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Аннотация. На основе методов индуктивной логики рассматривается подход к выявлению имплика-
тивных взаимосвязей вида «Если A, то b» в больших данных в условиях их низкой достоверности и 
противоречивости. Для работы с данными используются логики с векторной семантикой в форме 
VTF-логик. Наличие или отсутствие явлений в таблицах их совместной встречаемости формализуется 
векторами истинности с компонентами v+ и v, где v+ мера истинности утверждения о наличии явле-
ния, v - мера его ложности. На основе статистической индукции вычисляется показатель обоснован-
ности причинно-следственной связи как усредненное значение векторов истинности соответствую-
щих нестрогих высказываний. Получившееся значение трактуется как нестрогая вероятность связи, 
которая выступает векторным показателем ее обоснованности. Обсуждается применимость подхода 
для обработки качественных и количественных данных, а также данных, содержащих артефакты. 
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Введение 

В настоящее время рост мощностей вычисли-
тельной техники и технологий передачи инфор-
мации по проводным и беспроводным каналам 
связи приводит к накоплению огромных объе-
мов информации – больших данных. Большие 
данные представляют собой структурированные 
или неструктурированные массивы данных 
большого объема и характеризуются набором из 
семи V: volume, velocity, variety, veracity, varia-
bility, visualization, value (объем, скорость, раз-
нообразие, достоверность, изменчивость, визуа-
лизация, ценность) [1]. Говорят также о 
«тройках», «четверках», «пятерках V» [2; 3]. Це-
лью работы с такими данными является выявле-
ние в них взаимосвязей, знание которых может 
быть положено в основу тех или иных управлен-
ческих решений [4; 5]. Часто в этом качестве  

 
выступают скрытые закономерности. Их извле-
чение, например, средствами Data Mining – ин-
теллектуального анализа данных (ИАД), – одно 
из основных направлений анализа больших дан-
ных (АБД) [6; 7]. 

Особенно стремительный рост объема дан-
ных начался с нулевых годов, что повлияло на 
стоимость их хранения и методы работы с ними 
[8]. Возникла необходимость в новых инстру-
ментах, позволяющих более эффективно анали-
зировать растущие объемы информации. Для та-
ких данных постоянно разрабатываются новые 
способы обработки в расчете на улучшение со-
ответствующих методов и технологий [9]. Об-
ласть применения больших данных продолжает 
расширяться. На текущий момент они нашли 
применение в бизнесе, банковской сфере, ре-
тейле, маркетинге, госструктурах, логистике, 
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машиностроении, медицине. Пример их исполь-
зования для принятия управленческих решений 
в государственном управлении описан в [10]. 
Вообще, в литературе уже представлено до-
вольно много случаев, когда в результате подоб-
ного анализа обнаруживали зависимости, суще-
ственные для ведения успешной деятельности в 
той или иной предметной области [7].  

Считается, что АБД включает в себя два ос-
новных этапа [11]: 

1) предобработку, где данные очищаются и 
приводятся к виду, позволяющему применять 
тот или иной метод или группу методов; 

2) собственно анализ, где из данных извлека-
ется информация, которая является целью ана-
лиза; например, сведения о скрытых закономер-
ностях. 

Обычно в ходе предобработки из массива 
данных удаляются малодостоверные и противо-
речивые фрагменты, заполняются пропуски, вы-
являются сомнительные аномалии и иные арте-
факты [12]. При этом отказываются от анализа, 
если объем некачественной информации превы-
шает некоторый порог, к примеру, 20% от об-
щего количества [13]. Такой прием увеличивает 
доверие к результатам анализа, однако неудобен 
тем, что пока порог не преодолен, все данные, 
даже исправленные, предполагаются достовер-
ными, а как только он преодолевается, все зачис-
ляются в сомнительные. Своего рода «релей-
ное» управление процессом. 

