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Введение 

Представленные исследования посвящены 
вопросу построения метода сегментации биоло-
гических тканей при анализе магнитно-резонанс-
ных томографических (МРТ) изображений в 
условиях, когда искомый объект по своим свой-
ствам близок к расположенным вблизи него дру-
гим биологическим тканям. В качестве примера 
такого сложного объекта, рассматриваемого в 
данной работе, выбран гиппокамп на магнитно-
резонансных изображениях головного мозга,  
который вследствие своего относительно малого 
размера, криволинейной формы и схожести с рас-
положенными вблизи него тканями действи-
тельно является сложным для точной локализа-
ции на магнитно-резонансных изображениях,  
что подтверждается множеством публикаций, 

ссылки на которые приведены ниже. В качестве 
входных данных рассматривается серия двумер-
ных изображений оптических срезов в градациях 
оттенков серого, полученная магнитно-резонанс-
ным томографом в сагиттальной проекции. Воз-
можны и другие проекции – аксиальная или ко-
ронарная – но на принцип обработки данных 
разработанным методом это не влияет.  

Предлагаемый метод для сегментации объ-
ектов на МРТ-изображениях головного мозга, 
базируется на вычислении свойств анализиру-
емой области с последующим анализом выде-
ленных объектов при помощи нейронных сетей 
и математического описания области перехода 
между биологическими объектами. 

Преимуществом разработанного подхода 
является применение нейронных сетей лишь в 
начальной части процедуры распознавания и 

_________________________________________ 

* Исследование выполнено в рамках темы № FFNR-2024-0003. 
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упрощения поиска ключевых особенностей за-
данного биологического объекта, тогда как ос-
новная часть реализована в виде процедур вы-
числения признаков переходов между 
биологическими структурами и последующей 
фильтрацией ложных обнаруженных перехо-
дов путем анализа двумерных оптических сре-
зов МРТ с последующим построением объем-
ной модели анализируемой области. 

Обзор известных методов  
сегментации биологических 
структур на МРТ и уточнение  
задачи исследований 

Сегментация изображений биологических 
объектов по МРТ изображениям является акту-
альной для различных сфер применения в ме-
дицине при анализе состояния пациентов и 
здоровых людей.  

Базируясь на обзоре методов сегментации и 
выделения искомых структур головного мозга, 
анализе методов обработки МРТ-изображений 
применительно к проблематике диагностики 
болезни Альцгеймера и когнитивных наруше-
ний [1, 2, 3] можно сделать следующие вы-
воды, определяющие постановку и цели иссле-
дований, представленных в данной работе. 1. 
Значительный объем публикаций, направлен-
ных на описание математических методов об-
работки изображения МРТ головного мозга 
ориентирован на выявление патологических 
образований, преимущественно опухолей раз-
личных видов [4]. При этом, как правило, в су-
ществующих решениях предполагается, что 
основные структуры мозга соответствуют нор-
мальному состоянию, не подверженному или 
мало подверженному когнитивным наруше-
ниям. Такое предположение – об относительно 
нормальных, не редуцированных вследствие 
когнитивных нарушений структур мозга - 
накладывает ограничения на применимость 
подходов применительно к случаям когнитив-
ных нарушений и иным патологическим про-
цессам. 2. Существующие методы сегментации 
как процесса разделения пикселей или воксе-
лей на отдельные биологические анатомиче-
ские структуры внутри одного оптического 
среза изображения или серии нескольких изоб-

ражений в объеме МРТ головного мозга в ос-
новном базируются также на предположении 
об относительно здоровом состоянии мозга и, 
как следствие, возможности применения так 
называемых медицинских атласов, содержа-
щих априорно-обобщенную информацию о 
расположении и свойствах биологических 
структур, либо содержащих обобщенную ин-
формацию о наличии выявляемых инструмен-
тальными методами различий при поиске пато-
логических образований [5]. 3. Применение 
известных подходов для сегментации сложных 
по форме объектов головного мозга, таких как, 
например, гиппокамп, в условиях деградации 
его объема и изменения формы вследствие раз-
личных нарушений существенно осложнено 
общими методами сегментации и требует при-
менения отдельных подходов, ориентирован-
ных на обработку изображений гиппокампа 
или иных сложных для обработки анатомиче-
ских структур головного мозга [6]. 

