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Аннотация. В статье представлен метод топологического картирования помещений, способный 
строить и обновлять граф локаций по облакам точек и одометрии без использования глобальных 
метрических координат. В данном методе для локализации в графе используется нейросетевое рас-
познавание локации совместно с сопоставлением сканов по двумерным проекциям. Было проведено 
экспериментальное исследование предложенного подхода на нескольких фотореалистичных симу-
ляционных средах, а также на данных с реального робота. В симуляции также проводится сравнение 
с лучшими современными методами топологического картирования. Результаты сравнения под-
тверждают, что предложенный метод значительно опережает остальные по навигационной эффек-
тивности, сохраняя связность графа, высокую площадь покрытия сцены и низкую долю неконси-
стентных ребер. 
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Введение 

Традиционные методы картирования строят 
плотную метрическую карту (например, в виде 
сетки занятости). Поддержание такой карты при 
долговременной навигации затруднительно 
ввиду высоких затрат вычислительных ресурсов 
и накопления ошибки одометрии. Представле-
ние пространства в виде разреженной топологи-
ческой структуры (например, графа локаций) 
позволяет устранить эти недостатки и обеспе-
чить быстрое планирование пути. 

Построение точной карты является одной из 
ключевых задач автономной навигации мобиль-
ных роботов, и является критически важным для 
навигации мобильных роботов [1]. Некоторые 
методы картирования, описанные в работе [2], 

строят разреженную трехмерную карту, на кото-
рую наносятся только координаты особых то-
чек. Другие общеизвестные методы картирова-
ния, такие как RTAB-MAP [3] или Cartographer 
[4], строят карту в виде плотной двумерной или 
трехмерной метрической структуры, такой как 
сетка занятости или облако точек. Однако такие 
плотные метрические карты требуют больших 
объемов памяти для хранения, что может приве-
сти к переполнению памяти бортового компью-
тера робота при навигации в среде большой пло-
щади [5]. Также метрические карты подвержены 
накоплению ошибки одометрии, что может при-
вести к сбоям в картировании и замыкании цик-
лов с ростом размера карты. 

Альтернативным подходом к построению 
карты является топологическое картирование – 
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представление карты в виде графовой струк-
туры (например, графа коридоров [6] или графа 
выпуклых кластеров свободного пространства 
[7]). При использовании топологических 
свойств среды (связность, относительное распо-
ложение локаций) значительно снижается по-
требление памяти и вычислительные затраты на 
обновление карты. Также, в методах, не исполь-
зующих глобальные метрические координаты, 
исключается накопление ошибки позициониро-
вания [8; 9]. Кроме того, благодаря разреженно-
сти топологических карт планирование пути в 
них происходит значительно быстрее, чем в мет-
рических картах [7]. 

Методы топологического картирования раз-
деляются на несколько категорий. Так, довольно 
большой класс методов (например, [7; 10]) 
строит топологическую карту по предвари-
тельно построенной метрической карте. Еще 
одна группа методов, таких как [11, 12], строит 
топологическую карту в паре с метрической кар-
той по сенсорным данным. Такие методы дают 
полное представление среды и обеспечивают 
быстрое планирование пути. Однако они явля-
ются довольно ресурсозатратными, а также под-
вержены накоплению ошибки в силу наличия 
глобальной метрической карты. 

В последние годы также появилось множе-
ство обучаемых методов построения топологи-
ческой карты, работающих без использования 
глобальных метрических координат. Большин-
ство таких методов (например, [13; 14]) разрабо-
таны для решения конкретных задач, таких как 
навигация до целевого объекта в симуляцион-
ной среде, и не опробованы на данных с реаль-
ного робота. Также, подобные методы, как  
правило, полагаются исключительно на пред-
сказанные нейросетью дескрипторы, что может 
привести к добавлению в граф ребер между да-
лекими друг от друга локациями и сбоям в нави-
гации. Некоторые другие методы, такие как [15], 
функционируют в реальных средах и исполь-
зуют алгоритмы фильтрации ребер, однако тре-
буют предварительно построенной топологиче-
ской карты на старте. 