Представляется, что «релейности» можно 
было бы избежать, или, как минимум, ослабить 
ее влияние, если вместе с самими данными учи-
тывать степень доверия к ним, задав ее некото-
рым числом, скажем, из интервала [0,1]. Здесь 0 
означает, что доверия к элементу данных (ска-
жем, записи в базе данных или соответствую-
щему полю в ней) нет, а 1 – безусловное дове-
рие. В этом случае извлеченные взаимосвязи 
сопровождаются показателями, которые можно 
рассматривать как показатели обоснованности 
того или иного результата. Изменение числа и 
степени влияния артефактов в этом случае про-
сто меняет обоснованность заключения, подска-
зывая насколько подкреплено получающееся 
знание. Учитывая, что часть данных может вы-
ступать в качестве аргументов в пользу соответ-

ствующей гипотезы, а часть опровергать ее, од-
новременно можно учитывать и степень ее про-
тиворечивости, а также степень определенности 
с точки зрения доверия к соответствующим 
фрагментам данных, точнее – их источникам.  

Проблема обработки неполной и противоре-
чивой информации при анализе данных, в том 
числе с помощью индуктивных методов рас-
сматривается не впервые. Достаточно упомя-
нуть целый класс работ по ДСМ-методу В.К. 
Финна как самого автора метода, так и его по-
следователей [14-18]. Вполне основательно это 
направление освещено в [18]. Особенностью ме-
тода является рассмотрение «позитивных» (+), 
«негативных» (–), «фактически противоречи-
вых» (0) и «фактически неопределенных» () 
примеров, влияющих на принятие/непринятие 
гипотез. В известном смысле рассуждения стро-
ятся в четырехзначной семантике Данна и  
Белнапа [19-22]. Однако при этом примеры за-
числяются в строго положительные, строго от-
рицательные, неопределенные, либо полностью 
противоречивые множества, что, как представ-
ляется, огрубляет ситуацию. Более аккуратно 
такие особенности данных можно учесть, если 
опираться на векторную семантику в форме се-
мантики VTF, впервые описанную в [14] и ряде 
более поздних работ. 

1. Описание подхода 

Одним из традиционных подходов к анализу 
данных с целью извлечения закономерностей 
является индуктивный вывод. Он включает ряд 
техник (правил вывода), одними из основных 
среди которых выступают соединенный метод 
сходства и различия (СМСР) и метод единствен-
ного сходства (МЕС) [24]. Фактически, они ос-
нованы на анализе таблиц совместной встречае-
мости, подобных Табл. 1. 

В обоих методах ai и b – это качественные по-
казатели (явления), зарегистрированные в ходе 
экспериментов и которые имеются или отсут-
ствуют (значения aki и bk – это 1 либо 0). Общее 
число проведенных опытов K. Требуется обос-
новать зависимость вида:  

baaA jii ),...,( 1  («Если ),...,( 1 jii aaA , то b»), (1) 
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где ),...,( 1 jii aaA  булево выражение, состоящее 

из некоторого подмножества множества показа-
телей {a1,…,an}, объединенных связками конъ-
юнкции (&), дизъюнкции (), отрицания () и, 
возможно, содержащее скобки. В простейшем 
случае это aib.  

Согласно СМСР, для обоснования нужно 
удостовериться, что в каждой строке таблицы 
истинно высказывание: 

baaAbaaA ijiiji  &),...(&),...( 11 . (2) 

Остальные элементы таблицы могут принимать 
произвольные значения (строго говоря, в клас-
сическом СМСР строки, в которых ),...,( 1 jii aaA  

истинно, должны отличаться от строк, где 
),...,( 1 jii aaA  ложно только наличием отрицания 

при A(…), однако в реальных, не искусственных 
базах данных это не всегда выполняется в связи 
с чем СМСР рассматриваем в указанной форме). 

Если (2) истинно для всех строк, зависимость 
(1) полагаем обоснованной и правдоподобной. 
Если же (2) окажется истинным только для части 
строк, тогда отношение их числа, где (2) истинно, 
к общему количеству K можно рассматривать как 
меру обоснованности (2). В индуктивной логике 
такой прием связывают с вероятностью и стати-
стической индукцией [24-27]. 

