
ПРОГРАММНАЯ ИНЖЕНЕРИЯ

86 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023

A Survey on Machine Learning Techniques
for Software Engineering

J. Asaad, E. Y. Аvksentieva

ITMO University, St. Petersburg, Russia

Abstract. Machine learning (ML) environments offer a variety of methods and tools that help to solve
problems in different areas, including software engineering (SE). Currently, a large number of researchers
are interested in the possibilities of using various machine learning techniques in software engineering.
This paper provides an overview of machine learning techniques used in each stage of the software devel-
opment life cycle (SDLC). The contribution of this review is significant. Firstly, by analyzing sources from
bibliographic and abstract databases, it was found that the topic of integrating machine learning techniques
into software engineering is relevant. Secondly, the article poses questions and reviews the methodology
of this research. In addition, machine learning methods are systematized according to their application at
each stage of software development. Despite the vast amount of research work on the use of machine learn-
ing techniques in software engineering, further research is required to achieve comprehensive comparisons
and synergies of the approaches used, meaningful evaluations based on detailed practical implementations
that could be adopted by the industry. Thus, future efforts should be directed towards reproducible research
rather than isolated new ideas. Otherwise, most of these applications will remain poorly realized in practice.

Keywords: machine learning, software engineering, software development life cycle.

DOI 10.14357/20718632230408 EDN ADARZK

Introduction

Nowadays, it's difficult to pass a day without
seeing or reading an article on machine learning
(ML), data mining, big data analytics, artificial in-
telligence (AI), and the profound changes they are
bringing to society, particularly after releasing
ChatGPT in November 2022.

Machine learning deals with the issue of how to
build programs that improve their performance
through experience. Machine learning algorithms
have proven to be of great practical value in a vari-
ety of application domains. Machine learning has
been successfully applied in many areas of software
engineering, ranging from features extraction to
testing to bug fixing. If software developers had a
better grasp of machine learning approaches, their
assumptions, and guarantees, they might adopt and

select the best techniques for their intended applica-
tions. To meet the needs of changing approaches to
software development, future software engineering
(SE) techniques and tools will need to be much
more automated, lightweight, adaptable, and scala-
ble to keep pace with increased developer produc-
tivity. The increasing reliance on applications with
machine learning (ML) components calls for mature
engineering techniques that ensure these are built in
a robust and future-proof manner.

Furthermore, software is an indispensable compo-
nent of the majority of systems and is integrated into
the daily lives of society. With the advancement of
technologies such as open systems and highly auto-
mated or networked devices, software systems are
becoming very complex [1]. Additionally, several
people from different areas of expertise are usually
required to be involved in a software project, which

A Survey on Machine Learning Techniques for Software Engineering

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 87

also increases its complexity. Since software
is developed by humans, it is usual that people
make mistakes; thus, in every commercial piece of
software, some errors always occur [2], and as the
level of complexity increases, these error ratios be-
come even higher [3]. Automating the SDLC pro-
cess through machine learning may solve all these
problems. Consequently, we will try to detail sev-
eral software engineering cases where machine
learning has already been attempted effectively.

1. The research question
and methodology

The aim of this study is to find out which ma-
chine learning methods have been used in the soft-
ware development life cycle and their performance.
This research will enable us to recognize the short-
comings that should be considered to enhance the
efficiency of these methods.

The following questions inspire this research:
RQ1: What categories of software applications

were found or reported in the current phase?
RQ2: Which ML algorithms have been utilized

in this phase?
RQ3: How did ML-based techniques perform?

Do ML-based techniques perform better than non-
ML-based ones?

Structuring the literature review involved break-
ing down the overall task into several smaller steps
so as to enable us to explore the literature for system-
atically extract relevant information. Firstly, key
search strings were utilized: ‘Machine learning for
software engineering’, ‘Machine learning + software
engineering’, ‘Machine learning for SDLC’, ‘Ma-
chine learning + (and | for | +) + software require-
ment’, ‘Machine learning + (and | for | +) + software
design’, ‘Machine learning + (and | for | +) + software
testing’, ‘Machine learning + (and | for | +) + software
construction’ and ‘Machine learning + (and | for | +)
+ software maintenance’ so as to identify a baseline
set of research papers. Google, Google Scholar, and
digital libraries of publications from ACM and IEEE
were used to find these publications.

Following the completion of the initial phase of
the literature review, the shortlists for each search
term were further evaluated. The relevance of pub-
lications was examined by reading each abstract and
conclusion. Each publication was sorted according
to the number of citations it had and the year it was

published. The next step of the process involved
reading the publications in detail and making further
evaluations in relation to their relevance. Overall,
the results of this systematic approach are present in
Section 3.

2. Background and related works

The interaction between software engineering (SE)
and machine learning (ML) has been studied by re-
searchers for a long time [1-3]. The first Symposium
on Software Engineering for Machine Learning Ap-
plications (SEMLA) at Polytechnique Montréal was
organized on 12 and 13 June 2018, with the support of
Polytechnique Montréal’s Department of Computer
Engineering and Software Engineering, the Institute
for Data Valorization (IVADO), SAP, and Red Hat.
Around 160 participants from 160 different countries
attended the event, including students, professors, and
professionals from the business sector.

On the other hand, other studies draw attention
to the gap between the communities of SE and ML.
The focus of these groups may be one factor in this
separation, the ML community is concerned with al-
gorithms and their performance, while the SE com-
munity is concerned with developing and deploying
software-intensive systems [4].

