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Abstract. Machine learning (ML) environments offer a variety of methods and tools that help to solve 
problems in different areas, including software engineering (SE). Currently, a large number of researchers 
are interested in the possibilities of using various machine learning techniques in software engineering. 
This paper provides an overview of machine learning techniques used in each stage of the software devel-
opment life cycle (SDLC). The contribution of this review is significant. Firstly, by analyzing sources from 
bibliographic and abstract databases, it was found that the topic of integrating machine learning techniques 
into software engineering is relevant. Secondly, the article poses questions and reviews the methodology 
of this research. In addition, machine learning methods are systematized according to their application at 
each stage of software development. Despite the vast amount of research work on the use of machine learn-
ing techniques in software engineering, further research is required to achieve comprehensive comparisons 
and synergies of the approaches used, meaningful evaluations based on detailed practical implementations 
that could be adopted by the industry. Thus, future efforts should be directed towards reproducible research 
rather than isolated new ideas. Otherwise, most of these applications will remain poorly realized in practice. 
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Introduction 

Nowadays, it's difficult to pass a day without 
seeing or reading an article on machine learning 
(ML), data mining, big data analytics, artificial in-
telligence (AI), and the profound changes they are 
bringing to society, particularly after releasing 
ChatGPT in November 2022. 

Machine learning deals with the issue of how to 
build programs that improve their performance 
through experience. Machine learning algorithms 
have proven to be of great practical value in a vari-
ety of application domains. Machine learning has 
been successfully applied in many areas of software 
engineering, ranging from features extraction to 
testing to bug fixing. If software developers had a 
better grasp of machine learning approaches, their 
assumptions, and guarantees, they might adopt and 

select the best techniques for their intended applica-
tions. To meet the needs of changing approaches to 
software development, future software engineering 
(SE) techniques and tools will need to be much 
more automated, lightweight, adaptable, and scala-
ble to keep pace with increased developer produc-
tivity. The increasing reliance on applications with 
machine learning (ML) components calls for mature 
engineering techniques that ensure these are built in 
a robust and future-proof manner. 

Furthermore, software is an indispensable compo-
nent of the majority of systems and is integrated into 
the daily lives of society. With the advancement of 
technologies such as open systems and highly auto-
mated or networked devices, software systems are  
becoming very complex [1]. Additionally, several 
people from different areas of expertise are usually 
required to be involved in a software project, which 
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also increases its complexity. Since software  
is developed by humans, it is usual that people 
make mistakes; thus, in every commercial piece of 
software, some errors always occur [2], and as the 
level of complexity increases, these error ratios be-
come even higher [3]. Automating the SDLC pro-
cess through machine learning may solve all these 
problems. Consequently, we will try to detail sev-
eral software engineering cases where machine 
learning has already been attempted effectively. 

1. The research question  
and methodology 

The aim of this study is to find out which ma-
chine learning methods have been used in the soft-
ware development life cycle and their performance. 
This research will enable us to recognize the short-
comings that should be considered to enhance the 
efficiency of these methods. 

The following questions inspire this research: 
RQ1: What categories of software applications 

were found or reported in the current phase? 
RQ2: Which ML algorithms have been utilized 

in this phase? 
RQ3: How did ML-based techniques perform? 

Do ML-based techniques perform better than non-
ML-based ones? 

Structuring the literature review involved break-
ing down the overall task into several smaller steps 
so as to enable us to explore the literature for system-
atically extract relevant information. Firstly, key 
search strings were utilized: ‘Machine learning for 
software engineering’, ‘Machine learning + software 
engineering’, ‘Machine learning for SDLC’, ‘Ma-
chine learning + (and | for | +) + software require-
ment’, ‘Machine learning + (and | for | +) + software 
design’, ‘Machine learning + (and | for | +) + software 
testing’, ‘Machine learning + (and | for | +) + software 
construction’ and ‘Machine learning + (and | for | +) 
+ software maintenance’ so as to identify a baseline 
set of research papers. Google, Google Scholar, and 
digital libraries of publications from ACM and IEEE 
were used to find these publications. 

Following the completion of the initial phase of 
the literature review, the shortlists for each search 
term were further evaluated. The relevance of pub-
lications was examined by reading each abstract and 
conclusion. Each publication was sorted according 
to the number of citations it had and the year it was 

published. The next step of the process involved 
reading the publications in detail and making further 
evaluations in relation to their relevance. Overall, 
the results of this systematic approach are present in 
Section 3. 

