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Abstract.The article presents the results of research on fractal (self-similar) graphs in relation to elastic
computing. A characteristic feature of such graphs is their ability to unfold (increase dimensionality) and
fold (decrease dimensionality). Two approaches to forming fractal graphs are considered: based on Kron-
ecker product and fractal algebra. The interrelationship of algebraic operations of forming fractal graphs
(linear graphs, grids, hypercubes, and trees) with tensor operations and tensor representation based on the
integration of adjacency matrices and event vectors of elastic systems is presented. Definitions of corre-
sponding types of dynamically changing tensors are introduced. An analysis of the properties of elastic

fractal graphs and related tensor models is conducted
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Introduction

The emergence of self-organizing, reconfigura-
ble, and elastic network systems has created a prob-
lem for modelling network transformation. To be
able to transform, the system's organization must be
elastic [1]. Such a transformation should be mod-
eled during the design stage and taken into account
throughout operations, allowing the system's life cy-
cle to be extended. The development of mathemati-
cal models for the analysis of elastic systems is re-
lated to the construction of models that adequately
simulate it behavior. An adequate technique to
model network systems is to represent them by us-
ing dynamically transformable graphs. The qualita-
tive properties of graph-based models gain in value
as systems and their dynamics get more compli-
cated. This means that the internal development ac-
tivity and the nature of intended behavior should be
taken into consideration in models. The qualitative
properties of graphs that are evident in self-organi-
zation modeling play a specific role in this case. The
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use of graphs will allow to restore the structure of
the system automatically and qualitatively. Further-
more, a graph representation of a network system
gives not only a visual representation, but also al-
lows the application of algorithms already known.

It was observed that network patterns could be
used to synthesize network systems with different
topologies. Graphs synthesized and modified on the
basis of isomorphic subgraphs (patterns) have been
called fractal (self-similar) graphs [2, 3]. The ability
to transform the structure over existing subgraphs,
as well as the ability to represent models with
smaller graphs and map on mathematical metrics of
similarity [4] allows for a decreasing dimension of
the solving task, are all qualitative properties of
fractal graphs. Fractal graphs are synthesized by
performing simple operations on initial graphs.

The Kronecker product [5] and fractal algebra
are two methods for synthesizing fractal graphs.
Thus, the Kronecker product is applicable to tensor
computation for data analysis [6] and have been
proven to be one of the most promising models for
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real-world networks [7]. It is a technique for con-
structing self-similar adjacency matrices, resulting
in a block matrix that can be visualized with graphs.
Kronecker graphs are useful for theoretical analysis
and proof because they contain many significant
patterns of realistic networks. The model really fits
the real networks. Furthermore, there exist efficient
algorithms for locating graphs that fit key patterns
in real networks. Many applications, such as graph
compression, extrapolation, sampling, and data
anonymization, can be constructed on top of Kron-
ecker graphs. Despite this, they are still the subject
of research.

Another way to construct fractal graphs is based
on simple operations over the pattern described by
the initial graph. Operations are systematized into
fractal algebra [8, 9]. In the paper, algebraic algo-
rithms for the synthesis of fractal graphs such as lin-
ear graphs, grids, hypercubes, and trees are intro-
duced. The representation of adjacency matrices of
these fractal graphs in the form of tensors [10] is
developing as part of underlying algebraic method.
Definitions of dynamically modifiable adjacency
matrices [11] and the transformation principles that
drive them are provided for these purposes [12—14].
This made it possible to form tensor models of frac-
tal graphs by combining their adjacency matrices
with the event vector of graph synthesis.

The paper is organized as follows. In the first
section, both the fractal graph-based elastic model
and its tensor presentation are introduced. The sec-
ond section considers tensor models of elastic frac-
tal graphs based on the Kronecker product and alge-
braic operations. The translation of the fractal
algebra operations over graphs into tensor opera-
tions is given. In the third section, the properties of
elastic fractal graphs and their associated tensor
models are analyzed. Conclusions and contributions
are presented in the later section.

1. Fractal Graph-based Dynamics

In this section, the fractal graph-based elasticity
model and its tensor presentation are given. For ma-
trices and vectors, the standard notation in bold
italic format is used (e.g., A, K).

