Alg and Prog
can be empty: the number of their elements
depends on the degree of knowledge of the task. ◊

Descriptions of the use of set elements:
– Rulsys includes a specification of the task

solver type (autonomous S-machine, networked S-
machines cooperation, human-S-machine
cooperation, etc.); requirement for information
security, etc.;

– Alg includes data on the admissible modes of
the task solver (automatic local, automatic
distributed, interactive local, etc.), requirements for
the result obtained, etc;

– Prog includes data on programming
languages, operating systems, etc.

◊ Each program is accompanied by links to sets
of test cases. ◊

The notion of task constructive object (tco) is
introduced along with the number of other notions
derived from it [2, 4–7]. They form the complex of
notions used in s-modeling of the process of
transition from the problem to the programmed
problem. This complex should allow the software
developer to formulate his ideas in tco-terms and to
advance step by step towards the producing of the
specified program system, keeping in mind the

meaning of every transition. The tco-concept is
used to support the «stage to stage» transition from
a task formulation (what-representation of task is
being programmed) to a program (final how-
representation).

TCO is presented by the finite tree, where task
formulation corresponds to the tree root and
programs correspond to the leaves. The
intermediate (on the way from formulation to
program templates) are necessary for taking into
account the implementation specification.

□ The S-model of the knowledge system sk :=:
< ca ≈ S-model of the notions system sc >, < set lng
≈ S-model of the set of message languages
interpreted on ca >, < set intr ≈ S-model of the set
of interpreters of ca-messages composed in
languages from set lng >. □

Interpreting the message on ca:
1. constructing an output message based on a

given input message (messages are presented in
languages from the set set lng);

2. analysis of the output message (whether
changes are required in ca);

3. if required, initiate changing the ca; if not, end.
Typing of s-modeled objects. □ Type X :=: a

set X whose elements have a fixed set of attributes
and a family of acceptable operations. It can have
subtypes called type X specializations and
supertypes called type X generalizations □.

□ Specialization of type X :=: generating of the
subtype X [::rule] (here the double colon "::" is the
symbol of specialization) with a family of
relations, expanded by the addition of the relation
rule. Allocates a subset X [::rule] of the set X.
Specialization is also called the result X [::rule] of
this generating (X > X [::rule]). □

A type specialization defined by a sequence of
added relations X [::(rule1)::rule2] is a
specialization of type X [::rule1] on the relation
rule2. The number of specializing relations in the
sequence is unlimited. In this case, the names of
the relations preceding the last one are enclosed in
parentheses, and before the opening bracket of
each pair of brackets is a double colon.

 □ Generalization of type Z :=: generating of its
supertype Z [#rule] by weakening (here # is the
weakening symbol) a relation rule from a family of
relations corresponding to type Z. The exclusion of
a relation is considered its ultimate weakening. □

S�Modeling: an Introduction to Updated Theory

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022 65

2. About OBRAZ Language for Task
Knowledge Representation

The conception and formalization of task
knowledge representation are developed to allow the
building of the task knowledge base of the system of
computer aided program construction [2, 5–7].

The central element of OBRAZ is a notion
defined by its name and specification. A notion
specification is a set of other subordinate notions
(attributes) and the relations between them. A
language statement usually contains a notion
definition including such relations as affiliation and
inheritance. Language statements can also describe
restrictions for a notion value set and equivalence
of notions as a special case of restriction.

The notion can have several definitions that
express various points of view. The language
interpreter considers different definitions as separate
notions. A user can set up his own point of view to
the problem area, selecting a single definition among
multiple possible ones.

The program construction environment has no
means of evaluating task relations stored in its
database. This determines the absence of variables in
OBRAZ, because there is no temporary data to store.

◊ The notion specification is close to the concept
of object class in object-oriented languages. ◊

To be brief, we’ll sometimes skip in subsequent
paragraphs words «specification» or «description»,
so one should consider terms «notion» and «task» as
«notion specification» and «task specification». Text
enclosed in /* and */ (multiple lines) is a comment.
Text between // and end of line is also a comment.

A notion representation. Some notions in
OBRAZ have built-in specifications. There are the
most general notions such as «text», «number», «set»
for which OBRAZ language supports constants and
special syntax extensions that increase readability and
compactness of notation. There are also notions that
are used to build the task based models, such as «task
relation», «task memory element», «input», «output»,
«task graph», «query». All these notions are called
predefined.