2. Background and related works 

The interaction between software engineering (SE) 
and machine learning (ML) has been studied by re-
searchers for a long time [1-3]. The first Symposium 
on Software Engineering for Machine Learning Ap-
plications (SEMLA) at Polytechnique Montréal was 
organized on 12 and 13 June 2018, with the support of 
Polytechnique Montréal’s Department of Computer 
Engineering and Software Engineering, the Institute 
for Data Valorization (IVADO), SAP, and Red Hat. 
Around 160 participants from 160 different countries 
attended the event, including students, professors, and 
professionals from the business sector. 

On the other hand, other studies draw attention 
to the gap between the communities of SE and ML. 
The focus of these groups may be one factor in this 
separation, the ML community is concerned with al-
gorithms and their performance, while the SE com-
munity is concerned with developing and deploying 
software-intensive systems [4]. 

Two areas of synergy are revealed when the ex-
pertise and experience of these two communities are 
combined: 

The phrase "SE for ML" refers to tackling nu-
merous SE responsibilities for engineering ML sys-
tems, such as designing, creating, and maintaining 
software systems that support ML. Researchers are 
attempting to pinpoint the distinctions between de-
signing ML systems and conventional software in 
order to create new strategies and tools to address 
these disparities. 

In contrast, the phrase "ML for SE" refers to ap-
plying or adapting AI technologies to address vari-
ous SE tasks, such as software fault prediction, code 
smell detection, reusability metrics prediction, and 
cost estimation , etc. Researchers utilize ML models 
obtained from SE data (source code, requirement 
specifications, test cases, etc.) to engineer software 
more efficiently and effectively. 

Machine learning (ML) is a branch of research 
that offers computers the capacity to learn without 
being explicitly programmed. It was first described 
by Arthur Samuel in 1959. 
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The term “software engineering” was created in 
1972 by David Parnas. Software engineering is de-
fined by the IEEE as “the application of a system-
atic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; 
that is, the application of engineering to software”. 
Software development methodology is the process 
that uses organizational processes to carry out the 
required procedures for the analysis, design, imple-
mentation, and maintenance of information sys-
tems. Software projects must be well prepared and 
planned for in order to succeed and produce high 
quality software on schedule. 

The software development life cycle (SDLC) is 
the main element in software development. It is the 
entire process of building any software product. 
There are various types of SDLC methodologies, for 
instance, Agile, Waterfall, DevOps, V-Model, Iter-
ative, Dynamic System Development Model, Ex-
treme Programming, Feature Driven Development, 
Joint Application Development, Spiral, Rapid Ap-
plication Development, and Lean methodology. 

Generally, the phases that constitute the software 
development life cycle include requirements analysis, 
design, implementation, testing, and maintenance [5]. 

At the present time, software engineering has 
transitioned from traditional waterfall models to ag-
ile software development. A waterfall model is a se-
quential process where the success of each stage de-
pends on the success of the previous stages. All 
requirements are thought to be clearly established at 
project inception and essentially stable after that. 
Agile processes are iterative software development 
techniques that offer adaptability and flexibility in 
response to changing conditions while producing 
high-quality software. It emphasizes informal, 
adaptable project management that will improve 
communication and transparency. 

This paper focuses on machine learning for soft-
ware engineering by systematically reviewing the 
machine learning literature for software develop-
ment tasks. 

3. Machine learning for software  
engineering 

As we mentioned, the software development life 
cycle (SDLC) consists of five phases [5]. In this sec-
tion, we will discuss the research questions for each 
phase of the SDLC. 

3.1. ML for requirement engineering 

Throughout the software development process, 
requirement engineering (RE) is essential. Prioriti-
zation and requirement identification are the key 
stages of the RE process [6]. 

RQ1: The ML-based techniques were used for 
the identification of different types of software re-
quirements: functional requirements (FRs) [7-11] 
and nonfunctional requirements (NFRs) [12-18]. 

RQ2: Although there are a multitude of different 
machine learning algorithms and approaches avail-
able for text processing, they may be broadly di-
vided into two groups: supervised learning algo-
rithms (SL) and unsupervised learning algorithms 
(USL). In addition, between supervised and unsu-
pervised learning algorithms, there is another form 
termed semi-supervised learning (SSL). 