A. Fractal graph-based elasticity network model

The elastic concept involves transforming the
system capacity on demand when the workload is
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changed. The incremental, decremental, and iterative
nature of elastic networks directly impacts graph-
based  simulation and graph  dynamics
[15, 16]. The maximum workload that the system
can handle in terms of request count is determined
by the service's capacity. In order to achieve a bal-
anced workload among the various vertices and
control the system workload, the use of a fractal bi-
nary tree to control the system capacity can be con-
sidered. Let's look at a simplified example.

The initial elastic system capacity of 1,000 re-
quest per event is represented by a single vertex. To
visualize the vertex a rectangle is used. The newly
created vertices are denoted with white rectangles.
At event 2, with an increase in workload to 2,000
requests per minute, it becomes necessary to in-
crease the system capacity. A new vertex is nested
in to the initial vertex, and its value is set to the ca-
pacity of 1,000 requests per minute. The total sys-
tem capacity was increased to 2,000 requests per
minute. Table 1 shows the workload that character-
izes the data processed by a service's operations.
The workload is based on fluctuating user demand
over an 18-hour period, represented by events. Fur-
thermore, the workload exhibited in Table 1 demon-
strates fractal graph dynamics that could potentially
affect the processing efficiency of the service's op-
erations.

Table 1. Elastic system workload, events,
and fractal graph dynamics

Event Workload Graph

1 1,000 |—|
2 2,000 ||:|—|
3 3,000 m
4 6,000 E

5 7,000
6 4,000 IE—|:”
7 2,000 ||:|—|
8 1,000 |—|
9 10 |—|

Further, all the events in the system from Table 1
are taken into account.

At event 3, an increase in workload to 3,000 re-
quests per minute requires an increase in the system
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capacity. A new vertex is nested into the initial ver-
tex to the right.

At event 4, a new three vertex is nested into low
level of the graph from left to right as a result of an
increase in workload to 6,000 requests per minute.

At event 5, an increase in workload to 7,000 re-
quests per minute was observed, necessitating an-
other increase in capacity. There is currently an
empty vertex on the right branch of the binary tree.
A new vertex is nested to fill this empty vertex.

At event 6, the workload decreased to 4,000 re-
quests per minute, allowing for a reduction in the
system's capacity by removing 3 vertices from the
lower level of the graph.

At event 7, a decrease in workload to 2,000
requests per minute allows for the removal of 2
vertices from the lower level of the graph, reducing
the capacity to 2,000 requests per minute.

At event 8, a decrease in workload to 1,000 re-
quests per minute allows for the removal of 1 vertex
from the lower level of the graph, reducing the ca-
pacity to 1,000 requests per minute.

At event 9, a further decrease in workload is ob-
served to 10 request per minute, rendering any
changes to the system's capacity unnecessary.

It is possible to create different graphs corre-
sponding to a variety of elasticity granularities by
changing capacity units and strategies for changing
system capacity.

The fractal graphs [17] dynamics of the networks
satisfy the elasticity requirement.

Def.1. A graph G = (V,E) consists of a finite set
of vertices V = {vi,v2,...,va} and a finite set of edges
E={ei,e2,....em}, for each edge e; € E is unordered
pairs of vertices e; = (Vi,v)).

The number of vertices |V| defines the order of a
graph, and the number of edges |E| defines the size
of a graph.

Def.2. A graph go = (Vo, Ao) is a subgraph of
G=(V,A)if Vo € V and every edge of g is also an
edge of G.

The subgraph gy (not a null subgraph) of a graph
G is a component of G in two cases:

e if gy is a single isolated vertex of G

e or if gy is an induced subgraph, i.e., go is
formed from a subset of the vertices and edges of the
graph G and any two vertices are connected to each
other by paths.
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Def 3. The simplest fractal graph-based model
Gy consists of the initial component go and the iter-
ated function f:

Ga = f(f(..f(20))) = fu(go), where (1)

f: G — G is an iterated function d = 1,2,...,n times,
is written as follows:
go is the initial component,

g1 = f(go)
2 = f(g1)
G = f(ga)

The result of the iteration function f is a graph
Gq. The graph Gq consists of the isomorphic (self-
similar) set of graphs go and is called fractal.

The elastic systems are transformed in time, both
in the direction of increasing capacity with an increas-
ing workload (the system uses reserved resources and
is deployed) and in the direction of decreasing capac-
ity (the system frees up resources and folds).

Let the fractal dynamic graph-based model
Gq= f4(go) be given and the iterated function f sim-
ulate the increasing capacity. Then decreasing ca-
pacity is simulated by the inverse function fy (go).
This forms an elastic model.

