
МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ  

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 133 

Tensor Models of Fractal Graphs  
for Elastic Networks  

A. S. Semenov 

Moscow Aviation Institute (National Research University), Moscow, Russia 

Abstract.The article presents the results of research on fractal (self-similar) graphs in relation to elastic 
computing. A characteristic feature of such graphs is their ability to unfold (increase dimensionality) and 
fold (decrease dimensionality). Two approaches to forming fractal graphs are considered: based on Kron-
ecker product and fractal algebra. The interrelationship of algebraic operations of forming fractal graphs 
(linear graphs, grids, hypercubes, and trees) with tensor operations and tensor representation based on the 
integration of adjacency matrices and event vectors of elastic systems is presented. Definitions of corre-
sponding types of dynamically changing tensors are introduced. An analysis of the properties of elastic 
fractal graphs and related tensor models is conducted 
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Introduction 

The emergence of self-organizing, reconfigura-
ble, and elastic network systems has created a prob-
lem for modelling network transformation. To be 
able to transform, the system's organization must be 
elastic [1]. Such a transformation should be mod-
eled during the design stage and taken into account 
throughout operations, allowing the system's life cy-
cle to be extended. The development of mathemati-
cal models for the analysis of elastic systems is re-
lated to the construction of models that adequately 
simulate it behavior. An adequate technique to 
model network systems is to represent them by us-
ing dynamically transformable graphs. The qualita-
tive properties of graph-based models gain in value 
as systems and their dynamics get more compli-
cated. This means that the internal development ac-
tivity and the nature of intended behavior should be 
taken into consideration in models. The qualitative 
properties of graphs that are evident in self-organi-
zation modeling play a specific role in this case. The 

use of graphs will allow to restore the structure of 
the system automatically and qualitatively. Further-
more, a graph representation of a network system 
gives not only a visual representation, but also al-
lows the application of algorithms already known.  

It was observed that network patterns could be 
used to synthesize network systems with different 
topologies. Graphs synthesized and modified on the 
basis of isomorphic subgraphs (patterns) have been 
called fractal (self-similar) graphs [2, 3]. The ability 
to transform the structure over existing subgraphs, 
as well as the ability to represent models with 
smaller graphs and map on mathematical metrics of 
similarity [4] allows for a decreasing dimension of 
the solving task, are all qualitative properties of 
fractal graphs. Fractal graphs are synthesized by 
performing simple operations on initial graphs.  

The Kronecker product [5] and fractal algebra 
are two methods for synthesizing fractal graphs. 
Thus, the Kronecker product is applicable to tensor 
computation for data analysis [6] and have been 
proven to be one of the most promising models for 
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real-world networks [7]. It is a technique for con-
structing self-similar adjacency matrices, resulting 
in a block matrix that can be visualized with graphs. 
Kronecker graphs are useful for theoretical analysis 
and proof because they contain many significant 
patterns of realistic networks. The model really fits 
the real networks. Furthermore, there exist efficient 
algorithms for locating graphs that fit key patterns 
in real networks. Many applications, such as graph 
compression, extrapolation, sampling, and data 
anonymization, can be constructed on top of Kron-
ecker graphs. Despite this, they are still the subject 
of research. 

Another way to construct fractal graphs is based 
on simple operations over the pattern described by 
the initial graph. Operations are systematized into 
fractal algebra [8, 9]. In the paper, algebraic algo-
rithms for the synthesis of fractal graphs such as lin-
ear graphs, grids, hypercubes, and trees are intro-
duced. The representation of adjacency matrices of 
these  fractal graphs in the form of tensors [10] is 
developing as part of underlying algebraic method. 
Definitions of dynamically modifiable adjacency 
matrices [11] and the transformation principles that 
drive them are provided for these purposes [12–14]. 
This made it possible to form tensor models of frac-
tal graphs by combining their adjacency matrices 
with the event vector of graph synthesis.  

The paper is organized as follows. In the first 
section, both the fractal graph-based elastic model 
and its tensor presentation are introduced. The sec-
ond section considers tensor models of elastic frac-
tal graphs based on the Kronecker product and alge-
braic operations. The translation of the fractal 
algebra operations over graphs into tensor opera-
tions is given. In the third section, the properties of 
elastic fractal graphs and their associated tensor 
models are analyzed. Conclusions and contributions 
are presented in the later section. 