Operations on notion specifications. The
concatenation operator «+» adds to its left-side
operand all attributes, relations and constraints that
are contained in the right-side specification. A
notion specification defined by concatenation of
some base notions contains a specification of its

base. Those attributes that appear in a result
specification from specifications of other notions
are called inherited ones, unlike own attributes that
were defined inside curly braces. The exclusion
operator «–» selects only those attributes and
relations from the left-side specification that are
not defined in the right-side specification. The
latter can contain some notions that are unknown
in the left-side specification – these notions are
ignored. A specification to be excluded can be
represented by a notion name or as an explicit list
of attributes and relations enclosed in curly braces.

The group of two or more specifications separated
by intersection operator «*» defines a new
specification containing only those attributes and
relations that are defined in every member of this
group. Relations defined using operators «=» and
«<>» are more than restrictions on the value sets. The
operator «=» also means synonymy, mutual
concatenation of specifications and establishing of
links between memory elements of tco-construction.
The operator «<>» prohibits the concatenation and
equalizing of the notions it connects and similarly for
their derivatives.

A task relation. To specify some notion x as a
task relation one should derive it from trel:

x: trel + {…};
Concatenation of x attributes {…} with trel

specification gives to x inherited attributes x.mem,
x.input and x.output.

The task relation notion has special built-in
derivatives: function, equation, program.

◊ The built-in OBRAZ program notion is a
template and cannot specify any program code
generation process. ◊

There are some notions in the construction
system knowledge base that are derived from
«program» and define proper attributes to describe
construction in various special environments.

A task relation graph (tr-graph). Every notion
can be considered as a tr-graph if it contains some
task relations or other tr-graphs that are tr-graph
vertices. The union set of memory elements of all
tasks in tr-graph forms tr-graph memory. Memory
element equivalence of tr-graph vertices forms
vertices memory intersections that are called tr-graph
edges. Every group of equivalenced notions with at
least one task memory element in the group, forms
one tr-graph memory element. All members of such a

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ V. D. Ilyin

66 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022

group are synonyms. Every task memory element
that isn’t connected with any other notion also forms
one tr-graph memory element. 

3. S�(Message, Data, Information)

□ S-message :=: a finite sequence of S-symbols
designed for recognition and interpretation by the
recipient, or its S-code that meets the requirements
for basic S-tasks solvers. □

￮ S-models of systems of notions and knowledge
systems, which present the results of the study of
certain entities (objects of research); programs that
determine the behavior of S-machines; web pages
and document files – all these are S-messages. ￮

□ S-file :=: a named unit of storage of the
S-machine message code (data or program) on a
drive (SSD, hard disk, etc.) of computer device
(desktop, laptop, smartphone, digital camera, etc.). □

□ S-data :=: S-message required to solve a certain
task or a family of tasks, presented in a form
designed for recognition, transformation and
interpretation by a task solver (a program or
person). □
□ S-information :=: the result of interpreting a

message on the S-model of a system of notions. To
extract information from a message, it is necessary to
have:

– an accepted message presented in a form
designed for recognition and interpretation by the
message recipient;

– models of systems of notions stored in
memory, among which – the necessary one for
interpretation of the received message;

– mechanisms for finding the necessary model,
interpreting the message, presenting the result of
interpretation in the form of a message and writing
it to memory. □

￮ The result of interpretation of the ma message
presented in language a, received by the translator
(human or robot) – translated to the mb message in
language b, is the information extracted from the
ma message. ￮

4. The General Method and Classes
of Basic S�Modeling Tasks (S�Tasks)

□ The general method of S-modeling :=: a
constructive proof of the existence of S-model
of an arbitrary object, representable in
S-environment. □

Studying the properties and regularities of
S-modeling at each stage of the S-modeling theory
development allows to determine the classes of
basic S-modeling tasks. Nowadays, the S-tasks
presented in Table 1 are the most relevant.

Tab. 1. Classes of basic S�tasks

Name of the class
of basic S-tasks

Basic S-tasks

S-representation

Creation of interconnected systems of S-(symbols, codes, signals), specification
languages, programming languages, queries languages; representation of S-
(messages, data, information), S-models of systems of notions and knowledge
systems [4–22].