Для МЕС выражение (2) принимает более 
простой вид: 

baaA iji &),...( 1 . (3) 

Описанный прием успешно работает, когда 
все ai и b известны с достоверностью. В этом 
случае каждый показатель принимает значение 
0 или 1 и установить истинность (2) и (3) не-
сложно. Однако, когда полной уверенности нет, 
когда источники данных малодостоверны или 
противоречивы, требуется искать иные  

подходы. В частности, такое может возникнуть 
в ходе устранения артефактов, что характерно 
для АБД. 

В [28] для подобных случаев описан 
прием, основанный на понятии нестрогой веро-
ятности [29]. Под нестрогой вероятностью слу-
чайного события A понимается вектор: 

( ) ( ); ( )

( , ) ( ); ( , ) ( )

P A P A P A

F A p F A p
 

   

 

 

 

   

    . (4) 

Здесь F+(,A)[0,1] – позитивный компонент 
вектора истинности утверждения: 

F(,A) = «Элементарное событие   
благоприятно с точки зрения события A», (5) 

показывающий насколько (5) есть истинно, а 
F(,A)[0,1] – негативный компонент этого 
вектора, показывающий насколько оно ложно; 
p() – вероятность  в обычном смысле;  – 
полная группа элементарных событий. Истин-
ность и ложность определяется подтверждаю-
щими и опровергающими свидетельствами. 
Если их рассматривать как независимые, полу-
чаем вектор истинности 

||F(,A)|| = F+(,A);F–(,A), 

где 0≤F+(,A)+F–(,A)≤2. 
Представление о нестрогой вероятности 

имеет смысл, когда нет твердой уверенности в 
благоприятности/неблагоприятности  для A, 
но есть (независимые) доводы «за» и «против» с 
разной степенью доверия к ним. Для строгих 
значений вектора ||F(,A)||, равных 1;0 (строгая 
истина) или 0;1 (строгая ложь), (4) превраща-
ется в привычную вероятность, где P+(A) – веро-
ятность A, а P(A) – вероятность противополож-
ного события. 

Табл. 1. Совместная встречаемость явлений 

 a1 a2 … an b 

1 a11 a21 … an1 b1 

2 a12 a22 … an2 b 2 

3 a13 a23 … an3 b 3 

… … … … … … 

K a1K a2K … anK bK 
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Следует обратить внимание, что P+(A) и P–(A) 
также не зависят друг от друга. 

С точки зрения обсуждаемого вопроса, собы-
тие  – это запись в Табл. 1. Все записи обра-
зуют множество . Вероятности p() считаем 
одинаковыми и равными 1/K. 

В случае недостатка уверенности в том или 
ином показателе, или получении как подтвержда-
ющих, так и опровергающих свидетельств (проти-
воречие), Табл. 1 принимает форму [20] (Табл.2). 
Здесь aik

+, aik
[0,1]. В соответствии с (2) значе-

ние вектор-функции ||F(,A)|| для каждой строки 
k вычисляется как: 

1 1
|| ( ,..., ) & ( ,..., ) & || .

j ji k i k k i k i k kA a a b A a a b   (6) 

Для (3) это выглядит как: 
||&),...,(||

1 kkiki baaA
j

. (7) 

Истинность антецедента ),...,( 1 jkiki aaA  рас-

считывается согласно: 
||v&u||=v+u+; vu; 
||vu||=v+u+; vu; 

||v||=v;v+, 
 первые формы конъюнкции, дизъюнкции и от-
рицания [23]. Приоритет связок обычный. 