Def 4. The elastic fractal graph-based model G4°
is as follows:

,L kload i i
ce _{fd(go) if workload increasing @)

7 f71(g0) , if workload decreasing

In general, this is a dynamical system that is
based on dynamics of fractal graphs.

B. Tensor presentation of elastic fractal graphs

Additional information about the relationships
between vertices and their hierarchical structure,
which is not present in the structural representation,
is provided by the tensor representation of fractal
graphs, see Table 1 column Graph. Higher-order in-
teractions between vertices, that cannot be repre-
sented by traditional graph methods, are captured by
the tensor-based approach, providing a more com-
plete understanding of the system's behavior.

The simplest way to represent a graph is with an
adjacency matrix. It describes which vertices are ad-
jacent to which other vertices in a graph and consists
of nxn real numbers arranged in n rows and n col-
umns, where nxn are called its dimensions. The
places in the matrix where the numbers are is called
entries. The entry in row i and column j of the matrix
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A is denoted by ajj. An nx1 matrix is called a column
vector of order n; similarly, a 1xn matrix is a row
vector of order n.

Def 5. A (G) = [ajj] is an adjacency matrix of the
graph G. The rows and the columns of A(G) are in-
dexed by V in the following way:

1 ,lf (U,:,U]') EE
0,if (vi,vj) ¢ E

If the a;j entry of A(G) is 0 then vertices i and j
nonadjacent, and the aj; entry is 1 for i and j adjacent.

If aji entry of A(G) is 1 for i =j then the graph G
is a loop-digraph, i.e., it is an undirected graph in
which an edge can begin and end at the same vertex.

Graph G is a simple if it is an unweighted, undi-
rected graph containing no graph loops or multiple
edges. A simple graph may be either connected or
disconnected.

If a;j entry of A(G) is 0 for i # j then A(G) is a
diagonal matrix. The diagonal matrix is denoted

AG) = [ay] = { 3)

a1 0
diag(ay1, zz, ) Q) = [ P l
0 - ay,

If ajjentry is 1 for all i, this matrix reduces to the
identity matrix I, of the order n.

1 0
L=ML=], 1}

1 0 0 a1 0
L=0 1 of,.., oo
0 0 1 0 - ap,

An adjacency matrix A(G) for a simple graph
and a loop-digraph is a logical matrix, that is, one
whose elements are all either 0 or 1. The adjacency
matrix A(G), for an undirected graph G is symmet-
rical about the main diagonal. This is because if ver-
tex 1 is adjacent to vertex j, then j is adjacent to i.

A multidimensional matrix is a tensor related to
a vector space. The order of a tensor, given by m, is
defined by the number of directions (dimensions) it

o

110 @V

KoWd=[1 1 1| <.
01 1

Fig. 1. Adjacency matrix Ky(g,) and graph g,
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has. Each dimension is called a mode. The adja-
cency matrix has 2 dimensions. The tensor model
occurs because the sequence d = 1,2....,n of the G¢°
presents a 1xd row vector.

Def. 6. Tensor model T (G¢°) of elastic fractal
graphs G¢° combines the adjacency matrix with 1xd
row vector and it is a 3-order tensor.

2. Tensor Models Based
on Elastic Fractal Graphs

In this section, both tensor models of elastic frac-
tal graphs based on the Kronecker product and alge-
braic operations are considered. The properties of
adjacency matrices associated with the generation
of graphs are revealed. Their comparative analysis
is given.

A. Tensor models based on Kronecker elastic

fractal graphs

The Kronecker product of two graphs is the
product of its respective adjacency matrices.

Def. 7. Kronecker product of an adjacency
matrices A = [a;;j] and B of sizes nXn and mXm
respectively is an adjacency matrix C of dimensions

(n *m) X (n = m) is given by
a,1B a.,B
C=AQB= :

an B anmB

Kronecker product is a way of generating self-
similar matrices. Let initial graph gy is a pattern,
which defines by adjacency matrix K (go), see
Fig. 1. The graph gois a loop-digraph: each vertex
has loop edge.

Fig. 2 shows intermediate stage of Kronecker
product of initial graph go with itself g, = go ®go.
Each of the v, vz, v3 vertex gets expanded into 3
subgraphs similar to go, which are then linked.