Вопросам сегментации МРТ-изображений 
головного мозга, под которой понимается раз-
деление фрагментов МРТ-изображений на от-
дельные участки, принадлежащие одному био-
логическому объекту, также посвящен ряд 
работ [7-10]. В основной массе работ построе-
ние сегментирующих процедур реализовано 
при помощи обучения и последующего приме-
нения искусственных нейронных сетей. Такой 
подход, безусловно, реализуем, когда есть ге-
неральная выборка для обучения нейронной 
сети и когда сегментируемые объекты не под-
вержены сильным изменениям, например, в ре-
зультате патологических процессов. При этом, 
подобные подходы на основе искусственных 
нейронных сетей характеризуются и другим 
недостатком – снижением точности локализа-
ции границ объектов в случае их сложной 
структуры или схожести структуры биологиче-
ского объекта с прилегающими тканями. Схо-
жие результаты к декомпозиции биологиче-
ских объектов по МРТ представлены в 
исследованиях [9], выявивших необходимость 
использования первичной обработки визуаль-
ных данных перед их подачей в искусственные 
нейронные сети. Другой задачей, актуальность 
которой также подтверждена различными ис-
следователями [10], является анализ данных в 



Метод декомпозиции биологических объектов на МРТ изображениях при схожем фоне  

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 2/2024 39 

объеме пространства посредством формирова-
ния обособленных областей внутри общей 
структуры МРТ-данных, что обеспечивает бо-
лее достоверное исключение ложных и поме-
ховых структур.  

Также известен большой спектр подходов к 
обнаружению и выделению гиппокампа как од-
ной из наиболее сложных с точки зрения обра-
ботки изображений анатомических структур 
вследствие ее криволинейной формы, малого 
размера и схожести по структуре с прилегаю-
щими тканями [11]. В данном направлении в 
основной массе также применяются методы 
машинного обучения. Предлагаются решения, 
базирующиеся на формировании обучающей и 
валидационной выборок с использование изоб-
ражений МРТ головного мозга здоровых лю-
дей и пациентов с редуцированными в объеме 
гиппокампами вследствие различных когни-
тивных нарушений и иных патологических 
процессов. Приводятся данные о недостатках 
подобных решений, несмотря на их работоспо-
собность, как со здоровыми людьми, так и с па-
циентами с измененной формой и редуциро-
ванным объемом гиппокампа. Основными 
недостатками, по мнению авторов публикаций 
[12], являются высокая вычислительная слож-
ность предложенных решений, требования к 
разрешающей способности приборов, на кото-
рых получены МРТ изображения, к относи-
тельно большому объему обучающей выборки. 
При этом, по мнению других авторов, отражен-
ного в публикациях и, базируясь на результа-
тах исследований авторов данной публикации, 
результативным решением в части детекции 
гипокампа как примера одной из наиболее 
сложной анатомической структуры является 
совмещение подходов, основанных и на пред-
варительной обработке изображений классиче-
скими методами обработки изображений, и на 
методах глубокого обучения с использованием 
нейронных сетей [13]. Это позволяет достичь и 
повышения точности локализации краев гип-
покампа вследствие использования множества 
свойств его изображения, и снизить вычисли-
тельную ресурсоемкость вследствие обработки 
меньшего участка изображения. Также новиз-
ной предложенного подхода является введение 
функции фильтрации ложно найденных частей 

гиппокампа или иного анализируемого объекта 
на МРТ путем анализа его объемного представ-
ления. 

