
92 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 2/2024 

О некоторых свойствах нелинейных  
интегральных моделей динамических процессов* 

С. В. СолодушаI, Е. Д. АнтипинаI, II 

IИнститут систем энергетики им. Л. А. Мелентьева СО РАН, Иркутск, Россия 
IIИркутский государственный университет, Иркутск, Россия 

Аннотация. В статье представлены алгоритмы построения динамических моделей технических 
(энергетических) систем в условиях зашумленных данных. Рассматривается один класс нелинейных 
систем интегральных уравнений вольтерровского типа I рода с входным сигналом, состоящим из 
двух компонент. Хорошо известна задача идентификации входного сигнала линейных систем, когда 
путем дифференцирования интегральных уравнений Вольтерра I рода выполняется редукция к си-
стеме интегральных уравнений II рода. При построении моделей формируется управляющее вход-
ное воздействие, обеспечивающее заданный отклик динамической системы. Используются алго-
ритмы идентификации, основанные на теории полиномиальных уравнений Вольтерра. В работе 
рассмотрен случай при зашумленных исходных данных, в том числе, когда условие невырожденно-
сти матриц перед главной частью в некоторые фиксированные моменты времени нарушается. 
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Введение 

Одним из важнейших направлений математического моделирования процессов и систем явля-
ется идентификация – построение моделей по данным реального функционирования. Функциональ-
ные ряды Вольтерра [1] занимают достойное место среди разнообразных методов идентификации 
нелинейных систем типа «вход-выход» в условиях априорной неопределенности (например, [2]). В 
научной литературе [3-5] отмечаются универсальные свойства указанного математического аппа-
рата и его применимость для различных технических объектов. В данной работе исследуются свой-
ства моделей на основе интегро-степенных рядов Вольтерра при моделировании в режиме реаль-
ного времени динамики технических объектов в энергетике. 

Под онлайн моделированием динамических процессов будем понимать оценивание отклика на 
возможные внешние изменения в режиме реального времени. Вектор входных сигналов может 
включать измеряемые воздействия и управляющие воздействия, подлежащие идентификации на ос-
нове анализа текущего состояния. Современные методы математического моделирования динами-
ческих процессов различной природы, в том числе в промышленности и энергетике, основаны на 
_________________________________________ 

* Исследование выполнено в рамках государственного задания Министерства науки и высшего образования Российской
Федерации (проект FWEU-2021-0006, тема № AAAA-A21-121012090034-3) с привлечением ресурсов Центра коллектив-
ного пользования «Высокотемпературный контур». 
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использовании, во-первых, априорной информации, во-вторых, наблюдаемых данных, и, наконец, 
совместном применении сведений первого и второго типа. Сложные динамические объекты, такие 
как энергосистемы, характеризуются сложной иерархической структурой [6]. При построении мо-
делей в отсутствие априорных данных о структуре такого объекта хорошо зарекомендовали себя 
подходы, позволяющие для идентификации параметров использовать индуктивные знания – зако-
номерности, извлекаемые посредством интеллектуального анализа данных и ассоциативных мето-
дов машинного обучения [7, 8]. Подобный подход характеризуется учетом всех ретроспективных 
знаний об объекте, что влечет повышение точности моделирования. 

Применительно к модели в виде конечного отрезка интегро-степенного ряда (полинома) Воль-
терра для векторного входного сигнала 1( ) ( ( ),..., ( ))T

px t x t x t  
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        (1) 

эта концепция в идейном плане может быть реализована, исходя из нестационарных свойств энер-
гетических систем и объектов. В (1) ядра Вольтерра 

1... ni iK  зависят от текущего состояния [0, ],t T  

а переменные 10 ,..., ns s t   позволяют учесть значения динамических характеристик в предыду-

щие моменты времени. Здесь функции 
1... ni iK  симметричны относительно аргументов 1,..., ns s , соот-

ветствующих совпадающим индексам 1,..., ni i . 
На основе элементов теории полиномиальных уравнений Вольтера I рода (например, [9-11]) ав-

торами была разработана технология идентификации вектора входных сигналов ( )x t . В данной ста-

тье, в отличие от [10], используется векторный выход ( )y t , компоненты которого имеют один и тот 
же физический смысл. С использованием этой технологии реализован для зашумленных исходных 
данных вычислительный алгоритм идентификации отклонений расхода воды и пара в задаче регу-
лирования давления на выходе конденсатора, входящего в выделенный участок пароводяного 
тракта в энергоблоке крупной электроэнергетической системы.  