The outcome of this RQ revealed that there were 
mainly two different machine learning algorithms 
identified in the selected primary research studies. 
These machine learning algorithms basically fall 
into two types: SL and USL ML algorithms.  

Besides, we found that there are primary studies 
that used thematic analysis or qualitative coding 
techniques. As well, the selected studies depict that 
USL algorithms, specifically Latent Dirichlet Allo-
cation (LDA), are the most popular type of machine 
learning algorithm. Support Vector Machine (SVM) 
was the second-most popular ML algorithm cate-
gory. It was quite interesting to observe that a few 
of the selected primary studies did not use any algo-
rithm and used thematic coding or qualitative cod-
ing techniques for identifying and classifying the 
different types of software requirements. 

The three primary parts of the process might be 
categorized as follows:  

 text preprocessing, which involves removing 
any unnecessary text from the data. 

 applying the various ML algorithms is basi-
cally what the learning step entails. 

 analyzing or evaluating an ML algorithm's 
methodology. 

The chosen research articles revealed a total of six 
alternative Natural Language Processing (NLP) pre-
processing methods. The following is a quick expla-
nation of the many preprocessing methods found. 

Stop words removal is the act of eliminating spe-
cific auxiliary verbs from the text, such as "be," 
"do," and "have," as well as distinct articles such as 
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"the," "a," and "an" [19]. Splitting a statement into 
words is a technique known as tokenization [20]. 

The act of making the text into a standard style, 
such as lowercase or uppercase, is known as case 
unification. Stemming is the process of taking a 
term and reducing it to its base or origin. For in-
stance, terms like "goes," "gone," and "going" will 
all be shortened to "go." [19]. Punctuation removal 
is the process of removing different punctuations 
like commas, semicolons, question marks, and ex-
clamation marks. On the other hand, some studies 
averaging lack reporting about using any of the pre-
processing step’s majorities of the chosen primary 
research studies regard machine learning-based 
techniques as 'black boxes,' providing no specific 
description of how these techniques truly operate. 

RQ3: Not every study that was chosen has tested 
its performance evaluation criterion. Although the 
LDA and SVM were utilized in several different re-
search articles, it was quite significant to observe 
that their performance results considerably varied 
from one another. For instance, the LDA algorithm 
performs well in one study [16], nevertheless, it 
does not perform that good in another study [17]. 

3.2. Software Design 

In the software development life cycle, it is the 
most inventive phase. This phase's objective is to ar-
range or plan the required definition. It is the plan-
ning and issue-solving process for a software solu-
tion. It involves software designers and developers 
specifying the strategy for a fix. This phase results 
in a software design document (SDD). 

Software design is a highly complex and chal-
lenging activity. Nevertheless, using software design 
patterns makes this phase more organized. A soft-
ware design pattern can be defined as a presupposed 
structure of classes organized and interacting in a par-
ticular manner to solve a recurring design problem. 

RQ1: The studies show that ML is able to be 
used to avoid some problems in this phase, for in-
stance, detection of the bad smells earlier [5], mean-
ing detecting symptoms that the system's design or 
programming may be flawed [21]. As well, ML-
based techniques are able to be used in design pat-
tern recognition (adapter, strategy) [22]. Further-
more, some studies experimented with five design 
patterns (Singleton, Adapter, Composite, Decora-
tor, and Factory Method) [23]. 

Some types of SDLC, for instance, Agile, divide 
the architecture of a system into components. Conse-
quently, the selection of software components is part 
of the design phase. Some studies suggest a novel ap-
proach to machine learning [24], which can assist in 
the selection of reusable software components. 

RQ2: The following machine learning models 
have been used for experiments in the selected stud-
ies: logistic regression, random forest, IBk [5], neu-
ral network and decision tree [22], zero, one, Nave 
Bayes, JRip, C4.5, SVMs (with different kernel 
functions), simple KMeans, and CLOPE [23]. 

The suggested machine learning approach to se-
lecting reusable components combines the Decision 
Tree and Neural Network modules to determine the 
more accurate and suitable object of the software 
design pattern, which may help with efficient pack-
age reuse [24]. 