Вектор нестрогой вероятности в случае 
СМСР: 

1

1

1
( ) [ ];

1
                [( ) ( )]

K

k k k k
k

K

k k k k
k

P A A b A b
K

A b A b
K

   



   



    

   




 (8) 

характеризует обоснованность гипотезы (1) с 
учетом доверия к полученной информации, если 
она недостаточно убедительна и/или противоре-
чива. Для МЕС выражение выглядит проще: 

1 1

1 1
( ) [ ]; [( )]

K K

k k k k
k k

P A A b A b
K K

   

 

       (9) 

Символы xy и xy – треугольная норма t(x,y) 
и ко-норма s(x,y) [30; 31] в инфиксной записи с 
дополнительно введенной аксиомой: 

(1–x)(1y)+xy =1; (10) 
приоритет: , , . Треугольные нормы, допол-
ненные аксиомой связи (11) в [23] названы ком-
позиционным умножением и сложением (по 
аналогии с обычными умножением и сложе-
нием, но на отрезке [0,1]). Типичными приме-
рами таких норм являются: 

xy=min(x,y); xy=max(x,y). (11) 
xy=xy; xy= x+yxy; (12) 

Значение векторов истинности aik
+;aik

 по-
лучаются из следующих соображений:  

1. По степени доверия к источникам. Пусть 
в первой строке наличие показателя a1 сов-
местно утверждается и отрицается двумя раз-
ными источниками. Если первому мы доверяем 
в степени 0.9, а другому 0.7, вектор a11

+;a11
 

принимает значение 0.9;0.7. Формально, это 
объединение двух векторов 0.9;0 и 0;0.7 по 
правилу: 

||v||=v1
+v2

+;v1
v2

  (13) 
(или v1

+…vq
+;v1

…vq
, если источников 

больше). Подобное возможно, например, при 
получении различающихся результатов лабора-
торных исследований, когда доверие к результа-
там разное, а также при наличии артефактов-
противоречий. 

Если неполную уверенность в надежности 
источников трактовать как частичную уверен-
ность в противоположном исходе, объединя-
ются вектора 0.9;0.1 и 0.3;0.7. Для s-нормы в 
виде xy=max(x,y) это вновь 0.9;0.7. Если сте-
пень доверия к источнику не определена (ин-
формация отсутствует), вектор можно задать 

Табл. 2. Совместная встречаемость явлений в векторном представлении 

 a1 a2 … an B 

1 a11
+;a11

 a21
+;a21

 … an1
+;an1

 b1
+;b1

 

2 a12
+;a12

 a22
+;a22

 … an2
+;an2

 b2
+;b2

 

3 a13
+;a13

 a23
+;a23

 … an3
+;an3

 b3
+;b3

 

… … … … … … 

K a1K
+;a1K

 a2K
+;a2K

 … anK
+;anK

 bK
+;bK

 
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как 0.5;0.5. В последних двух случаях справед-
ливо соотношение: 

aik
++aik

=1, 

– частный случай векторного представления ис-
тинности. 

2. По статистическим соображениям. Этот 
подход может применяться при замещении ар-
тефактов некоторыми усредненными показате-
лями. В качестве примера возьмем пропущенное 
поле «пол» в БД сотрудников/клиентов компа-
нии. Если нет других свидетельств, вычисляем 
соотношение мужчин и женщин, формируя, к 
примеру, вектор 0.52;0.48. 

3. Объединение обоих подходов. В этом слу-
чае вектор формируется из статистических сооб-
ражений, но далее каждый компонент умножа-
ется на степень доверия к искусственно 
введенному показателю. К примеру, 0.5 (тогда 
предыдущий вектор примет значение 
0.26;0.24). Этот простой эвристический прием 
позволит управлять влиянием артефактов на 
итоговый результат, причем он предполагает 
именно векторное представление истинности. 

Возможны и другие стратегии, но все они 
дают общий результат: малодостоверные, со-
мнительные данные снижают обоснованность 
гипотезы. Причем она уменьшается постепенно 
с ростом объема ненадежных данных. Внешне 
это выражается в изменении показателей: 

достоверности (обоснованности) 
д(A) = P(A+)–P(A); 

определенности 
о(A) = P(A+)P(A); 

противоречивости 
п(A) = P(A+)P(A); 

и некоторых других [29], что позволит более 
гибко управлять анализом. Выбор из нескольких 
альтернативных гипотез может выполняться на 
основе лексикографического порядка 
{д,о,1п}. 