Two areas of synergy are revealed when the ex-
pertise and experience of these two communities are
combined:

The phrase "SE for ML" refers to tackling nu-
merous SE responsibilities for engineering ML sys-
tems, such as designing, creating, and maintaining
software systems that support ML. Researchers are
attempting to pinpoint the distinctions between de-
signing ML systems and conventional software in
order to create new strategies and tools to address
these disparities.

In contrast, the phrase "ML for SE" refers to ap-
plying or adapting AI technologies to address vari-
ous SE tasks, such as software fault prediction, code
smell detection, reusability metrics prediction, and
cost estimation , etc. Researchers utilize ML models
obtained from SE data (source code, requirement
specifications, test cases, etc.) to engineer software
more efficiently and effectively.

Machine learning (ML) is a branch of research
that offers computers the capacity to learn without
being explicitly programmed. It was first described
by Arthur Samuel in 1959.

ПРОГРАММНАЯ ИНЖЕНЕРИЯ J. Asaad, E. Y. Аvksentieva

88 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023

The term “software engineering” was created in
1972 by David Parnas. Software engineering is de-
fined by the IEEE as “the application of a system-
atic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software;
that is, the application of engineering to software”.
Software development methodology is the process
that uses organizational processes to carry out the
required procedures for the analysis, design, imple-
mentation, and maintenance of information sys-
tems. Software projects must be well prepared and
planned for in order to succeed and produce high
quality software on schedule.

The software development life cycle (SDLC) is
the main element in software development. It is the
entire process of building any software product.
There are various types of SDLC methodologies, for
instance, Agile, Waterfall, DevOps, V-Model, Iter-
ative, Dynamic System Development Model, Ex-
treme Programming, Feature Driven Development,
Joint Application Development, Spiral, Rapid Ap-
plication Development, and Lean methodology.

Generally, the phases that constitute the software
development life cycle include requirements analysis,
design, implementation, testing, and maintenance [5].

At the present time, software engineering has
transitioned from traditional waterfall models to ag-
ile software development. A waterfall model is a se-
quential process where the success of each stage de-
pends on the success of the previous stages. All
requirements are thought to be clearly established at
project inception and essentially stable after that.
Agile processes are iterative software development
techniques that offer adaptability and flexibility in
response to changing conditions while producing
high-quality software. It emphasizes informal,
adaptable project management that will improve
communication and transparency.

This paper focuses on machine learning for soft-
ware engineering by systematically reviewing the
machine learning literature for software develop-
ment tasks.

3. Machine learning for software
engineering

As we mentioned, the software development life
cycle (SDLC) consists of five phases [5]. In this sec-
tion, we will discuss the research questions for each
phase of the SDLC.

3.1. ML for requirement engineering

Throughout the software development process,
requirement engineering (RE) is essential. Prioriti-
zation and requirement identification are the key
stages of the RE process [6].

RQ1: The ML-based techniques were used for
the identification of different types of software re-
quirements: functional requirements (FRs) [7-11]
and nonfunctional requirements (NFRs) [12-18].

RQ2: Although there are a multitude of different
machine learning algorithms and approaches avail-
able for text processing, they may be broadly di-
vided into two groups: supervised learning algo-
rithms (SL) and unsupervised learning algorithms
(USL). In addition, between supervised and unsu-
pervised learning algorithms, there is another form
termed semi-supervised learning (SSL).

The outcome of this RQ revealed that there were
mainly two different machine learning algorithms
identified in the selected primary research studies.
These machine learning algorithms basically fall
into two types: SL and USL ML algorithms.

Besides, we found that there are primary studies
that used thematic analysis or qualitative coding
techniques. As well, the selected studies depict that
USL algorithms, specifically Latent Dirichlet Allo-
cation (LDA), are the most popular type of machine
learning algorithm. Support Vector Machine (SVM)
was the second-most popular ML algorithm cate-
gory. It was quite interesting to observe that a few
of the selected primary studies did not use any algo-
rithm and used thematic coding or qualitative cod-
ing techniques for identifying and classifying the
different types of software requirements.

The three primary parts of the process might be
categorized as follows:

 text preprocessing, which involves removing
any unnecessary text from the data.

 applying the various ML algorithms is basi-
cally what the learning step entails.

 analyzing or evaluating an ML algorithm's
methodology.

The chosen research articles revealed a total of six
alternative Natural Language Processing (NLP) pre-
processing methods. The following is a quick expla-
nation of the many preprocessing methods found.

Stop words removal is the act of eliminating spe-
cific auxiliary verbs from the text, such as "be,"
"do," and "have," as well as distinct articles such as

A Survey on Machine Learning Techniques for Software Engineering

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 89

"the," "a," and "an" [19]. Splitting a statement into
words is a technique known as tokenization [20].

The act of making the text into a standard style,
such as lowercase or uppercase, is known as case
unification. Stemming is the process of taking a
term and reducing it to its base or origin. For in-
stance, terms like "goes," "gone," and "going" will
all be shortened to "go." [19]. Punctuation removal
is the process of removing different punctuations
like commas, semicolons, question marks, and ex-
clamation marks. On the other hand, some studies
averaging lack reporting about using any of the pre-
processing step’s majorities of the chosen primary
research studies regard machine learning-based
techniques as 'black boxes,' providing no specific
description of how these techniques truly operate.