Fig. 3 shows the corresponding graph g = go®go
and adjacency matrices Ki(gi) = Ko(go) & Ko(go)

Fig. 2. Intermediate stage of Kronecker product
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Ky Ko, O
K, =K,®K,=|Ky Ko Ko
0 K, K,

Fig. 3. Kronecker product: g,= gs®g, and Ki(g:) = Kq(go) & Ko(go)

Consider a fractal graph model that is based on
the Kronecker product. The left and right parame-
ters of the Kronecker product for the graph g; are
the same: g; = go®go. Because of it, the iterated
Kronecker product @ for graphs can be presented
as g1 = @(go). Then a dynamic fractal graph Ky is
obtained as follows:

Ka= Qa(go) 4

The inverse product K¢ = ®a'(go), stated in
terms of the product ®q"(g0) = Qa-1(go), if i > 0. As
a result, the elastic Kronecker product-based graph
K¢ is as follows:

Ke = { R4 (go) ,if workload increasing 5)
4= ®3 (g0) ,if workload decreasing

Fig. 4. shows the tensor T (K4° (go)) of elastic
fractal graph K4°, where gois defined as in Fig. 1.

The Kronecker product has the following fractal
graph properties:

e If a zero-entry is determined in an adjacency
matrix K(go), then a product by zero gives 0. As a
result, it is preferable that the initial graph contain as
few zero-entry points as possible.

e Therefore, loop-digraphs are often used for
modeling, as they contain fewer zero-entry com-
pared to simple graphs.

e The growth number of the vertices (n,n) de-
pends significantly on the order of the initial sub-
graph gj.

e Mapping to metric space gives similarity in
accordance with fractal dimension.

B. Tensor models based on algebraic operations
over elastic fractal graphs

Operations over a graph G and how they are
translated into tensor operations are defined. The
operations are systematized into algebra GA.

Def. 8. Let GA be an algebra over a graph G,
with the set of operations A:

GA=<G, A>, where (6)
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Fig. 4. Tensor T(K4(g,)), d =2

A= {=, <, =} is a set of uniquely invertible oper-
ations. These operations are described below.

=isareplication (=" is an invertible replication).
This is a simple unary operation on the graph g.
g' = g=, where component g' is a replication of the
graph g. If its writing was omitted by just writing
down the component g' the operation is executed by
default.

Let A (g) be an adjacency matrix of the subgraph
g € G. The replication A (g)= is a block diagonal
matrix whose off-diagonal blocks are zero matrices
and diagonal blocks are equals to A (g') = A (g). The
diagonal matrix is denoted:

AG) = [A(Og)

At] = 40941, AG:2)

The upper index © denotes that matrix A (G)° has
only two blocks, and graph G has only two equal
components, g and g'.

> is a connection of the two components by ver-
tices. (<! is an invertible connection or disconnec-
tion). This is a simple binary operation between the
vertices of two components, g <> g'.

A square zero block matrix | is formed for the
connection of two components, g and g'. The size of
| is the same as that of A (g). The connected vertices
of the components g and g' are correspondent by the
entries of the matrix | (g <> g') that is assigned 1.
The matrix | (g < g") is entered in a descending di-
agonal from right to left instead of 0.
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Al Ig+eg)
Ig<g) Alg)

+ is a subdivision of the edge by inserting a new
vertex into the edge (="' is an invertible subdivi-
sion). The vertex does not belong to the graph. It is
a composition operation of the two components
with a new vertex.

The two column vectors | the same order are
formed for the composition of two components, g
and g'. If A (g) has an order d, then the order of the
column vector | is d, if d = 0 then | = [0].

The column vector | has an entry equal to 1 iff
its vertex is connected to A (g) with A (g'). I" is the
transpose of the column vector | into a row vector.
It should be noted that for the composition of the
two components, one vertex is enough, i.e., only
two entries equal to 1.

A(G) = [

Alg) 0 I
_[A@ 0 7. = ,
A(G)_[ 0 A(g’)] + U IOT AE‘?—) ([J

The result of the operation subdivision of the
edge is an adjacency matrix A (G) of tree-like graph
G. The row vector I" gives a symmetrical adjacency
matrix.

Ga = Ad(go) is a fractal graph, as shown in for-
mula 1.

Consider fractal graphs and the algebraic opera-
tions that are used to synthesized them from the
initial graph go with one vertex.

.

2o g1 22

Fundamental fractal graph algorithms such as
linear graphs, grids, hypercubes, and trees are writ-
ten down in an ordered sequence by the algebraic
operations A.

