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Аннотация. Статья посвящена разработке аналитического метода приближенного вычисления мно-
гомерных интегралов, ориентированного на решение балансовых уравнений в процедурах рандо-
мизированного машинного обучения. Последние используются для прогнозирования эволюции 
площади термокарстовых озер. Метод базируется на разложении в ряд аналитической функции - 
экспоненты - и трансформации многомерных интегралов в произведение простых одномерных ин-
тегралов на интервальных множествах. 
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Введение 

Проблемы изменения климата привлекают внимание научного сообщества и общественности, о 
чем свидетельствуют многочисленные публикации в специализированных изданиях и средствах 
массовой информации. В качестве популярной причины этих изменений декларируются так назы-
ваемые парниковые газы, генерируемые как человеческой деятельностью, так и природными про-
цессами. К последним относятся процессы генерации метана термокарстовыми озерами в арктиче-
ских зонах земной поверхности [1, 3], в частности, в арктической зоне РФ [2, 4]. Исследованию этих 
процессов посвящена работа [5, 6], в которой развивался метод рандомизированного машинного 
обучения (РМО), промежуточный результат которого сводился к необходимости вычисления мно-
гомерных интегралов на простых множествах (многомерных параллелепипедах). При разумной раз-
мерности исходной задачи эти вычисления сопряжены с большими и до конца не разрешенными 
сложностями. Последние связаны с генерацией подходящих случайных последовательностей, тех-
нологией вычисления многомерных интегралов в рамках процедуры Монте Карло [7]. 

В данной статье предлагается асимптотический метод аналитического вычисления многомерных 
интегралов, ориентированный на класс многомерных интегралов, присутствующих в балансовых 
уравнениях процедуры РМО, которая используется для обучения моделей и прогнозирования эво-
люции термокарстовых озер. 

_________________________________________ 

* Работа выполнена при поддержке гранта РНФ (проект 22-11-20023). 
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1. Математические основы процедуры РМО 

Ядром процедуры РМО является математическая модель формирования термокарстовых озер, 
устанавливающая связь площади озер ܵሾ݊ሿ с климатическими параметрами, а именно, средними 
температурой ܶሾ݊ሿ и осадками ܴሾ݊ሿ (݊ - момент измерения, обычно год). 

Связь между указанными переменными описывается математической моделью линейной 
динамической регрессии с памятью ݌:  

 ܵሾ݊ሿ ൌ ܽ଴ ൅ ∑௣௞ୀଵ 	ܽ௞	ܵሾ݊ െ ݇ሿ ൅ ܽ௣ାଵ	ܶሾ݊ሿ ൅ ܽ௣ାଶ	ܴሾ݊ሿ. (1) 
Пусть имеются данные по площади ܵ ௥ሾ݊ሿ и климатическим параметрам ܶ ௥ሾ݊ሿ, ܴ௥ሾ݊ሿ на интервале 

наблюдений на ࣮ ൌ ሾ݌, ݌ ൅ ܰሿ. Обозначим выход модели в момент времени ݊, когда в правую часть 
равенства (1) входят реальные данные, в виде  

 ܵሾ݊|ܽሿ ൌ ܽ଴ ൅ ∑௣௞ୀଵ 	ܽ௞	ܵ
௥ሾ݊ െ ݇ሿ ൅ ܽ௣ାଵ	ܶ௥ሾ݊ሿ ൅ ܽ௣ାଶ	ܴ௥ሾ݊ሿ, (2) 

 ܵሾ݊|ܽሿ ൌ ,௡௥ݏ〉 ܽ〉 ൌ ∑௣ାଶ௜ୀ଴ ܽ௜ݏ௡௜
௥ , (3) 

 ݊ ൌ ,݌ ݌ ൅ ܰ, 
где: 
 • векторы наблюдаемых значений площади, температуры и осадков в момент ݊  