Ранее предложен метод для нахождения 
краев биологических объектов на медицинских 
изображениях, базирующийся на введении эле-
ментарных математических функций, аппрок-
симирующих поведение кривой яркости в об-
ласти предполагаемой границы между 
объектами и формирующий вероятностное 
поле расположения границ объектов [14]. Суть 
метода заключается в построении вероятност-
ного двумерного дискретного поля с размерно-
стью, совпадающей с размерностью исходного 
двумерного изображения, нормированного в 
диапазоне от нуля до единицы, на котором еди-
ничные значения соответствуют предполагае-
мому элементу контура, определяющего разли-
чие между биологическим объектами, тогда 
как близость к нулю значений соответствует 
отсутствию различий в текущей анализируе-
мой области изображения. Вариант результата 
построения такого вероятностного дискрет-
ного поля представлен на Рис. 1.  

Недостатком решения [14] является лишь 
формирование вероятностного поля без после-
дующей реализации сегментации на биологи-
ческие объекты.  

Разработанный и рассматриваемый в дан-
ной публикации метод базируется на оценке 
формы анализируемого объекта в пространстве 
МРТ объемного изображения. При этом одно-
временно используются и нейронные сети для 
первичной классификации признаков анализи-
руемого объекта, и математические методы вы-
числения свойств перепада яркости, что в ре-
зультате позволяет повысить точность 
локализации края анализируемого биологиче-
ского объекта и более точно выполнить его де-
композицию среди других расположенных ря-
дом тканей. 

Описание разработанного метода 

Рассмотрим предлагаемый метод определе-
ния объектов на МРТ-изображениях на при-
мере анализа и выделения гиппокампа на МРТ 
головного мозга. Сущность метода заключа-
ется в выполнении следующих действий 
(Рис. 2).  



ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ  В. Н. Гридин, М. И. Труфанов и др. 

40 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 2/2024 

Первоначально выполняется ввод изобра-
жений. При необходимости осуществляются 
геометрические преобразования данных в са-
гиттальную проекцию (блок 1 алгоритма на 
Рис. 2).  

Изображения, выходящие из МРТ-
томографа, как правило, уже являются пригод-
ными к использованию, однако, в случае необ-
ходимости, они могут быть приведены к нор-
мализованной яркости и контрастности (Рис. 2, 
блок 2). 

Следующей операцией является операция 
выделения краев переходов между локаль-
ными структурами (Рис. 2, блок 3). На Рис. 1, 
(а) представлено входное изображение - об-
ласть, содержащая гиппокамп и прилегающие 
к нему смежные биологические структуры, на 
Рис. 1, (б) – обработанное изображение.  

Особенность обработанного изображения 
на Рис. 1, (б) состоит в том, что из-за математи-
ческих особенностей применяемой функции 
для описания границ биологических объектов 
и относительно низкой разрешающей способ-
ности МРТ полученное изображение содержит 
и реально присутствующие области перехода 
между биологическими структурами, и шум. 
Удалить шум стандартными математическими 
методами (например, медианной фильтрацией, 
спектральными методами и т.д.) на подобном 

изображении не представляется возможным 
ввиду потенциальной потери информации о ре-
ально присутствующих границах объектов. 
Поэтому для сегментации и декомпозиции 
изображения на реальные биологические объ-
екты в разработанном методе введены после-
дующие процедуры обработки. 

После выделения переходов локальных 
структур с целью сохранения информации о 
внутренних особенностях объекта выполня-
ется объединение исходного изображения и 
изображения, на котором выделены переходы, 
путем их суммирования с заданными весовыми 
коэффициентами. Также предполагается со-
гласно разработанному методу раздельный 
анализ и исходного, и полученного в резуль-
тате обработки изображений. 

Следующей операцией является блок 4, 
направленный на вычисление так называемых 
энергетических свойств локальных участков 
изображения в окрестности анализируемого 
биологического объекта на основе метода 
Лавса [15]. 