S-transformation
Converting S-messages (￮ speech ↔ text; analog ↔ digital; uncompressed ↔
compressed; *.doc ↔ *.pdf, etc. ￮) [2–7].

S-recognition

A necessary but insufficient condition for recognition - is the presentation of S-
message in a format known to recipient. When this condition is met, the tasks of
matching the sample models or matching the properties of the recognized model
with the properties of sample models are solved [2–7].

S-construction
Construction of new S-objects from previously created S-objects (￮ tasks
specifications, programs, systems of notions, knowledge systems, etc. ￮),
presented as constructive S-objects [2–7].

S-interpretation

Interpretation supposes the existence of an accepted S-message, a S-model of the system
of notions on which it should be interpreted, and an interpretation mechanism. ￮ To
interpret a web page presented on a monitor screen, a person uses systems of notions
stored in his memory. For S-machine microprocessor, the S-messages to be interpreted
are the codes of the S-machine commands and data; for the compiler, the source code
of the program is the S-message to be translated [2–7]. ￮

S�Modeling: an Introduction to Updated Theory

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022 67

References
1. Newell, A., and H. Simon. 1976. Computer science as

empirical inquiry: symbols and search. Communications
of the ACM. 19(3):113–126. doi: 10.1145/360018.360022.

2. Ilyin, V. D. 1989. Sistema porozhdeniya programm [The
system of program generating]. Moscow: Nauka, 264 p.

3. Ilyin, V. D. 2017. Simvol’noye modelirovaniye
(S-modelirovaniye) [Symbolic modeling (S-modeling)].
Bol’shaya rossiyskaya entsiklopediya – elektronnaya
versiya [The Great Russian Encyclopedia – electronic ver-
sion]. Available at:
https://bigenc.ru/technology_and_technique/text/4010980
(accessed July 21, 2022).

4. Ilyin, A. V., and V. D. Ilyin. 2009. Osnovy teorii
s-modelirovaniya [Fundamentals of the theory of
S-modeling]. Moscow: Institute of Informatics Problems
of the Russian Academy of Sciences. 143 p. Available at:
https://www.elibrary.ru/item.asp?id=25784971 (accessed
July 21, 2022).

5. Ilyin, A. V., and V. D. Ilyin. 2012. S-modelirovaniye zadach i
konstruirovaniye programm [S-modeling of tasks and con-
struction of programs]. Moscow: Institute of Informatics
Problems of the Russian Academy of Sciences. 146 p. Avail-
able at: https://www.elibrary.ru/item.asp?id=25816802 (ac-
cessed July 21, 2022).

6. Ilyin, V. D. 1995. A methodology for knowledge based
engineering of parallel program systems. In: Forsyth, G.,
Moonis, A. (eds.) The Eighth International Conference In-
dustrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems , IEA/AIE 95, Melbourne,
Australia, 6–8 June, 1995. Gordon and Breach. 805–809.

7. Ilyin, A. V., and V. D. Ilyin, 2021. Updated Methodology for
Task Knowledge Based Development of Parallel Programs.
In: Silhavy R., Silhavy P., Prokopova Z. (eds.) Data Science
and Intelligent Systems. CoMeSySo 2021. Lecture Notes in
Networks and Systems. Vol 231. Springer, Cham. 319–328.
doi: 10.1007/978-3-030-90321-3_25.

8. Licklider, J., and W. Clark. 1962. On-line man-computer
communication. In: AIEE-IRE ‘62 (Spring) Proceedings

of the May 1-3, 1962, spring joint computer conference.
113–128.

9. Cerf, V., and R. Kahn. 1974. A Protocol for Packet Net-
work Intercommunication. IEEE Transactions on Com-
munications. 22(5):637–648. doi:
10.1109/TCOM.1974.1092259.

10. Jamsa, K. 2013. Cloud computing. Jones & Bartlett,
Learning Burlington. 322 p.

11. Kay, A. 1975. Personal Computing. Palo Alto: Learning
Research Group. Xerox Palo Alto Research Center. 30 p.

12. Berners-Lee, T. 1989. Information Management: A Pro-
posal. CERN. Available at:
https://www.w3.org/History/1989/proposal-msw.html (ac-
cessed July 21, 2022).

13. Berners-Lee, T. 2010. Long live the Web. Scientific
American 303(6). Available at:
https://www.scientificamerican.com/article/long-live-the-
web/ (accessed July 21, 2022).