1. Fractal Graph�based Dynamics 

In this section, the fractal graph-based elasticity 
model and its tensor presentation are given. For ma-
trices and vectors, the standard notation in bold 
italic format is used (e.g., A, K). 

A. Fractal graph-based elasticity network model 

The elastic concept involves transforming the 
system capacity on demand when the workload is 

changed. The incremental, decremental, and iterative 
nature of elastic networks directly impacts graph-
based simulation and graph dynamics  
[15, 16]. The maximum workload that the system 
can handle in terms of request count is determined 
by the service's capacity. In order to achieve a bal-
anced workload among the various vertices and 
control the system workload, the use of a fractal bi-
nary tree to control the system capacity can be con-
sidered. Let's look at a simplified example.  

The initial elastic system capacity of 1,000 re-
quest per event is represented by a single vertex. To 
visualize the vertex a rectangle is used. The newly 
created vertices are denoted with white rectangles. 
At event 2, with an increase in workload to 2,000 
requests per minute, it becomes necessary to in-
crease the system capacity. A new vertex is nested 
in to the initial vertex, and its value is set to the ca-
pacity of 1,000 requests per minute. The total sys-
tem capacity was increased to 2,000 requests per 
minute. Table 1 shows the workload that character-
izes the data processed by a service's operations. 
The workload is based on fluctuating user demand 
over an 18-hour period, represented by events. Fur-
thermore, the workload exhibited in Table 1 demon-
strates fractal graph dynamics that could potentially 
affect the processing efficiency of the service's op-
erations. 

Table 1. Elastic system workload, events,  
and fractal graph dynamics 

Event Workload Graph  

1 1,000  

2 2,000  

3 3,000  

4 6,000  

5 7,000  

6 4,000  

7 2,000  

8 1,000  

9 10  

 
Further, all the events in the system from Table 1 

are taken into account.  
At event 3, an increase in workload to 3,000 re-

quests per minute requires an increase in the system 
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capacity. A new vertex is nested into the initial ver-
tex to the right. 

At event 4, a new three vertex is nested into low 
level of the graph from left to right as a result of an 
increase in workload to 6,000 requests per minute. 

At event 5, an increase in workload to 7,000 re-
quests per minute was observed, necessitating an-
other increase in capacity. There is currently an 
empty vertex on the right branch of the binary tree. 
A new vertex is nested to fill this empty vertex. 

At event 6, the workload decreased to 4,000 re-
quests per minute, allowing for a reduction in the 
system's capacity by removing 3 vertices from the 
lower level of the graph. 

At event 7, a decrease in workload to 2,000  
requests per minute allows for the removal of 2  
vertices from the lower level of the graph, reducing 
the capacity to 2,000 requests per minute. 

At event 8, a decrease in workload to 1,000 re-
quests per minute allows for the removal of 1 vertex 
from the lower level of the graph, reducing the ca-
pacity to 1,000 requests per minute. 

At event 9, a further decrease in workload is ob-
served to 10 request per minute, rendering any 
changes to the system's capacity unnecessary. 

It is possible to create different graphs corre-
sponding to a variety of elasticity granularities by 
changing capacity units and strategies for changing 
system capacity.  

The fractal graphs [17] dynamics of the networks 
satisfy the elasticity requirement. 

Def.1. A graph G = (V,E) consists of a finite set 
of vertices V = {v1,v2,...,vn} and a finite set of edges  
E={e1,e2,...,em}, for each edge ei E is unordered 
pairs of vertices ei  = (vi,vj). 

The number of vertices |V| defines the order of a 
graph, and the number of edges |E| defines the size 
of a graph. 

Def.2. A graph g0 = (V0, A0) is a subgraph of  
G = (V,A) if V0 ⊆ V and every edge of g0 is also an 
edge of G.  

The subgraph g0 (not a null subgraph) of a graph 
G is a component of G in two cases: 

 if g0 is a single isolated vertex of G  
 or if g0 is an induced subgraph, i.e., g0 is 

formed from a subset of the vertices and edges of the 
graph G and any two vertices are connected to each 
other by paths.  

Def 3. The simplest fractal graph-based model 
Gd consists of the initial component g0 and the iter-
ated function f: 

Gd = f(f(...f(g0))) = fd(g0), where (1) 

f: G → G is an iterated function d = 1,2,...,n times, 
is written as follows: 

  g0  is the initial component,  
  g1  = f(g0) 
    g2  = f(g1) 
       . . .  
      Gd  = f(gd-1) 
The result of the iteration function f is a graph 

Gd. The graph Gd consists of the isomorphic (self-
similar) set of graphs g0 and is called fractal.   