RQ3: Not every study that was chosen has tested
its performance evaluation criterion. Although the
LDA and SVM were utilized in several different re-
search articles, it was quite significant to observe
that their performance results considerably varied
from one another. For instance, the LDA algorithm
performs well in one study [16], nevertheless, it
does not perform that good in another study [17].

3.2. Software Design

In the software development life cycle, it is the
most inventive phase. This phase's objective is to ar-
range or plan the required definition. It is the plan-
ning and issue-solving process for a software solu-
tion. It involves software designers and developers
specifying the strategy for a fix. This phase results
in a software design document (SDD).

Software design is a highly complex and chal-
lenging activity. Nevertheless, using software design
patterns makes this phase more organized. A soft-
ware design pattern can be defined as a presupposed
structure of classes organized and interacting in a par-
ticular manner to solve a recurring design problem.

RQ1: The studies show that ML is able to be
used to avoid some problems in this phase, for in-
stance, detection of the bad smells earlier [5], mean-
ing detecting symptoms that the system's design or
programming may be flawed [21]. As well, ML-
based techniques are able to be used in design pat-
tern recognition (adapter, strategy) [22]. Further-
more, some studies experimented with five design
patterns (Singleton, Adapter, Composite, Decora-
tor, and Factory Method) [23].

Some types of SDLC, for instance, Agile, divide
the architecture of a system into components. Conse-
quently, the selection of software components is part
of the design phase. Some studies suggest a novel ap-
proach to machine learning [24], which can assist in
the selection of reusable software components.

RQ2: The following machine learning models
have been used for experiments in the selected stud-
ies: logistic regression, random forest, IBk [5], neu-
ral network and decision tree [22], zero, one, Nave
Bayes, JRip, C4.5, SVMs (with different kernel
functions), simple KMeans, and CLOPE [23].

The suggested machine learning approach to se-
lecting reusable components combines the Decision
Tree and Neural Network modules to determine the
more accurate and suitable object of the software
design pattern, which may help with efficient pack-
age reuse [24].

RQ3: The authors mentioned that the selected al-
gorithms perform differently in terms of processing
speed and classification accuracy [5], and they in-
form that Naive Bayes, Logistic regression, IB1,
IBk, Random Forest have better performance than
the VFI and J48.[5]. For instance, the authors in [22]
inform us that the learning precision of the formu-
lated approach is 67–95%

Generally, the ML-based techniques performed
well in this phase. Nonetheless, the results are not
compared with other traditional techniques (non-
ML-based techniques). It's considerable to observe
that although the researchers made an effort to pro-
vide impartial results, there may still be some de-
gree of subjectivity, as long as all results are related
to the construction of the training set, which is based
on a manual design pattern labeling task.

3.3. Software construction

This phase involves turning the software design
document into code using a programming language.
It results in program code; thus, it is the logical one.

RQ1: The studies show that ML models are used
for code generation [25-26], documentation genera-
tion [27–28], and code modification [29–31]. The
popular models for converting ideas into code are
ChatGPT, Codex, and Alphacode. ChatGPT and
Codex are models by OpenAI. It interacts in a con-
versational way. As it is widely known, ChatGPT
answers follow-up questions, challenges incorrect
assumptions, and rejects improper demands. In ad-
dition, it is able to generate code [32]. Moreover,

ПРОГРАММНАЯ ИНЖЕНЕРИЯ J. Asaad, E. Y. Аvksentieva

90 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023

Codex is a general-purpose programming model, as
it can be applied to any programming task [33].

Additionally, Alphacode is general-purpose pro-
gramming, it can be applied to programming prob-
lems that require for deeper reasoning [34].

RQ2: The selected studies show that a wide
range of ML techniques are able to be applied to
various code generation tasks. The popular model
types used by selected studies include recurrent neu-
ral networks [25-28] and convolutional neural net-
works [30]. ChatGPT is trained using supervision
and reinforcement learning (RL). In the supervised
learning, human trainers would provide conversa-
tions in which they played both sides, the user, and
the chat bot side. Then, in the case of reinforcement
learning, those people would be given the model-
written responses to help them compose their re-
sponse [32]. This dataset was combined with the In-
struct GPT [35] dataset, which was converted to a
question-answer format.

As well as Codex based on GPT-3, a neural net-
work trained on text [35], this model has been
trained on 179 gigabytes of Python code from soft-
ware repositories hosted on GitHub projects. At the
same time, Alphacode has been trained on 715.1 gi-
gabytes of code on GitHub, in addition to
Codeforces problems.

RQ3: In general, the outcomes were not assessed,
considering more traditional techniques. Trans-
former models outperformed RNN models when the
two were compared in an evaluative study [36].
Nonetheless, ML models perform imperfectly when
evaluated on highly complex, unseen problems [32].

3.4. Software Testing

Testing is defined as “an activity in which a sys-
tem is executed under specified conditions, the re-
sults are observed or recorded, and an evaluation is
made of some aspect of the system” (ISO/IEC
24765, 2006) [37].

In the software product development process,
software testing is demanded. Any software product
must first pass through several different steps before
it can be implemented. Testing allows us to identify
issues early. Additionally, participating in testing
activities gives developers the ability to study the
criteria for critical quality aspects, pose queries, and
find solutions in advance.

Automation of software testing has been ac-
cepted as a realistic technique to get around the

complexity and expense of most testing tasks. To
find flaws in software systems, testing entails delv-
ing into their behavior. Applying machine learning
(ML) to different software testing operations has
drawn increasing interest [38].