14. Kim, R. 2011. Efficient wireless communications schemes
for machine to machine communications. Comm. Com.
Inf. Sc. 181(3):313–323.

15. Lien, S., T. Liau, C. Kao, and K. Chen. 2012. Cooperative
access class barring for machine-to-machine communica-
tions. IEEE T. Wirel. Commun. 11(1):27–32.

16. Pereyra, C., C. Liu, and S. Jayawardena. 2015. The emerg-
ing Internet of Things marketplace from an industrial per-
spective: A survey. IEEE T. Emerging Topics Computing
3(4):585–598. doi: 10.1109/TETC.2015.2390034.

17. Kravchenko, V., and D. Shirapov. 2018. Logic-Functional
Modeling of Nonlinear Radio Engineering Systems. 2018
International Multi-Conference on Industrial Engineering
and Modern Technologies (FarEastCon). IEEE. 1–6.
doi: 10.1109/FarEastCon.2018.8602769.

18. Rojek, I., D. Mikołajewski, et al. 2020. Digital Twins in
Product Lifecycle for Sustainability in Manufacturing and
Maintenance. Applied Sciences 11(1):31.
DOI: 10.3390/app11010031.

19. Semeraro, C., M. Lezoche, et al. 2021. Digital twin paradigm:
A systematic literature review. Computers in Industry
130:103469. DOI: 10.1016/j.compind.2021.103469.

Tab. 1. Classes of basic S�tasks (end of the table)

Name of the class
of basic S-tasks

Basic S-tasks

S-interaction

In this class, the tasks of interaction in S-environment (man – S-machine;
S-machine – S-machine) are studied. Senders and recipients of S-messages, means
of sending, transmitting and receiving messages are classified. Systems of
messaging rules (S-network protocols), S-network architectures, service-oriented
architectures, document management systems are being developed [3–24].

S-(saving, accumulating
and searching)

This class includes the related S-tasks of saving, accumulating, and searching for
S-messages. Memory devices, their management mechanisms, forms of storage and
accumulation, methods of accumulation and search, databases and program libraries
are studied here and typed [2–7].

S-security
S-tasks of this class are designed to prevent and detect vulnerabilities, perform
access control, protect against unauthorized use, malware, and message interception
[4, 25–26].

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ V. D. Ilyin

68 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2022

20. Liu, K., L. Lei Song, et al. 2022. Time-Varying Error Pre-
diction and Compensation for Movement Axis of CNC
Machine Tool Based on Digital Twin. Industrial
Informatics IEEE Transactions on 18(1):109–118.
doi: 10.1109/TII.2021.3073649.

21. Nguyen, H., R. Trestian, et al. 2021. Digital Twin for 5G
and Beyond. IEEE Communications Magazine 59(2):10–
15. doi: 10.1109/MCOM.001.2000343.

22. Jia, P., X. Wang, et al. 2021. Digital-Twin-Enabled Intel-
ligent Distributed Clock Synchronization in Industrial IoT
Systems. IEEE Internet of Things Journal 8(6):4548–4559.
doi: 10.1109/JIOT.2020.3029131.

23. Rathore, M., S. Shah, et al. 2021. The Role of AI, Ma-
chine Learning, and Big Data in Digital Twinning: A Sys-
tematic Literature Review, Challenges, and Opportunities.

IEEE Access 9: 32030–32052.
doi: 10.1109/ACCESS.2021.3060863.

24. Zhang, S., C. Kang, et al. 2020. A Product Quality Moni-
tor Model With the Digital Twin Model and the Stacked
Auto Encoder. IEEE Access 8: 113826–113836.
doi: 10.1109/ACCESS.2020.3003723.

25. Yang, B., R. Huang, et al. 2021. Efficient Lattice-Based
Cryptosystems with Key Dependent Message Security.
Applied Sciences 11(24):12161.
doi: 10.3390/app112412161.

26. Lu, X., F. Wang, et al. 2021. A Universal Malicious Doc-
uments Static Detection Framework Based on Feature
Generalization. Applied Sciences 11(24):12134.
doi: 10.3390/app112412134

Ilyin V. D. Doctor of Science in technology, Professor, Federal Research Center «Computer Science and Control» of the Russian
Academy of Sciences, 40 Vavilova str., Moscow, 119333, Russia, e-mail: vdilyin@yandex.ru