The linear, grid fractal graphs are represented in
the cube topology.

Algorithm 1. The linear fractal graph Lq= Aa(go),
where A= (vE gy) « (V'€ g¢'), see Fig. 5. Lq is sim-
ple graph, d = 3.

An adjacency matrix L(Lg) using block matrices
is written as follows::

Lot = [0 i) = [ L[S o)

L [0 100
Ly I 10 0 1
L= [ |- -
2o/ = [ ]T]o 0 0 1

0110
L(g)—[Ld‘1 Ié]
a0 5 Ly

A square block matrix 1,* =0, and 14" for d > 1 has
d,d-entry equal to 1 with all other entries equal to 0.

Algorithm 2. The grid fractal graph GR4 = Aq(go),
where A= (1€ go) <> (W € g0), (€ @) > ('€ o).
Vi,Vj, 1 # j — two pairs of isomorphic vertices of the
graph go and component g¢', see Fig. 6. GRyis sim-
ple graph, d = 3.

An adjacency matrix G(GRy) using block matri-
ces is written as follows:

g3

Fig. 5. The linear fractal graph L, = A4(Q,), d =3

£o g1

Fig. 6. The grid fractal graph GR, = A4(g,), d=3
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Gy I 0 1
Go(g0) = [0], G1(go) = [ 10 Glo]: 1 ol
01 1 0
G I 1 0 0 1
GZ(gO)_ [2 Gl] ll 0 0 1 )
0110
Ga(go) = [G‘H ld ]
e 1§ Gas

A square block matrix 14° for d =3 and the grid
width equals 2 has d-1,d+1-entry equal to 1, and
d,d+2-entry equal to 1.

Algorithm 3. The hypercube fractal graph
Ha = Au(go), where A=V vy’ (vE go) & (v E g),
see Fig. 7. Hqis simple graph, d = 3.

An adjacency matrix H(Hg) using block matrices
is written as follows:

Hy L]_0 1
Hooo) = [0, o) = [° 2 [H[) o)
01 10
H
= [+ 5]=|1 0 0 1]. |
H 0 1[ 1 0
. [Has |
d(go) d Hd_]_

go g1

Fig. 7. The hypercube fractal graph H, =

|
|
|
|
|
I
Ig=goe &' :
|
r--5 |
Vi i
I/”""\\\ |
|
O O4d .
g=gte |
[ |
go g

For the hypercube, a block matrix I, is identity
matrix, see Def. 5.

For the considered algorithms, operations A iter-
ate the initial graph go, which has one vertex.

Algorithm 4. The binary tree fractal graph Bq =
Ad(go), where A = (vE€ go) & (V'€ g0), (vE o) = (V
€ go"). v, v' — highlighted not only the graph's verti-
ces and the component go and go' but also edge e =
(v, v') for operation +. A comma separates the two
operations on the connection of the components and
the subdivision of the edge e = (v, V') of the graph
By, see Fig. 8, d=2.

The algorithm 4 is shown in two steps: first, the
connection operation is performed, and then the sub-
division is performed. The binary tree graph Byq is a
simple graph.

In the Fig. 8, the edges vertices of subdivision
operations are marked with a dotted line. An adja-
cency matrix B(B4) using block matrices is written
as follows::

By(g0) = [0],

B1(go) = Bo ]—[I] [8 g

A4(Qo), d=3

Fig. 8. The binary tree fractal graph B,, d =2
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B,_ 0
B4(g0) = % ! Bd—l] - [13—1]

The subdivision + operation of the edge for bi-
nary tree has next algorithm:

1. The two column vectors 134 the order d are
formed.

2. If d = 0 then 18 = [1], if d > 0, then
184 =[i1.4.1] = 1, for each column vectors.

3. The subdivision operation is executed.

The elastic fractal graph-based model (Def. 4)
and equivalent tensor models can be obtained using
algebraic invertible operations. The Table 2 shows
algebraic types of fractal graph-based models.

The algebraic fractal graphs have the following
properties:

e The tensor representation is specified in the
form of block-type tensors with changeable dimen-
sions for the replication operation. As a result, the
presence of zero-entry points in the initial graph is
not so important as it is for the Kronecker product.
For modeling, both simple graphs and loop-di-
graphs can be used.

e The growth number of the vertices of the
graph after algebraic operations depends on the or-
der of the initial graph go, and depends on the con-
sequence of replication operations as well as subdi-
vision operations.