RQ1: Machine learning was applied for statisti-
cal software testing [39], performance testing [40],
and test case generation [41].

RQ2: Q-learning was used as a model-free RL
algorithm in a smart test framework [40]. Further-
more, Model-Inference-Driven testing (MINTest) is
used for software test automation [42]. It describes
itself as a framework for unit and integration testing
on its website [43].

RQ3: The studies show that efficient automated
software testing is a challenging activity in software
development [40–42]. The resulting test suites
greatly improved in terms of defect detection [44].

3.5. Software Maintenance

According to the IEEE Standard, IEEE STD
1219-15193 [45], software maintenance is: “the
modification of a software product after its delivery
(to the customer), to correct errors, to improve its
performance or other attributes, or to adapt the prod-
uct to a modified environment”.

Understanding software maintenance helps prac-
titioners in the industry deal with many of the prob-
lems they currently experience, by reducing uncer-
tainty, improving cost-effectiveness, dependability,
and other factors [46]. This is the final stage of the
SDLC. The software being produced is distributed
to end users during this stage of the SDLC, who are
then in charge of maintaining and utilizing it in ac-
cordance with best practices.

RQ1: The most dominant application of using
ML in this phase is bug detection [47–48].

In addition, maintenance software has several
forms, for instance refactoring, which includes
switching out components or algorithms for more
elegant ones, updating data naming standards, and
improving the readability or understandability of
the code [48]. There are a few studies that discuss
building a refactoring model, for instance, An AI-
data-based approach to early quality evaluation and
enhancement of object-oriented software products
was proposed in the paper “A machine learning ap-
proach to software model refactoring” [49].

RQ2: Our study shows that a wide range of ML
techniques have been applied in this phase. However,

A Survey on Machine Learning Techniques for Software Engineering

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 91

the CNN-based deep learning model is proposed for
recognizing duplicate or similar bug reports [47]. Be-
sides, three supervised machine learning algorithms
are considered to build the model and predict the oc-
currence of the software bugs based on historical data
by deploying the classifiers logistic regression, Nave
Bayes, and decision tree [48].

A deep neural network that learns to detect the
existence of functional decomposition in UML
models of object-oriented software is used to imple-
ment model refactoring [49]. The study's proposed
method [48] uses data science techniques to obtain
an understanding of multidimensional software de-
sign aspects and then applies the knowledge ac-
quired to generalize nuanced interactions between
architectural elements.

RQ3: The selected studies don’t have very clear
and effective evaluation methods. However, some
studies show that some algorithms were able to gen-
erate 100% accuracy with train and test datasets
[48]. On the other hand, the authors mentioned that
the selected algorithm is empirically evaluated and
shows high accuracy [49]. Furthermore, as with any
ML model, the studies ensure that the results depend
on the data. For instance, the proposed system in
one of the studies provides a high accuracy rate for
the same domain datasets and a low accuracy rate
for different domain datasets [47]. In addition, the
subjective nature of software affects the evaluation
process. [49].

Conclusion

In summary, the use of machine learning tech-
niques in the software development lifecycle holds
great promise, offering valuable input to its various
stages from requirements engineering to software
maintenance. ML has demonstrated its effective-
ness in solving tasks such as software requirements
definition, design problem identification, code gen-
eration and test automation. However, there are still
major challenges, such as the lack of comparative
reliability and productivity analysis with traditional
approaches that do not use ML, and the lack of
standardized rigorous evaluation methodologies. To
fully exploit the potential of ML in software engi-
neering, future research should prioritize reproduc-
ible methodologies and rigorous benchmarking to
ensure the reliability and usability of these applica-
tions at all stages of the SDLC.

References
1. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H. and Crn-

kovic, I. A taxonomy of software engineering challenges
for machine learning systems: An empirical investigation.
In Agile Processes in Software Engineering and Extreme
Programming: 20th International Conference. 2019.
pp. 227-243.

2. Shehab M, Abualigah L, Jarrah MI, Alomari OA, Daoud
MS. Artificial Intelligence in Software Engineering and in-
verse. International Journal of Computer Integrated Manu-
facturing. 2020. vol. 33. no. 10-11. pp. 1129-1144.

3. Durelli, Vinicius HS, et al. "Machine learning applied to soft-
ware testing: A systematic mapping study." IEEE Transactions
on Reliability. 2019. vol.68. no. 3. pp. 1189-1212.

4. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol,
G., 2018. Software engineering for machine-learning appli-
cations: The road ahead. IEEE Softw.2018. vol. 35. no. 5.
pp. 81–84.

5. Maneerat N, Muenchaisri P. Bad-smell prediction from soft-
ware design model using machine learning techniques. In2011
Eighth international joint conference on computer science and
software engineering (JCSSE). 2011. pp. 331-336.

6. Talele, P. and Phalnikar, R. Software requirements classifi-
cation and prioritisation using machine learning. In Ma-
chine learning for predictive analysis. 2021. pp. 257-267.

7. Zou, J., Xu, L., Guo, W., Yan, M., Yang, D., and Zhang, X.
Which non-functional requirements do developers fo-
cuson? An empirical study on stack overflow using topic
analysis. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. 2015. pp. 446–449.

8. Ahmad, A., li, K., Feng, C., and sun, T. “An empirical study
on how iOS developers report quality Aspects on stack
overflow,” international journal of machine learning and
computing. 2018. vol. 8. no. 5. pp. 501–506.