௡௥ݏ  ൌ ሼ1, ܵ௥ሾ݊ െ 1ሿ, … , ܵ௥ሾ݊ െ ,ሿ݌ ܶ௥ሾ݊ሿ, ܴ௥ሾ݊ሿሽ, ݊ ൌ ,݌ ݌ ൅ ܰ; (4) 
௡௜ݏ • 

௥  - компоненты вектора (4);  
 • вектор параметров модели  

 ܽ ൌ ሼܽ଴, … , ܽ௣, ܽሺ௣ାଵሻ, ܽሺ௣ାଶሻሽ; (5) 
Параметры модели ܽ - случайные и интервальные:  

 ܽ ∈ ࣛ ൌ ሾܽି, ܽାሿ, ࣛ ൌ ⋃௣ାே
௜ୀ଴ ࣛ௜, ࣛ௜ ൌ ሾܽ௜

ି, ܽ௜
ାሿ. (6) 

Функции плотности распределения вероятностей (ПРВ) параметров ܲሺܽሻ предполагаются 
непрерывно-дифференцируемыми функциями. 

Тогда, согласно концепции РМО [5] энтропийно-оптимальная ПРВ параметров имеет 
следующий вид:  

 ܲ∗ሺܽሻ ൌ
ୣ୶୮ቀି∑೛శಿ೙స೛ ఒ೙	ௌሾ݊|ܽሿቁ

࣪ሺࣅሻ
, (7) 

 ࣪ሺࣅሻ ൌ ࣛ׬ 	exp൫െ∑௣ାே௡ୀ௣  ݀ܽ, (8)	ܵሾ݊|ܽሿሻ൯	௡ߣ
 

Множители Лагранжа ࣅ ൌ ሼߣ௣,… ,  ௣ାேሽ определяются решением следующей системыߣ
уравнений, которые содержат многомерные интегралы:  

ࣛ׬  	exp൫െ∑௣ାே௡ୀ௣ ܽሿ	|	ሺܵሾ݊	ܽሿ൯	|	ܵሾ݊	௡ߣ െ ܵ௥ሾ݊ሿሻ	݀ܽ ൌ 0, (9) 

 ݊ ൌ ,݌ ݌ ൅ ܰ. 
Согласно (6) множествами определения интегралов являются многомерные параллелепипеды. 

2. Асимптотический метод вычисления многомерных интегралов 

Из равенств (9) следует, что подынтегральные функции содержат аналитическую функцию - 
экспоненту, которая апроксимируется степенным рядом (Тейлора-Маклорена), сходящимся на всей 
числовой оси (т.е. при всех значениях аргумента этой функции). 

Обозначим показатель степени в экспоненте ݔ и поменяем порядок суммирования: 
ݔ  ൌ ∑௣ାே௡ୀ௣ ܵሾ݊|ܽሿ	௡ߣ ൌ ∑௣ାଶ௜ୀ଴ ܽ௜ܤ௜

௥ሺࣅሻ, (10) 
где  

 ܵሾ݊|ܽሿ ൌ ∑௣ାଶ௜ୀ଴ 	ܽ௜ݏ௡௜
௥  (11) 

௜ܤ 
௥ሺࣅሻ ൌ ቀ∑ሺ௣ାேሻ௡ୀ௣ ௡௜ݏ௡ߣ

௥ ቁ 

௡ݔ  ∈ ሺെ∞,൅∞ሻ. 
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Воспользуемся аналитичностью экспоненты и представим ее следующим полиномом Тейлора-
Маклорена степени ݉ вокруг ݔ଴ ൌ 0:  

 expሺെݔሻ ൌ 1 െ ݔ ൅
ଵ

ଶ
ଶݔ	 ൅ ⋯൅ ሺെ1ሻ௠

ଵ

௠!
.௠൅ݔ	 .. (12) 