The elastic systems are transformed in time, both 
in the direction of increasing capacity with an increas-
ing workload (the system uses reserved resources and 
is deployed) and in the direction of decreasing capac-
ity (the system frees up resources and folds). 

Let the fractal dynamic graph-based model  
Gd = fd (g0) be given and the iterated function f sim-
ulate the increasing capacity. Then decreasing ca-
pacity is simulated by the inverse function fd

-1 (g0). 
This forms an elastic model. 

 Def 4. The elastic fractal graph-based model Gd
e 

is as follows: 

ௗܩ	
 ൌ ൜ ௗ݂ሺ݃ሻ	, ݃݊݅ݏܽ݁ݎܿ݊݅	݈݀ܽ݇ݎݓ	݂݅

ௗ݂
ିଵሺ݃ሻ	, ݃݊݅ݏܽ݁ݎܿ݁݀	݈݀ܽ݇ݎݓ	݂݅

	 (2) 

In general, this is a dynamical system that is 
based on dynamics of fractal graphs. 

B. Tensor presentation of elastic fractal graphs  

Additional information about the relationships 
between vertices and their hierarchical structure, 
which is not present in the structural representation, 
is provided by the tensor representation of fractal 
graphs, see Table 1 column Graph. Higher-order in-
teractions between vertices, that cannot be repre-
sented by traditional graph methods, are captured by 
the tensor-based approach, providing a more com-
plete understanding of the system's behavior.  

The simplest way to represent a graph is with an 
adjacency matrix. It describes which vertices are ad-
jacent to which other vertices in a graph and consists 
of n×n real numbers arranged in n rows and n col-
umns, where n×n are called its dimensions. The 
places in the matrix where the numbers are is called 
entries. The entry in row i and column j of the matrix 
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A is denoted by aij. An n×1 matrix is called a column 
vector of order n; similarly, a 1×n matrix is a row 
vector of order n. 

Def 5. A (G) = [aij] is an adjacency matrix of the 
graph G. The rows and the columns of A(G) are in-
dexed by V in the following way:  

ሻܩሺܣ ൌ ൣܽ൧ ൌ ቊ
1	, ݂݅	൫ݒ, ൯ݒ ∈ ܧ

0	, ݂݅	൫ݒ, ൯ݒ ∉ ܧ
					 (3) 

If the aij entry of A(G) is 0 then vertices i and j 
nonadjacent, and the aij entry is 1 for i and j adjacent. 

If aii entry of A(G) is 1 for i = j then the graph G 
is a loop-digraph, i.e., it is an undirected graph in 
which an edge can begin and end at the same vertex.  

Graph G is a simple if it is an unweighted, undi-
rected graph containing no graph loops or multiple 
edges. A simple graph may be either connected or 
disconnected.   

If aij entry of A(G) is 0 for i ≠ j then A(G) is a 
diagonal matrix. The diagonal matrix is denoted 

݀݅ܽ݃ሺܽଵଵ, ܽଶଶ, … , ܽሻ ൌ 
ܽଵଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܽ

൩ 

If  aij entry is 1 for all i, this matrix reduces to the 
identity matrix In of the order n.  

ଵܫ ൌ ሾ1ሿ, ଶܫ ൌ ቂ1 0
0 1

ቃ, 

ଶܫ ൌ 
1 0 0
0 1 0
0 0 1

൩ , … , 
ܽଵଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܽ

൩ 

An adjacency matrix A(G) for a simple graph 
and a loop-digraph is a logical matrix, that is, one 
whose elements are all either 0 or 1. The adjacency 
matrix A(G), for an undirected graph G is symmet-
rical about the main diagonal. This is because if ver-
tex i is adjacent to vertex j, then j is adjacent to i. 

A multidimensional matrix is a tensor related to 
a vector space. The order of a tensor, given by m, is 
defined by the number of directions (dimensions) it 

has. Each dimension is called a mode. The adja-
cency matrix has 2 dimensions. The tensor model 
occurs because the sequence d = 1,2,...,n of the Gd

e 
presents a 1×d row vector. 