1. Системы уравнений Вольтерра I рода и их свойства 

При автоматическом управлении техническими объектами в энергетике возникает задача опре-
деления воздействия ( )x t , которое обеспечивает заданный отклик ( )y t . Применение моделей в виде 

полиномов Вольтерра (1) с входом ( )x t  размерности ( 1)p  в случае ( )y t  размерности ( 1)m  поз-

воляет редуцировать исходную задачу к решению системы N -й степени следующего вида: 
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где переходные характеристики 
1

( )
... 1( , ,..., )

n

r
i i nK t s s  и компоненты отклика ( )ry t , 1,...,r m , считаются 

известными. В работе [10] компонентами вектора входа энергетического объекта являлись прира-
щения расхода вещества (управляющее воздействие) и тепловой нагрузки (измеряемое воздей-
ствие). В качестве выхода рассматривалось отклонение энтальпии в текущий момент времени t от 
начального значения, установившегося для времени 0t  . В случае, когда обе компоненты входного 
вектора подлежат идентификации, выбирать структурообразующие элементы модели (системы ин-
тегральных уравнений) можно различными способами. В статье [9] рассмотрен случай, когда вектор 

( )y t  содержит компоненты, имеющие разный физический смысл. Такой способ формирования век-
тора отклика объекта сопряжен с некоторыми трудностями, связанными, в первую очередь, с во-
просом замкнутости системы уравнений (число m компонент ( )y t  должно совпадать с числом p 

искомых компонент ( )x t ). На практике, как правило, это условие не выполняется, т.е. m p .  
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Для решения данной проблемы естественно перейти к формированию вектора ( )y t  такими компо-
нентами, которые могут иметь один и тот же физический смысл, но при этом отражают реакцию на 
сигнал ( )x t  различных по структуре интегральных моделей. Этот подход позволяет учесть особен-
ность реального динамического объекта.  

Полагая далее, что размерности векторов ( )x t  и ( )y t  равны ( 1)p , и учитывая специфику по-

линомиальных уравнений Вольтерра I рода [11], представим (2) при фиксированном 2N   в следу-
ющем виде: 

0
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y t V Z K t s x s ds Z x   ,    (3) 

где ( , )K t s  – ( )p p -матрица, ( )x t  и ( )y t  – искомая и заданная p -мерные вектор-функции, 
(0) 0y  , а оператор [ ]Z x  определен по правилу  
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где 1,mj m . В формуле (4) 1 2( , , )
m

m
jL t s s  – p -мерные вектор-функции, т.е. 

 1 2 1 1 2 2 1 2 1 2( , , ) ( , , ), ( , , ),..., ( , , )
m m m m

Tm m m m
j j j j pL t s s t s s t s s t s s Z Z Z , той гладкости, которая необходима для 

проведения всех выкладок. 
Если в (4) 

det ( , ) 0 [0, ]K t t t T   ,    (5) 
то исследование таких систем на предмет существования единственного решения в классе непре-
рывных функций проводится по аналогии с интегральными уравнениями Вольтерра I рода [9-11]. 
Для этого достаточно продифференцировать по t  систему (3) и переписать полученный результат 
в виде системы II рода, а это возможно в силу условия (5). Такие системы будут наследовать основ-
ную особенность полиномиальных уравнений, состоящую в локальности области существования 
(единственного) непрерывного решения.  

Отметим, что при формировании вектора ( )y t  предлагаемым способом, в силу разреженности 

матрицы ( , )K t s , условие (5) может быть нарушено для всех [0, ]t T . В этом случае стандартные 
подходы не дают желаемого результата – систему II рода, т.к. после дифференцирования мы будем 
иметь систему интегральных уравнений с тождественно вырожденной матрицей перед главной ча-
стью. Такие задачи имеют принципиальные отличия от систем типа (3) с условием (5) и требуют 
привлечения теории интегро-алгебраических уравнений, элементы которой представлены в статье 
[12]. Этот случай требует отдельного изучения и в данной работе не рассматривается. 

В следующем разделе остановимся на изучении свойств систем вида (3), (4) для точно заданных 
исходных данных, при которых условие (5) выполняется.  