Согласно (10, 12) получим следующий степенной ряд:  

 expሺെݔሻ ൌ 1 െ ൫∑௣ାଶ௜ୀ଴ 	ܽ௜ܤ௜
௥ሺࣅሻ൯ ൅

ଵ

ଶ
൫∑௣ାଶ௜ୀ଴ 	ܽ௜ܤ௜

௥ሺࣅሻ൯
ଶ
൅. .. (13) 

Подставляя это равенство в (9), получим ܰ-мерный полином относительно компонент вектора 
множителей Лагранжа ࣅ, в коэффициенты которого входят многомерные интегралы относительно 
параметров ܽ линейной модели динамической регрессии, характеризующей временную эволюцию 
термокарстовых озер. 

Многомерные интегралы, входящие в эти коэффициенты, имеют следующий общий вид:  
௠బ,…,௠ೖܫ 

ሺ݅଴, … , ݅௞;	ݍ଴, … , ௣ାଷି௞ሻݍ ൌ ׬ ᇣᇤᇥ׬⋯
ࣛೖ

	ܽ௜బ
௠బ ⋯ܽ௜ೖ

௠ೖ	݀ܽ௜బ ⋯݀ܽ௜ೖ ൈ 

 ൈ ׬ ᇣᇤᇥ׬⋯
ࣛ೗స೛శయషೖ

	݀ܽ௤బ ⋯݀ܽ௤೗, (14) 

 ሺ݅଴, … , ݅௞ሻ ് ሺݍ଴, … ,  ,௟ሻݍ
 ሺ݅ఓ, ఔሻݍ ൌ 0, ݌ ൅ 2, ߤ ൌ 0, ݇, ߥ ൌ 0, ݈, , ݇ ൅ ݈ ൌ ݌ ൅ 3. 

где:  
 ௝݉ ൌ 1,2, … ,݉, ݆ ൌ 1, ݇;		݉଴ ൅ ⋯൅݉௞ ൑ ݉, (15) 

݉ - степень полинома в (12). 
Первая группа из ݇ интегралов  

ሺ௠బ,…,௠ೖሻܫ  ൌ ׬ ᇣᇤᇥ׬⋯
ࣛೖ

	ܽ௜బ
௠బ ⋯ܽ௜ೖ

௠ೖ	݀ܽ௜బ ⋯݀ܽ௜ೖ ൌ ∏௞
௝ୀ଴

ሺ௔೔ೕ
శ ሻሺ೘ೕశభሻିሺ௔೔ೕ

ష ሻሺ೘ೕశభሻ

௠ೕାଵ
. (16) 

Вторая группа из ݌ ൅ 3 െ ݇ интегралов  

ሺ௤బ,…,௤ሺ೛శయషೖሻሻܫ  ൌ ׬ ᇣᇤᇥ׬⋯
ࣛ೗స೛శయషೖ

	݀ܽ௤బ ⋯݀ܽ௤೗ ൌ ∏௣ାଷି௞
௝ୀ଴ 	ቀܽ௤ೕ

ା െ ܽ௤ೕ
ି ቁ. (17) 

 
Если размеры множеств значений параметров одинаковые для всех параметров и равные ሾܾ, ܽሿ, 

то  

ሺ௠బ,…,௠ೖሻܫ  ൌ ∏௞
௝ୀ଴

௕ሺ೘ೕశభሻି௔ሺ೘ೕశభሻ

௠ೕାଵ
. (18) 

 
Таким образом, аппроксимация степенным рядом аналитической функции и параметрическая 

линейность модели позволяют трансформировать многомерные интегралы к произведениям 
одномерных интегралов на интервальных множествах. Подынтегральные функции в этих 
интегралах представляют собой степени параметров. 

3. Пример 

Для иллюстрации предложенного выше асимптотического метода вычисления многомерных 
интегралов рассмотрим задачу рандомизированного обучения линейной модели эволюции площади 
термокарстовых озер с памятью ݌ ൌ 1 и параметром ܽଷ ൌ 0 1.  