Особенностью подхода является то, что в 
ячейках Табл. 1 и производной от нее Табл. 2 
представлены качественные значения 0/1, тогда 
как на практике соответствующие таблицы мо-
гут содержать и количественные показатели. 
Попробуем учесть это обстоятельство. 

2. Обработка количественных  
данных 

Для перехода от числовых данных к каче-
ственным воспользуемся следующим приемом. 
Разделим весь диапазон числовых значений на 
множество непересекающихся поддиапазонов 
так, что любое возможное значение попадет в 
один из них. Количество диапазонов определя-
ется гипотезами, которые ставит исследователь. 
Например, можно рассматривать гипотезы о 
связи фактора b с превышением/непревыше-
нием соответствующим показателем некоторого 
порога, попадании числа в допустимый/недопу-
стимый диапазон значений и т.п. Возможны 
другие варианты. 

Разберем описанную выше схему подробнее 
на случаях с двумя и тремя гипотезами. При ис-
пользовании двух гипотез берется пороговое 
значение T и все значения данных делятся на два 
диапазона, например, (-∞;T] и (T,+∞). Попада-
ние/непопадание в диапазон – это наличие или 
отсутствие единственного качества. Соответ-
ствующее утверждение, принимающее вектор-
ное значение истинности, это: 

h1=«Числовое значение не превышает порог T»; 
либо 

h2=«Числовое значение превышает порог T». 

Очевидно, что h2 это h1 и наоборот. Переход к 
нестрогой вероятности для такого случая, фак-
тически, обсужден выше. 

Интереснее случай трех подинтервалов: 
ниже нормы/норма/выше нормы. Здесь выбира-
ются два пороговых значения T1 и T2, с помощью 
которых весь числовой диапазон делится, к при-
меру, так: (∞,T1), [T1,T2], (T2, +∞). Это соответ-
ствует трем возможным качествам (Табл. 3): 
h1= «Числовое значение не превышает порог T1»; 
h2= «Числовое значение находится в границах 
между T1 и T2»; 
h3= «Числовое значение превышает порог T2». 

Векторное представление Табл. 3 показано 
на Табл. 4. 

Здесь учтен факт, что числовое значение мо-
жет принадлежать только одному из интервалов.  

Разберем работу с векторами истинности в 
случае неполной уверенности в данных. 
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1. По степени доверия к источникам. Пред-
положим, источник сообщает о принадлежности 
числа к интервалу (∞,T1) (качество h1) и дове-
рие к источнику имеет величину . Это означает 
недоверие той же величины к качествам h2 и h3 
(свидетельство силы  в пользу h1 есть свиде-
тельство той же силы против h2 и h3). Согласно 
этому получаем следующие значения истинно-
сти: ||h1||=;0, ||h2||=0;, ||h3||=0; [32]. Этот 
вариант иллюстрируется Табл. 5. 

Для полноты следовало бы упомянуть слу-
чай, когда источник с доверием  сообщает о 
непринадлежности числа интервалу h1: 
||h1||=0; (истинности h2 и h3 здесь принимают 
интервальные значения: ||h2||=||h3||=[0,];0 
[26]), но он вряд ли интересен с прикладной 
точки зрения.  

2. По статистическим соображениям. 
Здесь истинность определяется относительной 
частотой попадания в каждый из интервалов. 
Обозначая частоты, соответственно, 1, 2 и 3, 
запишем: ||h1||=1;2+3, ||h2||=2;1+3, 
||h3||=3;1+2; 1+2+3=1. Данный прием 
подходит при работе с артефактами. 

3. Объединение обоих подходов. Может  
применяться также при замене артефактов  
искусственными, например, статистически 
 

определенными значениями. Как описано выше, 
формируемые векторы умножаются на степень 
доверия к искусственному показателю, что сни-
жает влияние таких показателей на результат. 
При нулевом доверии влияние артефактов ис-
ключается вовсе. 