Для этого строятся матрицы, определяющие 
ядра свертки энергетических функций. После 
формирования матриц преобразованные изоб-
ражения, полученные на основе свертки с яд-
рами Лавса, и исходные изображения подаются 
для обучения нейронных сетей.  

а) б) 

Рис. 1. Результаты обработки части изображения МРТ головного мозга 

а) исходное изображение, б) обработанное изображение с вероятностными краями биологических тканей 
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Согласно представленному в методе Лавса 
математическому подходу вводятся векторы 
размерностью в пять элементов, из которых  
затем путем транспонирования и попарного  
перемножения формируется девять матриц 
размерностью 5х5. Полученные девять матриц 

и являются ядрами, применяемыми для дву-
мерной свертки изображений. 

Формируют следующие векторы L, E, S, R: 
L = <1, 4, 6, 4, 1>, 
E = <-1, -2, 0, 2, 1>, 
S = <-1, 0, 2, 0, -1>, 
R = <1, -4, 6, -4, 1>. 

Начало 

1 

Ввод данных 

5 

Обучение нейронных сетей 

Распознавание заданных  
особенностей  

6 

4 

Обработка изображений  
матрицами Лавса 

9 

Расчет нормалей к точкам  
края объекта 

Выход 

8 

Сопоставление точек 
и фильтрация 

2 

Нормализация данных  
и формирование проекции 

3 

Формирование массива точек 
края объекта 

10 

Формирование объемной  
модели гиппокампа 

11 

Фильтрация объектов  
на объемной модели 

Построение кривых  
распределения яркости

7 

12 

Уточнение объемной модели 

Рис. 2. Алгоритм реализации метода выделения объектов на МРТ изображениях 
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После перемножения формируют результи-
рующие матрицы: 
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  (9). 
 
Результаты применения двумерной свертки 

для каждой из девяти матриц (1) - (9) представ-
лены на Рис. 3 и 4, на Рис. 3 – представлены для 
всего изображения оптического среза МРТ го-
ловного мозга, а на Рис. 4 – для выделенной об-
ласти, содержащей гиппокамп. 

Далее выполняется обучение нейронной 
сети. В качестве архитектуры сети выбрана ар-
хитектура yolo версии 5 [16]. Обоснованность 
выбора данной архитектуры обусловлена вы-
сокой скоростью реализации вычислений при 
достаточной точности распознавания объек-
тов. Для обучения формируется массив дан-
ных, извлеченных из МРТ здоровых людей и 
пациентов с различной степенью измененности 
формы гиппокампа вследствие наличия когни-
тивных нарушений. Также в набор данных для 
обучения введены области, определяющие 
биологические структуры вверху и внизу (рас-
сматривается саггитальная проекция) относи-
тельно гиппокампа, а также область церебро-
спинальной жидкости вблизи гиппокампа по 
направлению к затылочной части головы. 
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Рис. 3. Применение свертки оптического среза с матрицами Лавса с ядрами, заданными матрицами (1)A:A(9) 
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Эталоны классов представлены на Рис. 5. 
При формировании разметки эталонных клас-
сов использовались изображения головного 
мозга размером 512 х 512 пикселей. Для изоб-
ражений меньшего размера производилось 
увеличение изображения до необходимого раз-
мера с применением бикубической интерполя-
ции при масштабировании. До разметки дан-
ных и формирования множества для обучения 
производился поворот каждого оптического 
среза на величину 300 с целью упрощения про-
цедур разметки и последующего анализа дан-
ных. При работе нейросети выполняется анало-
гичный обратный поворот изображения. 

Аугментация данных выполнялась путем 
введения дополнительного масштабирования 
при различных и неравных между собой вели-
чинах сжатия и растяжения изображения по 
осям абсцисс и ординат, а также путем пово-
рота изображений в диапазоне ±250 на случай-
ный угол (больший диапазон углов поворота 
при аугментации не требуется вследствие обра-
ботки данных в сагиттальной проекции и ана-
томических особенностей строения головного 
мозга). 