RQ3: The authors mentioned that the selected al-
gorithms perform differently in terms of processing 
speed and classification accuracy [5], and they in-
form that Naive Bayes, Logistic regression, IB1, 
IBk, Random Forest have better performance than 
the VFI and J48.[5]. For instance, the authors in [22] 
inform us that the learning precision of the formu-
lated approach is 67–95%  

Generally, the ML-based techniques performed 
well in this phase. Nonetheless, the results are not 
compared with other traditional techniques (non-
ML-based techniques). It's considerable to observe 
that although the researchers made an effort to pro-
vide impartial results, there may still be some de-
gree of subjectivity, as long as all results are related 
to the construction of the training set, which is based 
on a manual design pattern labeling task. 

3.3. Software construction 

This phase involves turning the software design 
document into code using a programming language. 
It results in program code; thus, it is the logical one. 

RQ1: The studies show that ML models are used 
for code generation [25-26], documentation genera-
tion [27–28], and code modification [29–31]. The 
popular models for converting ideas into code are 
ChatGPT, Codex, and Alphacode. ChatGPT and 
Codex are models by OpenAI. It interacts in a con-
versational way. As it is widely known, ChatGPT 
answers follow-up questions, challenges incorrect 
assumptions, and rejects improper demands. In ad-
dition, it is able to generate code [32]. Moreover, 
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Codex is a general-purpose programming model, as 
it can be applied to any programming task [33]. 

Additionally, Alphacode is general-purpose pro-
gramming, it can be applied to programming prob-
lems that require for deeper reasoning [34]. 

RQ2: The selected studies show that a wide 
range of ML techniques are able to be applied to 
various code generation tasks. The popular model 
types used by selected studies include recurrent neu-
ral networks [25-28] and convolutional neural net-
works [30]. ChatGPT is trained using supervision 
and reinforcement learning (RL). In the supervised 
learning, human trainers would provide conversa-
tions in which they played both sides, the user, and 
the chat bot side. Then, in the case of reinforcement 
learning, those people would be given the model-
written responses to help them compose their re-
sponse [32]. This dataset was combined with the In-
struct GPT [35] dataset, which was converted to a 
question-answer format. 

As well as Codex based on GPT-3, a neural net-
work trained on text [35], this model has been 
trained on 179 gigabytes of Python code from soft-
ware repositories hosted on GitHub projects. At the 
same time, Alphacode has been trained on 715.1 gi-
gabytes of code on GitHub, in addition to 
Codeforces problems. 

RQ3: In general, the outcomes were not assessed, 
considering more traditional techniques. Trans-
former models outperformed RNN models when the 
two were compared in an evaluative study [36]. 
Nonetheless, ML models perform imperfectly when 
evaluated on highly complex, unseen problems [32]. 

3.4. Software Testing 

Testing is defined as “an activity in which a sys-
tem is executed under specified conditions, the re-
sults are observed or recorded, and an evaluation is 
made of some aspect of the system” (ISO/IEC 
24765, 2006) [37]. 

In the software product development process, 
software testing is demanded. Any software product 
must first pass through several different steps before 
it can be implemented. Testing allows us to identify 
issues early. Additionally, participating in testing 
activities gives developers the ability to study the 
criteria for critical quality aspects, pose queries, and 
find solutions in advance. 

Automation of software testing has been ac-
cepted as a realistic technique to get around the 

complexity and expense of most testing tasks. To 
find flaws in software systems, testing entails delv-
ing into their behavior. Applying machine learning 
(ML) to different software testing operations has 
drawn increasing interest [38]. 

RQ1: Machine learning was applied for statisti-
cal software testing [39], performance testing [40], 
and test case generation [41]. 

RQ2: Q-learning was used as a model-free RL 
algorithm in a smart test framework [40]. Further-
more, Model-Inference-Driven testing (MINTest) is 
used for software test automation [42]. It describes 
itself as a framework for unit and integration testing 
on its website [43]. 

RQ3: The studies show that efficient automated 
software testing is a challenging activity in software 
development [40–42]. The resulting test suites 
greatly improved in terms of defect detection [44]. 

3.5. Software Maintenance 

According to the IEEE Standard, IEEE STD 
1219-15193 [45], software maintenance is: “the 
modification of a software product after its delivery 
(to the customer), to correct errors, to improve its 
performance or other attributes, or to adapt the prod-
uct to a modified environment”. 

Understanding software maintenance helps prac-
titioners in the industry deal with many of the prob-
lems they currently experience, by reducing uncer-
tainty, improving cost-effectiveness, dependability, 
and other factors [46]. This is the final stage of the 
SDLC. The software being produced is distributed 
to end users during this stage of the SDLC, who are 
then in charge of maintaining and utilizing it in ac-
cordance with best practices. 