 ܵሾ݊ሿ ൌ ܽ଴ ൅ ܽଵ	ܵሾ݊ െ 1ሿ ൅ ܽଶ	ܶሾ݊ሿ. (19) 
Интервал обучения ௟࣮ ൌ ሾ1,2ሿ, ሺ݌ ൌ 1, ܰ ൌ 1ሻ. Поскольку модель имеет память ݌ ൌ 1, то согласно 
(19) необходима информация о значении площади ܵ௥ሾ0ሿ. Таким образом, выходы модели в 
интервале обучения можно представить в виде:  
                                                      
1  В предположении, что влияние осадков существенно меньше влияния температуры. 
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 ܵሾ1|ܽሿ ൌ ܽ଴ ൅ ܽଵ	ܵ௥ሾ0ሿ ൅ ܽଶ	ܶ௥ሾ1ሿ ൌ ∑ଶ௜ୀ଴ ܽ௜ݏଵ௜
௥  

 ܵሾ2|ܽሿ ൌ ܽ଴ ൅ ܽଵ	ܵ௥ሾ1ሿ ൅ ܽଶ	ܶ௥ሾ2ሿ ൌ ∑ଶ௜ୀ଴ ܽ௜ݏଶ௜
௥ , (20) 

где  
ଵ଴ݏ 

௥ ൌ 1, ଵଵݏ
௥ ൌ ܵ௥ሾ0ሿ, ଵଶݏ

௥ ൌ ܶ௥ሾ1ሿ, 
ଶ଴ݏ 

௥ ൌ 1, ଶଵݏ
௥ ൌ ܵ௥ሾ1ሿ, ଶଶݏ

௥ ൌ ܶ௥ሾ2ሿ. (21) 
Переменные ܤ из (11) в данном примере имеют вид:  

ሻࣅ଴ሺܤ  ൌ ଵߣ ൅ ,ଶߣ ሻࣅଵሺܤ ൌ ܵ௥ሾ0ሿ	ଵߣ ൅  ,ܵ௥ሾ1ሿ	ଶߣ
ሻࣅଶሺܤ  ൌ ܶ௥ሾ1ሿ	ଵߣ ൅  ܶ௥ሾ2ሿ. (22)	ଶߣ

Заметим, что они являются линейными функциями множителей Лагранжа. Интервалы по 
параметрам одинаковые и равные ሾ0,1ሿ. 

Напомним, что верхний индекс в этих равенствах означает, что соответствующие величины - 
реальные данные. 

В результате применения РМО-процедуры получаем следующие два балансовых уравнения для 
определения множителей Лагранжа:  

׬ 
ଵ
଴ ׬	

ଵ
଴ ׬	

ଵ
଴ 	expሺെߣଵܵሾ1|ܽሿ ൅ ܵሾ2|ܽሿሻሺܵሾ1|ܽሿ	ଶߣ െ ܵ௥ሾ1ሿሻ݀ܽ ൌ 0; 

׬ 
ଵ
଴ ׬	

ଵ
଴ ׬	

ଵ
଴ 	expሺെߣଵܵሾ1|ܽሿ ൅ ܵሾ2|ܽሿሻሺܵሾ2|ܽሿ	ଶߣ െ ܵ௥ሾ2ሿሻ݀ܽ ൌ 0, 

Воспользуемся представлением экспоненты полиномом 2-го порядка и правилами вычисления 
многомерных интегралов с полиномиальными подынтегральными функциями (18). Получим 
систему из двух балансовых уравнений с полиномами второго порядка по множителям Лагранжа 
следующего вида:  

1
2
ܵ௥ሾ1ሿ෍

ଶ

௜ୀ଴

ሻࣅ௜ሺܤ െ
1
4

෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሺଵ,௜భሻݏ	ሻࣅሺ௜భሻሺܤ
௥ െ

1
8
ܵ௥ሾ1ሿ	 ෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሺଵ,௜మሻݏ	ሻࣅሺ௜భሻሺܤ	
௥ െ 