В результате для каждой гипотезы получа-
ются группы векторов для каждого набора дан-
ных и к ним можно применить описанную тех-
нику. Она пригодна как для СМСР, так и для 
МЕС. Проиллюстрируем это расчетом. 

3. Примеры расчета 

Расчет с помощью СМСР в форме (2) прове-
дем на гипотетических данных, что позволяет по-
казать особенности вычислений. Для иллюстра-
ции МЕС воспользуемся реальным массивом 
данных по заболеванию диабетом, представлен-
ным в [33]. Различие в расчетах между СМСР и 
МЕС состоит в замене (2) на (3) и, соответ-
ственно, (6) и (9) на (7) и (10). Все остальное со-
храняется. Выбор МЕС во втором примере обу-
словлен тем, что соответствующие данные 
содержат сведения о достаточно специфичной 
группе людей, что при СМСР может привести к 
некорректным результатам (хотя любая индук-
ция в принципе требует осторожности). 

Табл. 3. Попадание числа в один из трех диапазонов 

Значение  
показателя 

h1 h2 h3 B 

v≤T1 1 0 0 0 
T1<v≤T2 0 1 0 1 

v>T2 0 0 1 0 

Табл. 4. Векторное представление истинности для трех диапазонов 

Значение  
показателя 

h1 h2 h3 B 

v≤T1 1;0 0;1 0;1 0;1 
T1<v≤T2 0;1 1;0 0;1 1;0 

v>T2 0;1 0;1 1;0 0;1 

Табл. 5. Векторное представление при ограниченном доверии к данным 

Значение  
показателя 

Доверие h1 h2 h3 b 

v≤T1 0.8 0.8;0 0;0.8 0;0.8 0;1 
T1<v≤T2 0.8 0;0.8 0.8;0 0;0.8 0;1 

v>T2 0.8 0;0.8 0;0.8 0.8;0 1;0 
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Часто при проведении медицинских анали-
зов значение какого-либо показателя сравнива-
ется с показателями здорового человека. 
Обычно такие значения оцениваются по порогу 
или заключаются в диапазон от нижней до верх-
ней границы. В качестве примера возьмем уро-
вень глюкозы в крови и свяжем его с нали-
чием/отсутствием диабета 2 типа. Норма 
глюкозы у человека 3,3-5,5 ммоль/л [34]. Пред-
положим, получены результаты из Табл. 6. Здесь 
значение 0 и 1 сразу заменены векторами 0;1 и 
1;0 – строгая ложь и строгая истина, этим пе-
реводим скалярные значения истинности в век-
торное представление, необходимое для рас-
сматриваемой техники.  

В Табл. 6 доверие к показаниям полное. Рас-
смотрим случай, когда доверие к ним в силу ка-
ких-то обстоятельств меньше единицы. Это си-
туация 1 из рассмотренных выше. Результат 
представлен в Табл. 7. 

Исследуются гипотезы: 
H1 = h1диабет 2 типа; 
H2 = h2диабет 2 типа; 
H3 = h3диабет 2 типа. 

Вычисляем истинности гипотез согласно (6) 
и нестрогую вероятность согласно (8) (Табл. 8). 
Треугольные нормы (композиционное умноже-
ние и сложение) выбираем как в (11), округле-
ние до тысячных. 

Полученные значения нестрогих вероятностей: 

P(H1)=0.188;0.438; 
P(H2)=0.3;0.325; 
P(H3)= 0.6;0.025. 

Меры достоверности и определенности для 
гипотез принимают значения: 
д(H1)= 0.25, о(H1)=0.438, п(H1)=0.188; 
д(H2)= 0.025, о(H2)=0.325, п(H2)=0.3; 
д(H3)=0.575,  о(H3)=0.6, п(H3)=0.025. 

Используя лексикографический порядок 
{д,о,1п} останавливаемся на гипотезе H3. 