RQ1: The most dominant application of using 
ML in this phase is bug detection [47–48]. 

In addition, maintenance software has several 
forms, for instance refactoring, which includes 
switching out components or algorithms for more 
elegant ones, updating data naming standards, and 
improving the readability or understandability of 
the code [48]. There are a few studies that discuss 
building a refactoring model, for instance, An AI-
data-based approach to early quality evaluation and 
enhancement of object-oriented software products 
was proposed in the paper “A machine learning ap-
proach to software model refactoring” [49]. 

RQ2: Our study shows that a wide range of ML 
techniques have been applied in this phase. However, 
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the CNN-based deep learning model is proposed for 
recognizing duplicate or similar bug reports [47]. Be-
sides, three supervised machine learning algorithms 
are considered to build the model and predict the oc-
currence of the software bugs based on historical data 
by deploying the classifiers logistic regression, Nave 
Bayes, and decision tree [48]. 

A deep neural network that learns to detect the 
existence of functional decomposition in UML 
models of object-oriented software is used to imple-
ment model refactoring [49]. The study's proposed 
method [48] uses data science techniques to obtain 
an understanding of multidimensional software de-
sign aspects and then applies the knowledge ac-
quired to generalize nuanced interactions between 
architectural elements. 

RQ3: The selected studies don’t have very clear 
and effective evaluation methods. However, some 
studies show that some algorithms were able to gen-
erate 100% accuracy with train and test datasets 
[48]. On the other hand, the authors mentioned that 
the selected algorithm is empirically evaluated and 
shows high accuracy [49]. Furthermore, as with any 
ML model, the studies ensure that the results depend 
on the data. For instance, the proposed system in 
one of the studies provides a high accuracy rate for 
the same domain datasets and a low accuracy rate 
for different domain datasets [47]. In addition, the 
subjective nature of software affects the evaluation 
process. [49]. 

Conclusion 

In summary, the use of machine learning tech-
niques in the software development lifecycle holds 
great promise, offering valuable input to its various 
stages from requirements engineering to software 
maintenance. ML has demonstrated its effective-
ness in solving tasks such as software requirements 
definition, design problem identification, code gen-
eration and test automation. However, there are still 
major challenges, such as the lack of comparative 
reliability and productivity analysis with traditional 
approaches that do not use ML, and the lack of 
standardized rigorous evaluation methodologies. To 
fully exploit the potential of ML in software engi-
neering, future research should prioritize reproduc-
ible methodologies and rigorous benchmarking to 
ensure the reliability and usability of these applica-
tions at all stages of the SDLC. 
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Исследование методов машинного обучения для программной инженерии 

Ж. Асаад, Е. Ю. Авксентьева 

Университет ИТМО, Санкт%Петербург, Россия 
 
 

Аннотация. Среды машинного обучения (ML) предлагают разнообразие методов и инструмен-
тов, которые помогают решать задачи в различных областях, включая программную инженерию 
(SE). В настоящее время большое количество исследователей интересуют возможности исполь-
зования различных методов машинного обучения в программной инженерии. В данной статье 
приводится обзор методов машинного обучения, применяемых на каждом этапе жизненного 
цикла разработки программного обеспечения (SDLC). Вклад данного обзора значителен. Во-пер-
вых, при анализе источников из библиографических и реферативных баз данных было выявлено, 
что тематика интеграции методов машинного обучения в программную инженерию актуальна. 
Во-вторых, в статье поставлены вопросы и рассмотрена методология данных исследований. 
Кроме того, систематизированы методы машинного обучения по их применению на каждом 
этапе разработки программного обеспечения. Несмотря на огромное количество научных работ 
по использованию методов машинного обучения в программной инженерии, требуются дальней-
шие исследования для достижения всесторонних сравнений и синергии используемых подходов, 
значимых оценок, основанных на детальных практических реализациях, которые могли бы быть 
приняты индустрией. Таким образом, будущие усилия следует направить на воспроизводимое 
исследование, а не на изолированные новые идеи. В противном случае большинство из этих при-
менений останется мало реализованными на практике. 
Ключевые слова: машинное обучение, инженерия программного обеспечения, жизненный цикл 
разработки программного обеспечения. 
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