Def. 6. Tensor model T (Gd
e) of elastic fractal 

graphs Gd
e combines the adjacency matrix with 1×d 

row vector and it is a 3-order tensor.  

2. Tensor Models Based  
on Elastic Fractal Graphs  

In this section, both tensor models of elastic frac-
tal graphs based on the Kronecker product and alge-
braic operations are considered. The properties of 
adjacency matrices associated with the generation 
of graphs are revealed. Their comparative analysis 
is given.  

А. Tensor models based on Kronecker elastic  
fractal graphs 

The Kronecker product of two graphs is the 
product of its respective adjacency matrices. 

Def. 7. Kronecker product of an adjacency  
matrices A = [ai,j] and B of sizes n×n and m×m 
respectively is an adjacency  matrix C of dimensions 
(n ▪ m)×(n ▪ m) is given by  

ܥ ൌ ܤ⊗ܣ ൌ	 
ܽଵଵܤ ⋯ ܽଵܤ
⋮ ⋱ ⋮

ܽଵܤ ⋯ ܽܤ
൩ 

Kronecker product is a way of generating self-
similar matrices. Let initial graph g0 is a pattern, 
which defines by  adjacency matrix K0 (g0), see 
Fig. 1. The graph g0 is a loop-digraph: each vertex 
has loop edge. 

Fig. 2 shows intermediate stage of Kronecker 
product of initial graph g0 with itself g1 = g0 ⊗g0. 
Each of the v1, v2, v3 vertex gets expanded into 3 
subgraphs similar to g0, which are then linked.  

Fig. 3 shows the corresponding graph g1 = g0⊗g0 

and adjacency matrices K1(g1) = K0ሺg0) ⊗ K0ሺg0)  

ሺ݃ሻܭ ൌ 
1 1 0
1 1 1
0 1 1

൩ 

Fig. 1. Adjacency matrix K0(g0) and graph g0 Fig. 2. Intermediate stage of Kronecker product 
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Consider a fractal graph model that is based on 
the Kronecker product. The left and right parame-
ters of the Kronecker product for the graph g1 are 
the same: g1 = g0⊗g0. Because of it, the iterated 
Kronecker product ⊗	for graphs can be presented 
as g1 = ⊗(g0). Then a dynamic fractal graph Kd is 
obtained as follows: 

Kd = ⊗d (g0) (4) 

The inverse product Kd = ⊗d
-1(g0), stated in 

terms of the product ⊗d
-1(g0) = ⊗d-1(g0), if i > 0. As 

a result, the elastic Kronecker product-based graph 
Kd

e  is as follows:  

ௗܭ	
 ൌ ൜

⊗ௗ ሺ݃ሻ	, ݃݊݅ݏܽ݁ݎܿ݊݅	݈݀ܽ݇ݎݓ	݂݅
⊗ௗ

ିଵ ሺ݃ሻ	, ݃݊݅ݏܽ݁ݎܿ݁݀	݈݀ܽ݇ݎݓ	݂݅
 (5) 

Fig. 4. shows the tensor T (Kd
e (g0)) of elastic 

fractal graph Kd
e, where g0 is defined as in Fig. 1. 

The Kronecker product has the following fractal 
graph properties: 

 If a zero-entry is determined in an adjacency 
matrix K(g0), then a product by zero gives 0. As a 
result, it is preferable that the initial graph contain as 
few zero-entry points as possible. 

 Therefore, loop-digraphs are often used for 
modeling, as they contain fewer zero-entry com-
pared to simple graphs.  

 The growth number of the vertices (n,n) de-
pends significantly on the order of the initial sub-
graph g0. 

 Mapping to metric space gives similarity in 
accordance with fractal dimension. 

B. Tensor models based on algebraic operations 
over elastic fractal graphs  

Operations over a graph G and how they are 
translated into tensor operations are defined. The 
operations are systematized into algebra GA. 

Def. 8. Let GA be an algebra over a graph G, 
with the set of  operations ∆: 

GA= < G, ∆ >, where  (6) 

∆ = { ≡, ↔,  ÷} is a set of uniquely invertible oper-
ations. These operations are described below. 

≡ is a replication (≡-1  is an invertible replication). 
This is a simple unary operation on the graph g.  
g' = g≡, where component g' is a replication of the 
graph g. If its writing was omitted by just writing 
down the component g' the operation is executed by 
default. 