Одной из наиболее распространенных топо-
логических структур для навигации является 
граф локаций (таких как комната, коридор, лиф-
товый холл и т.д.), в котором ребра соединяют 

смежные локации. Такой граф обеспечивает 
быстрое и удобное планирование пути, однако 
локализация в графе (привязка робота к лока-
ции) является нетривиальной задачей. Для ре-
шения этой задачи обычно проводится сравне-
ние текущего наблюдения робота с локациями 
графа по предсказанным нейросетевыми мето-
дами дескрипторам [16]. Однако подобные ме-
тоды могут сопоставить несмежные локации из-
за их визуального сходства и близости предска-
занных дескрипторов, что может спровоциро-
вать сбои навигации. Например, эксперименты 
проведенные в работе [17], показывают, что  
современный нейросетевой метод топологиче-
ского картирования TSGM [13] соединяет реб-
рами локации, находящиеся в противополож-
ных концах здания. 

В данной работе представлен метод построе-
ния графа локаций, использующий сопоставле-
ние текущего наблюдения робота с локациями 
графа по нейросеетвым дескрипторам, а также 
удаление ложных сопоставлений и определение 
относительных позиций от робота до точек 
наблюдения локаций путем классического сопо-
ставления сканов. Представленный метод при-
нимает на вход облака точек с бортовых сенсо-
ров восприятия (RGB-D камер или лидаров), а 
также локальную одометрию. Выходом явля-
ется граф локаций, покрывающий всю пройден-
ную роботом часть среды. Проводится экспери-
ментальное исследование представленного 
метода в сравнении с тремя современными ме-
тодами топологического картирования: Hydra 
[11], IncrementalTopo [12] и TSGM [13]. 

1. Постановка задачи 

Рассмотрим робототехническую систему, 
оснащенную сенсором восприятия (RGB-D ка-
мера или лидар) и сенсором одометрии, движу-
щуюся внутри помещений по предварительно за-
данной траектории. Задачей робота является 
построение и непрерывное обновление графа ло-
каций, который может быть использован для 
дальнейшего планирования миссии и навигации. 

Окружающая среда представляется в виде 
пространства ܹ	 ⊂ ܴଶ, которое делится на сво-
бодное пространство и множество препятствий: 
ܹ ൌ ௙ܹ௥௘௘ ∪ ௢ܹ௕௦	ሺ ௙ܹ௥௘௘ ∩ ௢ܹ௕௦ ൌ⊘ሻ. Лока-
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ция ݈ܿ݋	 ⊂ ܹ представляет собой участок про-
странства среды, например, комнату или лифто-
вый холл. Для каждой локации задается точка 
наблюдения ݈ܿ݋௢௕௦, а также карта признаков 
ሻܿ݋ሺ݈ܨ 	ൌ  ௢௕௦ሻ, которая строится поܿ݋ሺ݈݌ܽܯܨ	
наблюдению из точки ݈ܿ݋௢௕௦. Такая карта при-
знаков может быть, к примеру, дескриптором, 
предсказанным по входному облаку точек с по-
мощью нейронной сети. 

Две локации ݈ܿ݋ и ݈ܿ݋′ называются смежными, 
если их пересечение содержит точки свободного 
пространства среды: ݈ܿ݋	 ∩ 	′ܿ݋݈ ∩ ௙ܹ௥௘௘ ്⊘. 
Смежные локации соединяются ребром в графе 
локаций: ݁ ൌ ሺ݈ܿ݋, -ሻ. Каждое ребро ассоции′ܿ݋݈
ровано с картой признаков ребра ܨሺ݁ሻ, при по-
мощи которой робот будет двигаться между лока-
циями. Такая карта признаков может быть 
направлением от первой локации ребра до второй, 
или частью панорамного изображения с первой 
локации, на которой наблюдается вторая локация, 
или любой другой характеристикой, способствую-
щей навигации между локациями. 

Для обеспечения успешного планирования 
путей и эффективной навигации граф локаций 
должен быть связным и покрывающим всю пло-
щадь, исследованную роботом. Более того, для 
безопасной и эффективной навигации, ребра 
графа должны соединять только локации, явля-
ющиеся смежными в среде, при этом оптималь-
ные пути по ребрам графа должны быть по 
длине близки к оптимальным путям в среде. Ис-
ходя из вышеуказанных требований, качество 
топологического картирования оценивается с 
использованием следующих метрик: 

● Связность: число компонент связности в 
графе. 