9. Treude, C., Barzilay, O., and storey, M. A. How do pro-
grammers ask and answer questions on the web? Nier track.
In 2011 33rd International Conference on Software Engi-
neering (ICSE). 2011. pp. 804–807.

10. Zou, J., Xu, L., Yang, M., Zhang, X., and Yang, D. Towards
comprehending the non-functional requirements through
developers’ eyes: An exploration of stack overflow using
topic analysis. Information and Software Technology.2017.
vol. 84. pp.19–32.

11. Ahmad, A., Feng, C., li, K., Asim, S. M., and sun, T. To-
ward empirically investigating non-Functional require-
ments of iOS developers on stack overflow. IEEE Access.
2019. vol.7. pp.61145–61169.

12. Yin, H., and Pfahl, D. A preliminary study on the suitability
of stack overflow for open innovation in requirements en-
gineering. In Proceedings of the 3rd International Confer-
ence on Communication and Information Processing. 2017.
pp. 45–49.

13. Bajaj, K., Pattabiraman, K., and Mesbah, A. Mining ques-
tions asked by web developers. In Proceedings of the 11th
Working Conference on Mining Software Reposito-
ries.2014. pp. 112–121.

14. Pinto, G., Castor, F., and Liu, Y. D. Mining questions about
software energy consumption. In Proceedings of the 11th
Working Conference on Mining Software Repositories.
2014. pp. 22–31.

ПРОГРАММНАЯ ИНЖЕНЕРИЯ J. Asaad, E. Y. Аvksentieva

92 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023

15. Xiao, M., Yin, G., Wang, T., Yang, C., and chen, M. Re-
quirement acquisition from social q&a sites. In Require-
ments Engineering in the Big Data Era .2015. pp. 64–74.

16. Rosen, C., and Shihab, E. What are mobile developers asking
about? A large-scale study using stack overflow. Empirical
Software Engineering.2016. vol. 21. no.3. pp. 1192–1223.

17. Abad, Z. S. H., Shymka, A., Pant, S., Currie, A., and Ruhe,
G. What are practitioners asking about requirements engi-
neering? An exploratory analysis of social q&a sites. In
2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW). 2016. pp. 334–343.

18. Pinto, G. H., and Kamei, F. What do programmers say
about refactoring tools? An empirical investigation of stack
overflow. In Proceedings of the 2013 ACM workshop on
Workshop on refactoring tools. 2013. pp. 33–36.

19. A. G. Jivani, “A comparative study of stemming algo-
rithms,” International Journal of Computer Applications in
Technology.2011. vol. 2. pp. 1930–1938.

20. A. Khan, B. Baharudin, L. H. Lee, and K. Khan, “A review
of machine learning algorithms for text-documents classifi-
cation,” Journal of Advances in Information Technol-
ogy.2010. vol. 1, pp. 4–20.

21. Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E. A
review-based comparative study of bad smell detection
tools. InProceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering.
2016. pp. 1-12.

22. Ferenc R, Beszedes A, Fulop L, Lele J. Design pattern min-
ing enhanced by machine learning. In21st IEEE Interna-
tional Conference on Software Maintenance (ICSM'05)
2005. pp. 295-304.

23. Zanoni M, Fontana FA, Stella F. On applying machine
learning techniques for design pattern detection. Journal of
Systems and Software. 2015. vol. 103. pp. 102-17.

24. Selvarani R, Mangayarkarasi P. A Dynamic Optimization
Technique for Redesigning OO Software for Reusability.
ACM SIGSOFT Software Engineering Notes. 2015.
vol. 40. no. 2. pp.1-6.

25. Agashe R, Iyer S, Zettlemoyer L. Juice: A large scale dis-
tantly supervised dataset for open domain context-based
code generation. arXiv preprint arXiv:1910.02216. 2019.

26. Shin EC, Allamanis M, Brockschmidt M, Polozov A. Pro-
gram synthesis and semantic parsing with learned code idi-
oms. Advances in Neural Information Processing Systems.
2019. vol. 32.

27. Takahashi A, Shiina H, Kobayashi N. Automatic Genera-
tion of Program Comments based on Problem Statements
for Computational Thinking. In2019 8th International Con-
gress on Advanced Applied Informatics. 2019. pp. 629-634.

28. Shido Y, Kobayashi Y, Yamamoto A, Miyamoto A, Matsu-
mura T. Automatic source code summarization with ex-
tended tree-lstm. In2019 International Joint Conference on
Neural Networks. 2019. pp. 1-8.

29. Tufano M, Watson C, Bavota G, Penta MD, White M,
Poshyvanyk D. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM
Transactions on Software Engineering and Methodology
(TOSEM). 2019. vol. 28. no. 4. pp.1-29.

30. Zhu Z, Xue Z, Yuan Z. Automatic graphics program gener-
ation using attention-based hierarchical decoder. InAsian
Conference. 2018. pp. 181-196.

31. Kim Y, Kim H. Translating CUDA to opencl for hardware
generation using neural machine translation. In2019
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO) 2019. pp. 285-286.

32. Gozalo-Brizuela R, Garrido-Merchan EC. ChatGPT is not
all you need. A State of the Art Review of large Generative
AI models. arXiv preprint arXiv:2301.04655. 2023.

33. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374. 2021.

34. Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science. 2022. Vol. 378. No. 6624. pp. 1092–1097.