После обучения выполняется распознава-
ние на сериях оптических срезов заданных объ-
ектов, в данном случае гиппокампа, а также 

Рис. 4 Результат свертки изображения гиппокампа с матрицами Лавса с ядрами, заданными матрицами (1)A:A(9) 
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структурных элементов, близко расположен-
ных к гиппокампу, указанных на Рис. 5 клас-
сами 01 - 03.  

Согласно разработанному методу высокая 
достоверность верного распознавания не пред-
полагается в результате обучения на данном 
шаге обработки данных, т.к. определение то-
чек, принадлежащих границам заданного объ-
екта, выполняется на последующих этапах об-
работки. При определении заданных классов 
используются результаты распознавания с ве-
роятностью более 50 %.  

Далее выполняется обработка (Рис. 2, блок 
6) всех оптических срезов, на которых может 
присутствовать гиппокамп [17]. В результате 
формируются прямоугольные области, описан-
ные вокруг найденных объектов заданных 
классов, которые далее поступают на следую-
щий шаг обработки.  

Следующим шагом обработки является 
уточнение границ гиппокампа посредством по-
строения кривых распределения яркости в об-
ласти предполагаемой границы гиппокампа и 
анализа локальных экстремумов на сформиро-
ванных кривых (Рис. 2, блок. 7). 

Каждая кривая соответствует распределе-
нию яркости пикселей, расположенных на  
прямой, ортогональной к предполагаемой гра-
нице гиппокампа (Рис. 6). Для каждой кривой 
выполняется обнаружение локального мини-
мума для верхней границы и локального мак-
симума для нижней границы. При превышении 
по модулю соответствующих минимума и мак-
симума заданным пороговым величинам теку-
щая точка анализируется и остается в обра-
ботке, в противном случае исключается из 
дальнейших процедур обработки. 

Следующим шагом обработки является со-
поставление точек края гиппокампа от оптиче-
ского среза к оптическому срезу (Рис. 2, блок 8). 
Так как форма анализируемого биологического 
объекта, а именно гиппокампа, является криво-
линейной формой, то от оптического среза к 
следующему оптическому срезу координаты 
границы гиппокампа будут меняться и, при 
этом, меняться незначительно. Для отслежива-
ния точек края биологического объекта приме-
няется метод на основе нахождения характер-
ных точек и их сопоставления (Рис. 7) [18].  

Рис. 5. Разметка данных при обучении нейронной сети: цифрами 00 показан гиппокамп, 01 – область границы  
над гиппокампом, 02 – область границы под гиппокампом, 03 – область цереброспинальной жидкости 
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В результате формируется двумерное поле 
из множества кусочно-линейных кривых, соот-
ветствующих изменению краев гиппокампа.  

Затем сформированные области вероятных 
границ используется для построения объемной 
модели гиппокампа (Рис. 2, блоки 9, 10). При 
построении объемной модели гиппокампа вы-
полняется двупроходный анализ оптических 
срезов. На первом проходе на основе анализа 
смежных оптических срезов производится пер-
вичное удаление ложных границ по принципу 
аналогичному медианному фильтру. 

Результат формирования массива вероятных 
краев гиппокампа в виде кусочно-линейных  

отрезков представлен на Рис. 8. Реализуется 
построение замкнутых линий, соответствующих 
области анализируемого объекта. 

Затем строятся нормали к каждой точке 
предполагаемого края гиппокампа. Расчет пря-
мой, которой принадлежит нормаль, выполня-
ется по трем точкам, а знак (плюс или минус) 
направления нормали в случае неоднозначно-
сти принимается эквивалентным направлен-
ному от центра масс множества найденных  
точек краев гиппокампа к периферии оптиче-
ского среза.  