Рассмотрим вариант, когда часть строк, 
например первая и третья, сформированы из 
разных источников, которые предоставили вза-
имоисключающие данные. Объединяя свиде-
тельства согласно (13), получаем Табл. 9.  
S-норму берем также по (11), это дает результат 
из Табл. 10. 

Табл. 6. Взаимосвязь уровня глюкозы с диабетом в векторном представлении 

 
Уровень 
глюкозы 

h1 h2 h3 
Диабет  
2 типа 

1 4.1 0;1 1;0 0;1 0;1 
2 2.9 1;0 0;1 0;1 0;1 
3 6.5 0;1 0;1 1;0 1;0 
4 3.1 1;0 0;1 0;1 0;1 
5 5.3 0;1 1;0 0;1 0;1 
6 7.0 0;1 0;1 1;0 1;0 
7 3.2 1;0 0;1 0;1 0;1 
8 4.6 0;1 1;0 0;1 1;0 

Табл. 7. Переход к векторному представлению при неполном доверии к данным 

 
Уровень 
глюкозы 

Доверие h1 h2 h3 
Диабет  
2 типа 

1 4.1 0.8 0;0.8 0.8;0 0;0.8 0;1 
2 2.9 0.3 0.3;0 0;0.3 0;0.3 0;1 
3 6.5 0.6 0;0.6 0;0.6 0.6;0 1;0 
4 3.3 0.9 0.9;0 0;0.9 0;0.9 0;1 
5 5.3 0.7 0;0.7 0.7;0 0;0.7 0;1 
6 7.0 0.5 0;0.5 0;0.5 0.5;0 1;0 
7 3.2 1.0 1;0 0;1 0;1 0;1 
8 4.6 0.2 0;0.2 0.2;0 0;0.2 1;0 
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Соответственно, Табл. 8 принимает вид 
Табл. 11. 

Меры достоверности и определенности для 
гипотез принимают значения: 
д(H1)= 0.2,  о(H1)=0.438, п(H1)=0.238; 
д(H2)=0.013,  о(H2)=0.338, п(H2)=0.325; 
д(H3)=0.488,  о(H3)=0.6, п(H3)=0.112. 

Видно, что повысились достоверности пер-
вой и второй гипотез и упала достоверность тре-
тьей, что вполне оправдано. Показатели опреде-
ленности и противоречия поменялись тоже. 

Для иллюстрации подхода на реальных дан-
ных используем таблицу из [33]. При этом инте-
ресно сравнить результат, полученный в пред-
положении их достоверности (т.е. обычная 
статистическая индукция), и с учетом влияния 
артефактов. Достоверным выглядит столбец 
значения глюкозы (Glucose) в связи с диагности-
рованным заболеванием. Гипотеза: «Высокое 
значение глюкозыДиабет». Рассматривая для 
МЕС только строки, где представлены больные, 
на основе (10) получаем с точностью до третьего  
 

Табл. 8. Нестрогие вероятности гипотез H1, H2, H3 

 
Уровень 
глюкозы 

Доверие H1 H2 H3 

1 4.1 0.8 0.8;0 0;0.8 0.8;0 
2 2.9 0.3 0;0.3 0.3;0 0.3;0 
3 6.5 0.6 0;0.6 0;0.6 0.6;0 
4 3.3 0.9 0;0.9 0.9;0 0.9;0 
5 5.3 0.7 0.7;0 0;0.7 0.7;0 
6 7.0 0.5 0;0.5 0;0.5 0.5;0 
7 3.2 1.0 0;1 1;0 1;0 
8 4.6 0.2 0;0.2 0.2;0 0;0.2 
Нестрогая вероятность: 0.188;0.438 0.3;0.325 0.6;0.025 