35. Bhavya, B., Xiong, J., and Zhai, C. Analogy generation by
prompting large language models: A case study of in-
structgpt. arXiv preprint arXiv:2210.04186 .2022.

36. Dehaerne E, Dey B, Halder S, De Gendt S, Meert W. Code
Generation Using Machine Learning: A Systematic Re-
view. IEEE Access. 2022.

37. S. Ahmed, "Overview of software testing standard
ISO/IEC/IEEE 29119", Int. J. Comput. Sci. Netw. Se-
cur.2018. vol. 18. no. 2. pp. 112-116.

38. Durelli VH, Durelli RS, Borges SS, Endo AT, Eler MM,
Dias DR, Guimaraes MP. Machine learning applied to soft-
ware testing: A systematic mapping study. IEEE Transac-
tions on Reliability. 2019. vol. 68. no. 3. pp. 1189-212.

39. Baskiotis N, Sebag M, Gaudel MC, Gouraud SD. A Ma-
chine Learning Approach for Statistical Software Testing.
InIJCAI. 2007.pp. 2274-2279.

40. Moghadam MH, Saadatmand M, Borg M, Bohlin M, Lisper
B. Machine learning to guide performance testing: An au-
tonomous test framework. In2019 IEEE international con-
ference on software testing, verification and validation
workshops (ICSTW) 2019. pp. 164-167.

41. Tuncali CE, Fainekos G, Ito H, Kapinski J. Simulation-
based adversarial test generation for autonomous vehicles
with machine learning components. In2018 IEEE Intelli-
gent Vehicles Symposium (IV) 2018. pp. 1555-1562.

42. Battina DS. Artificial Intelligence in Software Test Auto-
mation: A Systematic Literature Review. International
Journal of Emerging Technologies and Innovative Re-
search (www. jetir. org| UGC and issn Approved), ISSN.
2019. pp. 2349-5162.

43. Rankin C. The software testing automation framework.
IBM Systems Journal. 2002. vol. 41. no. 1. pp. 126-139.

44. Briand LC, Labiche Y, Bawar Z. Using machine learning
to refine black-box test specifications and test suites.
In2008 The Eighth International Conference on Quality
Software 2008. pp. 135-144.

45. IEEE Standard I2 19- 1992. Sofrware Maintenance Stand-
ard. published by IEEE Standards Office. P.O. Box 1331.
Piscataway. NJ 08855-1331.

46. Levin S, Yehudai A. Towards software analytics: Modeling
maintenance activities. arXiv preprint arXiv:1903.04909.
2019 Mar 9.

47. Kukkar A, Mohana R, Kumar Y, Nayyar A, Bilal M, Kwak
KS. Duplicate bug report detection and classification sys-
tem based on deep learning technique. IEEE Access. 2020.
vol. 8. pp. 200749-200763.

A Survey on Machine Learning Techniques for Software Engineering

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 93

48. Immaculate SD, Begam MF, Floramary M. Software bug
prediction using supervised machine learning algorithms.
In2019 International conference on data science and com-
munication (IconDSC) 2019. pp. 1-7.

49. Sidhu BK, Singh K, Sharma N. A machine learning approach
to software model refactoring. International Journal of Com-
puters and Applications. 2022. vol. 44. no. 2. pp. 166-177.

Asaad Jameleh. Ph. D student, faculty of software engineering and computer systems, ITMO University, St. Petersburg, Russia.
E-mail: jamelehasaad@gmail.com

Аvksentieva Elena. Ph.D., Associate professor, faculty of software engineering and computer systems, ITMO University,
St. Petersburg, Russia. E-mail: eavksenteva@itmo.ru

Исследование методов машинного обучения для программной инженерии

Ж. Асаад, Е. Ю. Авксентьева

Университет ИТМО, Санкт%Петербург, Россия

Аннотация. Среды машинного обучения (ML) предлагают разнообразие методов и инструмен-
тов, которые помогают решать задачи в различных областях, включая программную инженерию
(SE). В настоящее время большое количество исследователей интересуют возможности исполь-
зования различных методов машинного обучения в программной инженерии. В данной статье
приводится обзор методов машинного обучения, применяемых на каждом этапе жизненного
цикла разработки программного обеспечения (SDLC). Вклад данного обзора значителен. Во-пер-
вых, при анализе источников из библиографических и реферативных баз данных было выявлено,
что тематика интеграции методов машинного обучения в программную инженерию актуальна.
Во-вторых, в статье поставлены вопросы и рассмотрена методология данных исследований.
Кроме того, систематизированы методы машинного обучения по их применению на каждом
этапе разработки программного обеспечения. Несмотря на огромное количество научных работ
по использованию методов машинного обучения в программной инженерии, требуются дальней-
шие исследования для достижения всесторонних сравнений и синергии используемых подходов,
значимых оценок, основанных на детальных практических реализациях, которые могли бы быть
приняты индустрией. Таким образом, будущие усилия следует направить на воспроизводимое
исследование, а не на изолированные новые идеи. В противном случае большинство из этих при-
менений останется мало реализованными на практике.
Ключевые слова: машинное обучение, инженерия программного обеспечения, жизненный цикл
разработки программного обеспечения.

DOI 10.14357/20718632230408 EDN ADARZK

Литература
1. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H. and Crn-

kovic, I. A taxonomy of software engineering challenges for
machine learning systems: An empirical investigation. In Agile
Processes in Software Engineering and Extreme Program-
ming: 20th International Conference. 2019. pp. 227-243.