Let A (g) be an adjacency matrix of the subgraph 
g  G. The replication A (g)≡ is a block diagonal 
matrix whose off-diagonal blocks are zero matrices 
and diagonal blocks are equals to A (g') = A (g). The 
diagonal matrix is denoted: 

ሻܩሺܣ ൌ 
ሺ݃ሻܣ 0
0 ሺ݃ᇱሻܣ

൨ ൌ ݀݅ܽ݃ሺܣሺ݃ሻଵଵ,  ሺ݃ᇱሻଶଶሻܣ

The upper index c denotes that matrix A (G)c has 
only two blocks, and graph G has only two equal 
components, g and g'.  

↔ is a connection of the two components by ver-
tices. (↔-1  is an invertible connection or disconnec-
tion). This is a simple binary operation between the 
vertices of two components, g ↔ g'.  

A square zero block matrix I is formed for the 
connection of two components, g and g'. The size of 
I is the same as that of A (g). The connected vertices 
of the components g and g' are correspondent by the 
entries of the matrix I (g ↔ g') that is assigned 1. 
The matrix I (g ↔ g') is entered in a descending di-
agonal from right to left instead of 0. 

ଵܭ ൌ ܭ ⊗ ܭ ൌ 
ܭ ܭ 0
ܭ ܭ ܭ
0 ܭ ܭ

൩ 

Fig. 3. Kronecker product: g1 = g0⊗g0  and K1(g1) = K0(g0) ⊗ K0(g0) 

Fig. 4. Tensor T (Kd(g0)), d = 2 
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ሻܩሺܣ ൌ 
ሺ݃ሻܣ ሺ݃ܫ ↔ ݃ᇱሻ

ሺ݃ܫ ↔ ݃ᇱሻ ሺ݃ᇱሻܣ
൨ 

÷ is a subdivision of the edge by inserting a new 
vertex into the edge (÷-1 is an invertible subdivi-
sion). The vertex does not belong to the graph. It is 
a composition operation of the two components 
with a new vertex. 

The two column vectors I the same order are 
formed for the composition of two components, g 
and g'. If A (g) has an order d, then the order of the 
column vector I is d, if d = 0 then I = [0].      

The column vector I has an entry equal to 1 iff 
its vertex is connected to A (g) with A (g'). IT is the 
transpose of the column vector I into a row vector. 
It should be noted that for the composition of the 
two components, one vertex is enough, i.e., only 
two entries equal to 1. 

ሻܩሺܣ ൌ 
ሺ݃ሻܣ 0
0 ሺ݃ᇱሻܣ

൨ ൊ ሾIሿ ൌ 
ሺ݃ሻܣ 0 ܫ
0 ሺ݃ᇱሻܣ ܫ
்ܫ ்ܫ 0

 

The result of the operation subdivision of the 
edge is an adjacency matrix A (G) of tree-like graph 
G. The row vector IT gives a symmetrical adjacency 
matrix. 

Gd  = ∆d (g0) is a fractal graph, as shown in for-
mula 1. 

Consider fractal graphs and the algebraic opera-
tions that are used to synthesized them from the  
initial graph g0 with one vertex. 

Fundamental fractal graph algorithms such as 
linear graphs, grids, hypercubes, and trees are writ-
ten down in an ordered sequence by the algebraic 
operations ∆.  

The linear, grid fractal graphs are represented in 
the cube topology.  

Algorithm 1. The linear fractal graph Ld = ∆d(g0), 
where ∆ = (vg0) ↔ (v'g0'), see Fig. 5. Ld  is sim-
ple graph, d = 3.  

An adjacency matrix L(Ld) using block matrices 
is written as follows:: 

ሺ݃ሻܮ ൌ ሾ0ሿ, ܮଵሺ݃ሻ ൌ 	 
ܮ ଵܫ
ଵܫ ܮ

൨= ቂ0 1
1 0

ቃ, 

ଶሺ݃ሻܮ ൌ 	 
ଵܮ ଶܫ



ଶܫ
 ଵܮ

൨ ൌ 

0 1
1 0

0 0
0 1

	0 0
	0 1

0 1
1 0

	 , …, 

ௗሺ݃ሻܮ ൌ 	 ቈ
ௗିଵܮ ௗܫ



ௗܫ
 ௗିଵܮ

 

A square block matrix I1
L = 0, and Id

L for d > 1 has 
d,d-entry equal to 1 with all other entries equal to 0. 