2. Основные результаты 

Рассмотрим случай, когда 2p  , т.е. 1 2( ) ( ( ), ( ))Tx t x t x t , 1 2( ) ( ( ), ( ))Ty t y t y t , причем (0) 0iy  , 

[0, ]( )i Ty t C  , 1,2i  . Пусть вместо (3), (4) задана система интегральных уравнений второго порядка 

0

( ) ( ) ( ) [ ]
t

y t K t x s ds Z x  ,    (6) 

а оператор [ ]Z x  определен по правилу  
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Теорема 1. Пусть 
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Условия теоремы 1 включают в себя, во-первых, стандартное условие на гладкость исходных 
данных и, во-вторых, условие корректного задания (0)y . Отметим, что в линейном случае при вы-

полнении равенства (0) 0y   решения в классе обобщенных функций отсутствуют. Следующая тео-
рема показывает, что для системы вида (6), (7) это заведомо не так. 

Теорема 2. Пусть, с учетом введенных обозначений ( )ia t , ( )ib t , имеет место 
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[0, ]( )i TK t C


, 

( )
( )

( )
i

i
i

b t
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a t
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
, 1,2i  . 

Если * ( )jx t  – решение (6), (7), то  

 ** *( ) ( ) ( ) ( ) ( )j j i ix t x t K t t K t   
 

 , 1,2j  , i j ,   (9) 

также решение (6), (7), где ( )t  –  -функция Дирака. 
Доказательство теорем 1, 2, а также вывод формул (8), (9) основаны на результатах работы [9]. 

В следующем разделе рассмотрим алгоритм численного решения в случае зашумленных исходных 
данных. 

3. Вычислительный эксперимент 

В качестве объекта исследования мы взяли участок пароводяного тракта энергоблока Назаров-
ской ГРЭС мощностью 135 МВт. Данный участок включает в себя конденсатор типа 80-КЦС-1 и 
группу насосов. 

Итак, в нашей модели в качестве входных сигналов выберем изменение расхода воды wD  и 

изменение расхода пара sD  при стационарных значениях расхода воды 11562,2wD   кг/с и рас-

хода пара 45,5sD   кг/с соответственно, в качестве выходного сигнала – изменение давления p  в 
конденсаторе. На Рис. 1 представлена блок-схема выбранного участка.  

Будем полагать, что отклик динамического объекта p  измеряется, в первом случае, при изме-

нении только расхода пара sD  и, во втором случае, при одновременном изменении расхода пара 

sD  и расхода воды wD .  
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Для набора данных применялся цифровой двойник [13], способный выдавать как зашумленные, 
так и свободные от шума данные. Отметим, что для подавления шума применялся фильтр, постро-
енный на основе сглаживающих кубических сплайнов [14-16], который хорошо зарекомендовал 
себя в задаче идентификации ядер Вольтерра.  

Для значений K  из (3), полученных на реальных данных, неизбежно наличие некоторых погреш-
ностей, обусловленных зашумлением исходных данных при измерении ( )y t . Обозначим зашумлен-

ные значения ядер Вольтерра через K , для которых условие (5) выполняется, за исключением лишь 
конечного числа моментов времени t . Будем считать при этом, что имеет место условие 

( , )rank K t t p , где p  – размерность вектора ( )x t .  
Модифицируя подход [15, 16] будем применять данный фильтр, дополнительно включив в вы-

числительный эксперимент процедуру проверки условия (5) (для [0, ]t T ) относительно ядер Воль-

терра, полученных в результате сглаживания. Обозначим такие ядра K . 
Перейдем к вычислительному эксперименту, для которого сначала необходимо построить чис-

ленную схему решения (3), при 2p  , [ ] 0Z x  , (1)
2 0K  . При этом имеет место (1) (2)

1 1 1K K K  , 
(2)
2 2K K . Введем равномерную сетку: it ih ,  1 2 1 2jt j h   , h T n . Для удобства записи будем 

представлять разностный аналог ядер 1( , )i jK t t , 2 ( , )i jK t t  и правых частей 1( )iy t , 2 ( )iy t  как (1)
ijK , 

(2)
ijK  и (1)

iy , (2)
iy  соответственно. В результате из (3) получим 

, 1 2 1 2

, 1 2 1 2 , 1 2 1 2

(1) (1) (1)

1

(1) (1) (2) (2) (2)

1 1

,

, 1, ,

i j j

i j j i j j
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i
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
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где 1 2

( ) ( )
1 2( ) i

l l
ix t x   , , 1 2

( ) ( )
1 2( , ) i i

l l
i iK t t K   , 1, 2l  . Таким образом, решение (10) имеет вид 

1 2
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    (11) 

Рис. 1. Блок8схема участка пароводяного тракта энергоблока 
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Далее применим (11) для построения модели динамики исследуемого объекта, где (1)
wx D  , 

(2)
sx D  , (1) (1)y p   (изменение давления при постоянном расходе пара), (2) (2)y p   (изменение 