2. Shehab M, Abualigah L, Jarrah MI, Alomari OA, Daoud
MS. Artificial Intelligence in Software Engineering and in-
verse. International Journal of Computer Integrated Manu-
facturing. 2020. vol. 33. no. 10-11. pp. 1129-1144.

3. Durelli, Vinicius HS, et al. "Machine learning applied to soft-
ware testing: A systematic mapping study." IEEE Transactions
on Reliability. 2019. vol.68. no. 3. pp. 1189-1212.

4. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol,
G., 2018. Software engineering for machine-learning appli-
cations: The road ahead. IEEE Softw.2018. vol. 35. no. 5.
pp. 81–84.

5. Maneerat N, Muenchaisri P. Bad-smell prediction from soft-
ware design model using machine learning techniques. In2011
Eighth international joint conference on computer science and
software engineering (JCSSE). 2011. pp. 331-336.

ПРОГРАММНАЯ ИНЖЕНЕРИЯ J. Asaad, E. Y. Аvksentieva

94 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023

6. Talele, P. and Phalnikar, R. Software requirements classifi-
cation and prioritisation using machine learning. In Ma-
chine learning for predictive analysis. 2021. pp. 257-267.

7. Zou, J., Xu, L., Guo, W., Yan, M., Yang, D., and Zhang, X.
Which non-functional requirements do developers fo-
cuson? An empirical study on stack overflow using topic
analysis. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. 2015. pp. 446–449.

8. Ahmad, A., li, K., Feng, C., and sun, T. “An empirical study
on how iOS developers report quality Aspects on stack
overflow,” international journal of machine learning and
computing. 2018. vol. 8. no. 5. pp. 501–506.

9. Treude, C., Barzilay, O., and storey, M. A. How do pro-
grammers ask and answer questions on the web? Nier track.
In 2011 33rd International Conference on Software Engi-
neering (ICSE). 2011. pp. 804–807.

10. Zou, J., Xu, L., Yang, M., Zhang, X., and Yang, D. Towards
comprehending the non-functional requirements through
developers’ eyes: An exploration of stack overflow using
topic analysis. Information and Software Technology.2017.
vol. 84. pp.19–32.

11. Ahmad, A., Feng, C., li, K., Asim, S. M., and sun, T. To-
ward empirically investigating non-Functional require-
ments of iOS developers on stack overflow. IEEE Access.
2019. vol.7. pp.61145–61169.

12. Yin, H., and Pfahl, D. A preliminary study on the suitability
of stack overflow for open innovation in requirements en-
gineering. In Proceedings of the 3rd International Confer-
ence on Communication and Information Processing. 2017.
pp. 45–49.

13. Bajaj, K., Pattabiraman, K., and Mesbah, A. Mining ques-
tions asked by web developers. In Proceedings of the 11th
Working Conference on Mining Software Reposito-
ries.2014. pp. 112–121.

14. Pinto, G., Castor, F., and Liu, Y. D. Mining questions about
software energy consumption. In Proceedings of the 11th
Working Conference on Mining Software Repositories.
2014. pp. 22–31.

15. Xiao, M., Yin, G., Wang, T., Yang, C., and chen, M. Re-
quirement acquisition from social q&a sites. In Require-
ments Engineering in the Big Data Era .2015. pp. 64–74.

16. Rosen, C., and Shihab, E. What are mobile developers asking
about? A large-scale study using stack overflow. Empirical
Software Engineering.2016. vol. 21. no.3. pp. 1192–1223.

17. Abad, Z. S. H., Shymka, A., pant, S., Currie, A., and Ruhe,
G. What are practitioners asking about requirements engi-
neering? An exploratory analysis of social q&a sites. In
2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW). 2016. pp. 334–343.

18. Pinto, G. H., and Kamei, F. What do programmers say
about refactoring tools? An empirical investigation of stack
overflow. In Proceedings of the 2013 ACM workshop on
Workshop on refactoring tools. 2013. pp. 33–36.

19. G. Jivani, “A comparative study of stemming algorithms,”
International Journal of Computer Applications in Technol-
ogy.2011. vol. 2. pp. 1930–1938.

20. Khan, B. Baharudin, L. H. Lee, and K. Khan, “A review of
machine learning algorithms for text-documents classifica-
tion,” Journal of Advances in Information Technol-
ogy.2010. vol. 1, pp. 4–20.

21. Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E. A
review-based comparative study of bad smell detection
tools. InProceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering.
2016. pp. 1-12.

22. Ferenc R, Beszedes A, Fulop L, Lele J. Design pattern min-
ing enhanced by machine learning. In21st IEEE Interna-
tional Conference on Software Maintenance (ICSM'05)
2005. pp. 295-304.

23. Zanoni M, Fontana FA, Stella F. On applying machine
learning techniques for design pattern detection. Journal of
Systems and Software. 2015. vol. 103. pp. 102-17.

24. Selvarani R, Mangayarkarasi P. A Dynamic Optimization
Technique for Redesigning OO Software for Reusability.
ACM SIGSOFT Software Engineering Notes. 2015. vol.
40. no. 2. pp.1-6.

25. Agashe R, Iyer S, Zettlemoyer L. Juice: A large scale dis-
tantly supervised dataset for open domain context-based
code generation. arXiv preprint arXiv:1910.02216. 2019.