െ
1
8
ܵ௥ሾ1ሿ	 ෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሻࣅሺ௜మሻሺܤ	ሻࣅሺ௜భሻሺܤ ൅
1
8
	 ෍

ଶ

ሺ௜భ,௜మ,௜యሻୀ଴

ሺଵ,௜యሻݏ	ሻࣅሺ௜మሻሺܤ	ሻࣅሺ௜భሻሺܤ
௥ ൌ

1
2
	෍

ଶ

௜ୀ଴

ሺଵ,௜ሻݏ
௥ െ ܵ௥ሾ1ሿ, 

 

1
2
ܵ௥ሾ2ሿ෍

ଶ

௜ୀ଴

ሻࣅ௜ሺܤ െ
1
4

෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሺଶ,௜భሻݏ	ሻࣅሺ௜భሻሺܤ
௥ െ

1
8
ܵ௥ሾ2ሿ	 ෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሺଶ,௜మሻݏ	ሻࣅ௜భሺܤ	
௥ െ 

െ
1
8
ܵ௥ሾ2ሿ	 ෍

ଶ

ሺ௜భ,௜మሻୀ଴

ሻࣅሺ௜మሻሺܤ	ሻࣅሺ௜భሻሺܤ ൅
1
8
	 ෍

ଶ

ሺ௜భ,௜మ,௜యሻୀ଴

ሺଶ,௜యሻݏ	ሻࣅሺ௜మሻሺܤ	ሻࣅሺ௜భሻሺܤ
௥ ൌ

1
2
	෍

ଶ

௜ୀ଴

ሺଶ,௜ሻݏ
௥ െ ܵ௥ሾ2ሿ, 

 
Таким образом, балансовые уравнения трансформируются в «приближенно-эквивалентные» 

уравнения с полиномами второй степени в правой части. Для такого класса уравнений удается 
сформировать рекуррентную процедуру для поиска аналитического решения. Последнему будут 
посвящены направления дальнейших исследований. 

4. Обсуждение 

Обратимся к балансовым уравнениям (9), в которые входят многомерные интегралы от 
экспоненциальных функций, показатели которых представляют собой линейные функции 
параметров. Не трудно видеть, что подобные интегральные конструкции поддаются аналитичекому 
вычислению. Однако получаемые при этом выражения приводят к балансовым уравнениям 
относительно множителей Лагранжа, состояшим из дробно-линейных функций по множителям 
Лагранжа. Решение такого класса уравнений удается провести только численно, и при том, что 
априорные свойства их установить невозможно. Последнее делает непредсказуемым результат 
применяемых вычислительных процедур. 
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Поэтому применение предлагаемого асимптотического метода, приводящего к аналитически 
вычисляемым многомерным интегралом, является принципиально и вычислительно существенно 
эффективнее. К тому же, следует отметить, что в результате применения асимптотического метода 
приближенные балансовые уравнения имеют полиномиальную левую часть, что позволяет 
адаптировать метод абстрактных степенных рядов с целью формирования аналитической 
рекуррентной процедуры для их решения. 

Заключение 

В статье развивается асимптотический аналитический метод приближенного вычисления 
многомерных интегралов, ориентированный на задачи прогнозирования эволюции площади 
термокарстовых озер с помощью процедуры рандомизированного машинного обучения. 
Используется разложение экспоненциальной функции в степенной ряд и развито преобразование 
многомерных интегралов к произведению одномерных интегралов над степенными функциями. 
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Abstract. We develop an analytical method for the approximate calculation of multidimensional 
integrals, focused on solving balance equations in Randomized Machine Learning procedures. The latter 
are used to forecast the evolution of thermokarst lakes’ area. The method is based on the series expansion 
of an analytical function - the exponential - and the transformation of multidimensional integrals into 
the product of simple one-dimensional integrals on interval sets.  
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