давления при одновременном изменении расхода воды и пара). 
Представим результаты, показывающие результативность используемого нами модифицирован-

ного фильтра. Для верификации эксперимента проведем 9 испытаний. В Табл. 1 представлены резуль-
таты эксперимента, где ˆ x

l , x
l ( 1, 2l  ) – относительные погрешности, вычисляемые по формулам 

( ) ( )

( )

ˆ( )
ˆ max 100%

( )

l l
x i i
l li

i

x t x

x t


   ,  

( ) ( )

( )

( )
max 100%

( )

l l
x i i
l li

i

x t x

x t


  

 , 1, 2l  . 

Здесь ˆ x
l , x

l , 1, 2l  , – погрешности входных сигналов ( )ˆ lx  и ( )lx , 1, 2l  , построенных на за-

шумленных сигналах ( )ˆ ly , 1, 2l  , и сглаженных сигналах ( )ly , 1, 2l  , соответственно. 
В Табл. 1 применяемый нами фильтр позволяет уменьшить погрешность входных сигналов по 

изменению расхода воды в среднем на 5,5%, по изменению расхода пара – на 3,1%. 

Табл. 1. Погрешности входных сигналов 

№ 1ˆ x , % 1
x , % 2ˆ x , % 2

x , % 

1 13,7 11,8 13,0 9,4 

2 18,2 12,1 13,0 9,4 

3 15,0 11,3 12,4 8,6 

4 21,7 13,8 11,9 8,5 

5 26,6 14,1 11,6 9,5 

6 21,7 14,6 11,8 10,9 

7 19,2 12,3 12,3 8,8 

8 13,0 12,8 13,3 8,4 

9 15,0 11,5 11,0 9,0 

среднее 18,2 12,7 12,3 9,2 

Теперь посчитаем выходы при полученных входах ( )ˆ lx и ( )lx , 1, 2l  , а также вычислим погреш-
ность по формулам 

( ) ( )

( )

ˆ( )
ˆ max 100%

( )

l l
y i i
l li

i

y t y

y t


   , 

( ) ( )

( )

( )
max 100%

( )

l l
y i i
l li

i

y t y

y t


  

 , 1, 2l  . 

В Табл. 2 фильтр позволяет уменьшить погрешность изменения давления в конденсаторе при 
изменении расхода воды (при постоянном расходе пара) на 7,7%, а при одновременном изменении 
расхода воды и пара – на 4,9%. 

Табл. 2. Погрешности выходных сигналов 

№ 1ˆ
y , % 1

y , % 2ˆ y , % 2
y , % 

1 18,9 9,8 10,0 4,3 

2 18,1 10,4 9,0 3,2 

3 17,0 8,4 9,0 7,1 

4 18,2 15,0 10,0 4,0 

5 17,6 7,1 10,0 5,3 

6 21,7 14,8 9,0 5,1 
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№ 1ˆ
y , % 1

y , % 2ˆ y , % 2
y , % 

7 15,4 12,2 10,0 4,5 

8 17,2 8,1 9,0 3,1 

9 19,3 9,0 7,0 2,4 

среднее 18,2 10,5 9,2 4,3 

 
 
Заключение 

В данной статье приведены теоремы о суще-
ствовании единственного решения в классе не-
прерывных функций некоторой нелинейной си-
стемы, полученной на основе применения 
аппарата интегро-степенных рядов Вольтерра в 
задаче идентификации входных сигналов. Пока-
зано, что данная система, в отличие от классиче-
ских интегральных уравнений с условием 

(0) 0y  , имеет решение в классе обобщенных 
функций. Проведен вычислительный экспери-
мент на реальных данных выделенного участка 
пароводяного тракта крупного объекта электро-
энергетической системы.  
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Abstract. The paper presents algorithms for constructing dynamic models of technical (energy) systems 
in conditions of noisy data. We consider a class of nonlinear systems of Volterra-type integral equations 
of the first kind with an input signal consisting of two components. The problem of identifying the input 
signal of linear systems is well known when reduction to a system of equations of the second kind is 
performed by differentiating Volterra integral equations of the first kind. When constructing models, a 
control input action is formed that provides the specified response of the dynamic system. Identification 
algorithms based on the theory of Volterra polynomial equations are used. The paper considers the case 
with noisy initial data, including when the condition of non-degeneracy of matrices in front of the main 
part is violated at some fixed points in time. 
Keywords: identification, dynamic processes, integral models, Volterra polynomial equations of the 
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