Algorithm 2. The grid fractal graph GRd = ∆d(g0), 
where ∆ = (vig0) ↔ (vi'g0'), (vjg0) ↔ (vj'g0'). 
vi,vj, i ≠ j – two pairs of isomorphic vertices of the 
graph g0 and component g0', see Fig. 6. GRd is sim-
ple graph, d = 3. 

An adjacency matrix G(GRd) using block matri-
ces is written as follows:  

 

 g0                 g1                             g2                                       g3 
  

Fig. 5. The linear fractal graph Ld = ∆d(g0), d = 3 

 

 g0                 g1                      g2                                       g3 
  

Fig. 6. The grid fractal graph GRd = ∆d(g0), d= 3 
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ሺ݃ሻܩ ൌ ሾ0ሿ,	ܩଵሺ݃ሻ ൌ 	 
ܩ ଵܫ
ଵܫ ܩ

൨=ቂ0 1
1 0

ቃ,  

ଶሺ݃ሻܩ ൌ 	 
ଵܩ ଶܫ
ଶܫ ଵܩ

൨ ൌ 

0 1
1 0

1 0
0 1

	1 0
	0 1

0 1
1 0

	 , …, 

ௗሺ݃ሻܩ ൌ 	 ቈ
ௗିଵܩ ௗܫ

ீ

ௗܫ
ீ ௗିଵܩ

 

A square block matrix Id
G for d =3 and the grid 

width equals 2 has d-1,d+1-entry equal to 1, and 
d,d+2-entry equal to 1. 

Algorithm 3. The hypercube fractal graph  
Hd = ∆d(g0), where ∆ =  v,v' (vg0) ↔ (v'g0'), 
see Fig. 7. Hd is simple graph, d = 3. 

An adjacency matrix H(Hd) using block matrices 
is written as follows:  

ሺ݃ሻܪ ൌ ሾ0ሿ,	ܪଵሺ݃ሻ ൌ 	 
ܪ ଵܫ
ଵܫ ܪ

൨=ቂ0 1
1 0

ቃ, 

ଶሺ݃ሻܪ ൌ 	 
ଵܪ ଶܫ
ଶܫ ଵܪ

൨ ൌ 

0 1
1 0

1 0
0 1

	1 0
	0 1

0 1
1 0

	 , …, 

ௗሺ݃ሻܪ ൌ 	 
ௗିଵܪ ௗܫ
ௗܫ ௗିଵܪ

൨ 

For the hypercube, a block matrix In is identity 
matrix, see Def. 5.  

For the considered algorithms, operations ∆ iter-
ate the initial graph g0, which has one vertex.  

Algorithm 4. The binary tree fractal graph Bd = 
∆d(g0), where ∆ = (vg0) ↔ (v'g0'), (vg0) ÷ (v'
g0'). v, v' – highlighted not only the graph's verti-
ces and the component g0  and g0' but also edge e = 
(v, v') for operation ÷. A comma separates the two 
operations on the connection of the components and 
the subdivision of the edge e = (v, v') of the graph 
Bd, see Fig. 8, d = 2. 

The algorithm 4 is shown in two steps: first, the 
connection operation is performed, and then the sub-
division is performed. The binary tree graph Bd is a 
simple graph.  

In the Fig. 8, the edges vertices of subdivision 
operations are marked with a dotted line. An adja-
cency matrix B(Bd) using block matrices is written 
as follows:: 

ሺ݃ሻܤ ൌ ሾ0ሿ, 

ଵሺ݃ሻܤ ൌ 	 
ܤ 0
0 ܤ

൨ ൊ ൣI
൧=ቂ0 0

0 0
ቃ ൊ ሾI

ሿ=
0 0 1
0 0 1
1 1 0

൩ ,…, 

 

 g0                 g1                         g2                                       g3 
  

Fig. 7. The hypercube fractal graph Hd = ∆d(g0), d= 3 

 

g1 = g'÷  e  

 v 
 

 e 

g2 = g' ÷ e   

g = g0 ↔ g0'   g = g1 ↔ g1'  

 v 

  g0                    g1                                                            g2 

  
 e 

 

Fig. 8. The binary tree fractal graph Bd, d = 2 
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ௗሺ݃ሻܤ ൌ 	 
ௗିଵܤ 0
0 ௗିଵܤ

൨ ൊ ൣIୢିଵ
 ൧ 

The subdivision ÷ operation of the edge for bi-
nary tree has next algorithm:  

1. The two column vectors IB
d the order d are 

formed. 
2. If d = 0 then IB

0 = [1], if d > 0, then  
IB

d =[i1.d-1] = 1, for each column vectors. 
3. The subdivision operation is executed.  
The elastic fractal graph-based model (Def. 4) 

and equivalent tensor models can be obtained using 
algebraic invertible operations. The Table 2 shows 
algebraic types of fractal graph-based models. 