26. Shin EC, Allamanis M, Brockschmidt M, Polozov A. Pro-
gram synthesis and semantic parsing with learned code idi-
oms. Advances in Neural Information Processing Systems.
2019. vol. 32.

27. Takahashi A, Shiina H, Kobayashi N. Automatic Genera-
tion of Program Comments based on Problem Statements
for Computational Thinking. In2019 8th International Con-
gress on Advanced Applied Informatics. 2019. pp. 629-634.

28. Shido Y, Kobayashi Y, Yamamoto A, Miyamoto A, Matsu-
mura T. Automatic source code summarization with ex-
tended tree-lstm. In2019 International Joint Conference on
Neural Networks. 2019. pp. 1-8.

29. Tufano M, Watson C, Bavota G, Penta MD, White M,
Poshyvanyk D. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM
Transactions on Software Engineering and Methodology
(TOSEM). 2019. vol. 28. no. 4. pp.1-29.

30. Zhu Z, Xue Z, Yuan Z. Automatic graphics program gener-
ation using attention-based hierarchical decoder. InAsian
Conference. 2018. pp. 181-196.

31. Kim Y, Kim H. Translating CUDA to opencl for hardware
generation using neural machine translation. In2019
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO) 2019. pp. 285-286.

32. Gozalo-Brizuela R, Garrido-Merchan EC. ChatGPT is not
all you need. A State of the Art Review of large Generative
AI models. arXiv preprint arXiv:2301.04655. 2023.

33. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374. 2021.

34. Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science. 2022. Vol. 378. No. 6624. pp. 1092–1097.

35. Bhavya, B., Xiong, J., and Zhai, C. Analogy generation by
prompting large language models: A case study of in-
structgpt. arXiv preprint arXiv:2210.04186 .2022.

36. Dehaerne E, Dey B, Halder S, De Gendt S, Meert W. Code
Generation Using Machine Learning: A Systematic Re-
view. IEEE Access. 2022.

A Survey on Machine Learning Techniques for Software Engineering

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2023 95

37. S. Ahmed, "Overview of software testing standard
ISO/IEC/IEEE 29119", Int. J. Comput. Sci. Netw. Se-
cur.2018. vol. 18. no. 2. pp. 112-116.

38. Durelli VH, Durelli RS, Borges SS, Endo AT, Eler MM,
Dias DR, Guimaraes MP. Machine learning applied to soft-
ware testing: A systematic mapping study. IEEE Transac-
tions on Reliability. 2019. vol. 68. no. 3. pp. 1189-212.

39. Baskiotis N, Sebag M, Gaudel MC, Gouraud SD. A Ma-
chine Learning Approach for Statistical Software Testing.
InIJCAI. 2007.pp. 2274-2279.

40. Moghadam MH, Saadatmand M, Borg M, Bohlin M, Lisper
B. Machine learning to guide performance testing: An au-
tonomous test framework. In2019 IEEE international con-
ference on software testing, verification and validation
workshops (ICSTW) 2019. pp. 164-167.

41. Tuncali CE, Fainekos G, Ito H, Kapinski J. Simulation-
based adversarial test generation for autonomous vehicles
with machine learning components. In2018 IEEE Intelli-
gent Vehicles Symposium (IV) 2018. pp. 1555-1562.

42. Battina DS. Artificial Intelligence in Software Test Auto-
mation: A Systematic Literature Review. International
Journal of Emerging Technologies and Innovative Re-
search (www. jetir. org| UGC and issn Approved), ISSN.
2019. pp. 2349-5162.

43. Rankin C. The software testing automation framework.
IBM Systems Journal. 2002. vol. 41. no. 1. pp. 126-139.

44. Briand LC, Labiche Y, Bawar Z. Using machine learning
to refine black-box test specifications and test suites.
In2008 The Eighth International Conference on Quality
Software 2008. pp. 135-144.

45. IEEE Standard I2 19- 1992. Sofrware Maintenance Stand-
ard. published by IEEE Standards Office. P.O. Box 1331.
Piscataway. NJ 08855-1331.

46. Levin S, Yehudai A. Towards software analytics: Modeling
maintenance activities. arXiv preprint arXiv:1903.04909.
2019 Mar 9.

47. Kukkar A, Mohana R, Kumar Y, Nayyar A, Bilal M, Kwak
KS. Duplicate bug report detection and classification sys-
tem based on deep learning technique. IEEE Access. 2020.
vol. 8. pp. 200749-200763.

48. Immaculate SD, Begam MF, Floramary M. Software bug
prediction using supervised machine learning algorithms.
In 2019 International conference on data science and com-
munication (IconDSC) 2019. pp. 1-7.

49. Sidhu BK, Singh K, Sharma N. A machine learning ap-
proach to software model refactoring. International Journal
of Computers and Applications. 2022. vol. 44. no. 2.
pp. 166-177.

Асаад Жамилех Университет ИТМО, Санкт-Петербург, Россия. Аспирант. Область научных интересов: модели и методы
искусственного интеллекта, программная инженерия, паттерны проектирования GoF. E-mail: jamelehasaad@gmail.com

Авксентьева Елена Юрьевна Университет ИТМО, Санкт-Петербург, Россия. Доцент, кандидат педагогических наук.
Область научных интересов: компьютерные сети, надежность вычислительных комплексов и компьютерных сетей;
модели и методы искусственного интеллекта. E-mail: avksentievaelena@rambler.ru