Табл. 9. Векторное представление при взаимоисключающих свидетельствах 

 
Уровень 
глюкозы 

Доверие h1 h2 h3 
Диабет  
2 типа 

1 4.1; 7.2 0.8; 0.3 0;0.80.3 0.8;00.3 0.3;0.8 0;1 
2 2.9 0.3 0.3;0 0;0.3 0;0.3 0;1 
3 6.5; 3.1 0.6; 0.4 0.4;0.6 0;0.60.4 0.6;00.4 1;0 
4 3.3 0.9 0.9;0 0;0.9 0;0.9 0;1 
5 5.3 0.7 0;0.7 0.7;0 0;0.7 0;1 
6 7.0 0.5 0;0.5 0;0.5 0.5;0 1;0 
7 3.2 1.0 1;0 0;1 0;1 0;1 
8 4.6 0.2 0;0.2 0.2;0 0;0.2 1;0 

Табл. 10. Векторное представление при взаимоисключающих свидетельствах 

 
Уровень 
глюкозы 

Доверие h1 h2 h3 
Диабет  
2 типа 

1 4.1; 7.2 0.8; 0.3 0;0.8 0.8; 0.3 0.3;0.8 0;1 
2 2.9 0.3 0.3;0 0;0.3 0;0.3 0;1 
3 6.5; 3.1 0.6; 0.4 0.4;0.6 0;0.6 0.6;0.4 1;0 
4 3.3 0.9 0.9;0 0;0.9 0;0.9 0;1 
5 5.3 0.7 0;0.7 0.7;0 0;0.7 0;1 
6 7.0 0.5 0;0.5 0;0.5 0.5;0 1;0 
7 3.2 1.0 1;0 0;1 0;1 0;1 
8 4.6 0.2 0;0.2 0.2;0 0;0.2 1;0 
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знака значение вектора обоснованности  
P = 0.996;0; t- и s-нормы брались согласно (12). 
Статистическая индукция дает значение 1. 
Практически полное совпадение, что объясня-
ется небольшим числом артефактов (нулевых 
значений) по этому показателю. 

Иной результат дает взаимосвязь «Инсулин-
Диабет». Полагаем, что артефакты здесь пред-
ставлены нулевыми значениями столбца Insulin. 
Доля подобных артефактов составляет около 
48,7%. Для работы с ними использовалась про-
стая эвристика: нулевые значения заменялись 
средним по ненулевым показателям столбца с 
последующим выставлением для таких ячеек 
значения доверия 0.5. В результате получены 
векторные значения обоснованности гипотез 
(нестрогие вероятности) по МЕС: 

P(Инсулин ниже нормыДиабет) = 0.007;0.735; 
P(Инсулин в нормеДиабет) = 0.627;0.116; 
P(Инсулин выше нормыДиабет) =0.108;0.634. 

Если же в таблице вновь оставить только 
больных, а потом удалить строки с артефактами 
по инсулину, получаем статистику: 

P(Инсулин ниже нормыДиабет) = 0.007; 
P(Инсулин в нормеДиабет) = 0.884; 
P(Инсулин выше нормыДиабет) = 0.108 

(известный факт, что диабет может наблюдаться 
при нормальном уровне инсулина, если это диа-
бет второго типа – наиболее массовый; о при-
чинно-следственной связи здесь речь не идет). И 
в этом примере наблюдается корреляция между 
результатами на основе нестрогой вероятности 
и статистикой. Но нестрогие вероятности полу-
чены для почти пятидесятипроцентной (!) доли 

ошибок, тогда как уже двадцатипроцентная 
доля артефактов при обычном АБД ряд авторов 
по данной тематике считает недопустимой. 

Заключение 

Таким образом, обсуждаемый подход  
позволяет: 

1. Выполнять анализ импликативных связей 
на основе нестрогих вероятностей при использо-
вании как качественных, так и количественных 
данных, в том числе, в условиях их низкой до-
стоверности и противоречивости. 

2. Учитывать степень доверия к данным. По-
следнее особенно важно, если в данных содер-
жатся артефакты, что характерно для АБД. 

3. Учитывать влияние артефактов, а также 
малодостоверных и противоречивых данных на 
результат индуктивного вывода при значитель-
ной доле таких данных, что существенно при ра-
боте с соответствующими массивами в ходе АБД. 
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