The algebraic fractal graphs have the following 
properties: 

 The tensor representation is specified in the 
form of block-type tensors with changeable dimen-
sions for the replication operation. As a result, the 
presence of zero-entry points in the initial graph is 
not so important as it is for the Kronecker product. 
For modeling, both simple graphs and loop-di-
graphs can be used. 

 The growth number of the vertices of the 
graph after algebraic operations depends on the or-
der of the initial graph g0, and depends on the con-
sequence of replication operations as well as subdi-
vision operations.  

3. Analysis of Fractal Graphs 

Analysis of elastic fractal graphs must take into 
account the properties of graphs [18, 19], and tensor 
models [20]. 

A. Analysis properties of fractal graphs 

Self-similarity is the most important property of 
fractal graphs. The properties that remain un-
changed under the transformation of fractal graphs 
are the initial components of the graphs from which 

they were synthesized. Similarity gives the oppor-
tunity to reconstitute a damage model based on a 
graph. Elastic fractal graphs have the ability to in-
crease and decrease in dimensions. 

B. Tensor Model Analysis 

In the paper, adjacency square matrices and 
block square matrices and their corresponding 
graphs were considered. Adjacency square matrices 
are symmetric, diagonal matrices, and block square 
matrices. The matrix fractality of graphs can be 
specified both by the Kronecker product and by 
block matrices. 

Elastic tensor models have the ability to increase 
and decrease their dimensions without decomposition. 

Conclusion 

The contribution of this paper refers to the devel-
opment of graph-dynamic models. In this regard, it 
is important to convert large-scale problems to sim-
plified fractal models. This research yielded a gen-
eralization of many techniques to fractal graphs and 
their evolution. The following are ways in which the 
paper contributes: 

 The extension of fractal algebra, using tensor 
algebra and the Kronecker product; 

 Introducing various types of tensors and opera-
tions that facilitate the formation of fractal graphs; 

 Identifying two types of fractal tensors: 
nested fractal tensors, which are based on Kron-
ecker products, and symmetric fractal tensors, 
which are based on copying the original adjacency 
matrices. These new methods expand the possibili-
ties of utilizing fractal graphs. 

The author envisions continuing work in two di-
rections: managing and planning elastic calculations 
based on fractal tensors, and identifying the proper-
ties of tensor operations on adjacency matrices of 
fractal graphs. 

Table 2. Fractal type graph�based models  

Graph type 
Fractal graph network models  

Fractal graph Elastic Fractal graph  Tensor 

Linear  Algorithm 1. Ld = ∆d(g0) Ld
e T(Ld

e) 

Grid Algorithm 2. GRd = ∆d(g0)  GRd
e T(GRd

e) 

Hypercube Algorithm 3. Hd = ∆d(g0) Hd
e T(Hd

e) 

Tree Algorithm 4. Bd = ∆d(g0) Bd
e T(Bd

e) 
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Тензорные модели фрактальных графов для эластичных сетей 

А. С. Семенов 

Московский авиационный институт (Национальный исследовательский университет), Москва, Россия 
 
Аннотация. В статье представлены результаты исследований фрактальных (самоподобных) гра-
фов применительно к эластичным вычислениям. Характерной особенностью таких графов, явля-
ется возможность их разворачивания (увеличения размерности) и сворачивания (уменьшения 
размерности). Рассмотрены два подхода к формированию фрактальных графов: на основе про-
изведения Кронекера и фрактальной алгебры. Представлена взаимосвязь алгебраических опера-
ций формирования фрактальных графов (линейные графы, сетки, гиперкубы и деревья) с тензор-
ными операциями и тензорным представлением на основе интеграции матриц смежности и 
вектора событий эластичной системы. Введены определения соответствующих типов динамиче-
ски изменяемых тензоров. Проведен анализ свойств эластичных фрактальных графов и связан-
ных с ними тензорных моделей. 
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