3. Analysis of Fractal Graphs

Analysis of elastic fractal graphs must take into
account the properties of graphs [18, 19], and tensor
models [20].

A. Analysis properties of fractal graphs

Self-similarity is the most important property of
fractal graphs. The properties that remain un-
changed under the transformation of fractal graphs
are the initial components of the graphs from which

they were synthesized. Similarity gives the oppor-
tunity to reconstitute a damage model based on a
graph. Elastic fractal graphs have the ability to in-
crease and decrease in dimensions.

B. Tensor Model Analysis

In the paper, adjacency square matrices and
block square matrices and their corresponding
graphs were considered. Adjacency square matrices
are symmetric, diagonal matrices, and block square
matrices. The matrix fractality of graphs can be
specified both by the Kronecker product and by
block matrices.

Elastic tensor models have the ability to increase
and decrease their dimensions without decomposition.

Conclusion

The contribution of this paper refers to the devel-
opment of graph-dynamic models. In this regard, it
is important to convert large-scale problems to sim-
plified fractal models. This research yielded a gen-
eralization of many techniques to fractal graphs and
their evolution. The following are ways in which the
paper contributes:

e The extension of fractal algebra, using tensor
algebra and the Kronecker product;

¢ Introducing various types of tensors and opera-
tions that facilitate the formation of fractal graphs;

o Identifying two types of fractal tensors:
nested fractal tensors, which are based on Kron-
ecker products, and symmetric fractal tensors,
which are based on copying the original adjacency
matrices. These new methods expand the possibili-
ties of utilizing fractal graphs.

The author envisions continuing work in two di-
rections: managing and planning elastic calculations
based on fractal tensors, and identifying the proper-
ties of tensor operations on adjacency matrices of
fractal graphs.

Table 2. Fractal type graph-based models

Graph type Fractal graph ne_twork models
Fractal graph Elastic Fractal graph Tensor
Linear Algorithm 1. Lg = Ad(go) L¢ T(Lg)
Grid Algorithm 2. GRg = Aa(g0) GR¢* T(GRs)
Hypercube Algorithm 3. Hqg = Aq(go) H¢® T(Hq®)
Tree Algorithm 4. Bg = A4(go) B¢® T(B4)
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TeH30pHbIe Mogenu dpakTanbHbIX rpadoB A 3/1aCTUYHDbIX ceTen

A. C. CemeHoB

MocCKOBCKM aBUaUMOHHbBIN MHCTUTYT (HaumoHanbHbIN nccnenoBatenbckmnin yHnsepcuteT), Mockea, Poccus

AHHOTauMs. B cTaThe MpeACcTaBIeHBI pe3yIbTaThl HCCISAOBAHMH (DPaKTATLHBIX (CAMOIIOTOOHBIX ) Ipa-
(OB MPUMEHUTENBHO K JTACTHYHBIM BBIYUCIEHUSAM. XapaKTepHOH 0COOEHHOCTHIO TaKUX rpadoB, SBIS-
€TCsl BO3MOKHOCTh UX Pa3BOpauyMBaHUs (YBEJIWYEHHS Pa3MEPHOCTH) M CBOPAUYMBAHUS (YMEHBIICHUS
pasmepHocTH). PaccMoTpeHsl Ba moaxoja K (hOpMUPOBaHUIO (PpaKTalIbHBIX TPadoB: HA OCHOBE MPO-
mBeacHUs KpoHekepa u ppakranpHO# anreOprl. [IpencTasieHa B3anMOCBS3b alredpandeckux ornepa-
Ui popMHupoBaHHS QpakTanbHbIX TpadoB (JIMHEHHbIE rpadbl, CETKH, TUTIEPKYOBI U JIEPEBbs) C TEH30P-
HBIMH ONEpallUsiMU M TEH30PHBIM NPEJCTaBIEHHEM HAa OCHOBE HMHTETPAIMH MATPHIl CMEXKHOCTH M
BEKTOpa COOBITHH AIIaCTUYHON cHCTeMbl. BBeIeHBI OnpeieNIeHns COOTBETCTBYIOIIHX THIIOB THHAMMYE-
CKH M3MCHSIEMBIX TeH30pOB. [IpoBeeH aHaIu3 CBOMCTB 3JIaCTUYHBIX (PpaKkTalbHBIX rpadoB U CBSI3aH-
HBIX C HUMHU TCH30PHBIX MOI[CJ'ICﬁ.
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