В результате к данному моменту обработки 
будут сформированы массив предполагаемых 

а)      б) 

Рис. 6. Построение кривой (б) распределения яркости пикселей вдоль отрезка прямой, (а) ортогоA
нальной предполагаемой границе гиппокампа в заданной локальной точке 

Рис. 7. Сопоставление точек в области гиппокампа от оптического среза к оптическому срезу 
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точек, соответствующих границам гиппокампа 
в объеме головного мозга, а также нормали для 
каждой точки. По этим данным строится объ-
ёмная модель гиппокампа (Рис. 9) [19, 20]. 

Далее производится удаление ложных ча-
стей анализируемого объекта исходя из его 
формы и размеров в пространстве. Удаляются 
ложные объемные объекты, которые характери-
зуются формой, не соответствующей строению, 
или имеющие малый объем, характерный для 
объектов, определяемых шумом или различ-
ными примесями в цереброспинальной жидко-
сти. Рассмотрение автоматического процесса 
удаления ложных частей является предметом 
отдельной, следующей публикации. В данной 
работе ложные части удалены вручную исходя 
из критериев объема ложной части в случае ее 
объема меньше заданного порога, а также кри-
териев ее геометрических свойств. В случаях 
неразрывности ложной части с основным  
объектом, эта ложная часть удаляется анало-
гично отдельно расположенной ложной части. 

Для данного примера в качестве ложных ча-
стей приняты части, показанные прямоуголь-
ником на Рис. 10 и характеризуемые малым 
размером и местоположением, не соответству-
ющих анатомической форме гиппокампа. 

На следующей стадии обработки после по-
лучения объемной модели производится обрат-
ный переход к двумерным проекциям в случае 
таковой необходимости, и окончательное при-
нятие решения о найденных краях биологиче-
ских объектов и выполнении сегментации. 

Для валидации разработанного метода были 
использованы результаты измерения объема 
гиппокампа на основе выборки МРТ, представ-
ленной в [21] и состоящий из 41 обследован-
ного лица. Проводилось сравнение результатов 
измерения объема гиппокампов путем выделе-
ния гиппокампа, и оценки его объема с исполь-
зованием разработанного подхода и программ-
ного продукта FMRIB Software Library. В 
качестве эталонной разметки ground truth для 
сравнения использована ручная разметка.  

Рис. 8. Формирование массива вероятных границ гиппокампа 

Рис. 9. Сформированная модель гиппокампа 
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Сравнение показало, что использование предло-
женного метода позволяет повысить в среднем 
на 9% точность выделения области гиппокампа 
для пациентов с измененным относительно нор-
мального состояния объемом гиппокампа, и в 
среднем на 4% для здоровых людей.  

Выводы 

В результате разработки метода локализа-
ции биологических структур на МРТ-
изображениях головного мозга предложен под-
ход, позволяющий с большей точностью по 
сравнению с аналогичными решениями выде-
лять области на МРТ. 

Отличием разработанного метода от извест-
ных является использование искусственных 
нейронных сетей лишь как вспомогательного 
средства первичного выделения краев объек-
тов при реализации основных процедур обра-
ботки в виде формализованных математиче-
ских процедур. 

Другой значимой новизной является пере-
ход в процессе реализации метода к формиро-
ванию объемной модели и фильтрация ложных 
и помеховых объектов по объемной модели с 
последующим обратным переходом к двумер-
ным проекциям оптических срезов МРТ. 
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Abstract. The results of the development of a method for recognizing and measuring objects on MRI 
brain inventions based on the introduction of a mathematical description of the transition area between 
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biological objects and the subsequent decomposition of the general image of the brain into separate 
biological objects are presented. A distinctive feature of the developed approach is the use of neural 
networks only to simplify the search for key features of a given biological object, whereas the main part 
of the method is implemented in the form of procedures for calculating signs of transitions between 
biological structures by introducing a mathematical function and then filtering false detected transitions. 
Keywords: magnetic-resonance imaging, image processing, recognition, hippocampus, image filtering. 
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