● Площадь, покрытая главной компонентой: 
	݁݃ܽݎ݁ݒ݋ܥ ൌ 	

஺௥௘௔ሺ∪೗೚೎	∈ೇ೘ೌ೔೙௟௢௖ሻ

஺௥௘௔ሺௐሻ
, 

где ሺܸ݉ܽ݅݊,  ሻ – это главная компонента݊݅ܽ݉ܧ
связности графа локаций. 

● Доля неконсистентных ребер (ребер, со-
единяющих не смежные в среде локации): 

ܧܫܲ ൌ
|ሺ௨,௩ሻ∈ா:	௨∩௩∩ௐ೑ೝ೐೐ୀ⊘|

|ா|
. 

●  Эффективность навигации в графе, вы-
числяемая как значение SPL (Success weighted 
by Path Length – успешность, взвешенная по 
длине пути), усредненное по ܰ случайно  
выбранным парам вершин ሺݑ௜, ,௜ሻݒ ݅ ൌ 1, . . . , ܰ: 

ܮܲܵ ൌ

ൌ෍
,௜ݑሺ݄ݐܽܲ| ,௜ݒ ௙ܹ௥௘௘ሻ| ⋅ ,௜ݑሺ݄ݐ௖௢௡௦ሺܲܽܫ ,௜ݒ ሻሻܩ

,௜ݑሺ݄ݐܽܲ| ,௜ݒ |ሻܩ

ே

௜ୀଵ

, 

где ݄ܲܽݐሺݑ, ,ݒ  ሻ обозначает кратчайший путьܩ
между вершинами u и v в графе G; 
,ݑሺ݄ݐܽܲ ,ݒ ௙ܹ௥௘௘ሻ – кратчайший путь в среде 
между точками наблюдения локаций u и v; 
,ݑሺ݄ݐ௖௢௡௦ሺܲܽܫ ,ݒ  ሻሻ равно 1 в случае, если путьܩ
,ݑሺ݄ݐܽܲ ,ݒ -ሻ существует и не содержит неконܩ
систентных ребер, и 0 в противном случае. 

2. Предложенный метод  
топологического картирования 

Предложенный в работе метод строит и об-
новляет граф локаций окружающей среды в ре-
альном времени по облакам точек и одометрии 
с сенсоров робота, а также по результатам лока-
лизации. За основу предложенного метода взят 
метод PRISM-TopoMap, описанный в работе 
[18]. Каждая локация в графе задается облаком 
точек, снятым с робота в точке наблюдения этой 
локации, а также нейросетевым дескриптором 
для локализации. Также, на каждом шаге t ра-
боты метода поддерживается локация ݒ௖௨௥௧  и от-
носительная позиция от ее точки наблюдения до 
робота ௖ܶ௨௥

௧ . Входом метода на шаге t являются 
граф локаций ܩ௧ିଵ ൌ ሺ ௧ܸିଵ, -௧ିଵሻ с текущим соܧ
стоянием робота ሺ	ݒ௖௨௥௧ିଵ, ௖ܶ௨௥

௧ିଵሻ, результаты лока-
лизации ሼሺݒ௟௢௖, ١௟௢௖ሻሽ௟௢௖	∈௅௢௖ – локализованные 
локации и позиции робота относительно этих 
локаций, одометрия ݋௧ и облако точек ܥ௧ , снятое 
с позиции робота. Выходом является обновлен-
ный граф локаций ܩ௧ ൌ ሺ ௧ܸ,  ௧ሻ и обновленноеܧ
состояние робота в графе: ݒ௖௨௥௧  и ௖ܶ௨௥

௧ . Схема ме-
тода изображена на Рис. 1. 

Процесс обновления графа состоит из следу-
ющих шагов: 

1) Проверка того, что робот находится в пре-
делах локации ݒ௖௨௥௧ିଵ, и текущий скан с него пере-
крывается с локацией  ݒ௖௨௥௧ିଵ по достаточному 
проценту площади. Если проверка пройдена, то 
௖ܶ௨௥ обновляется по одометрии: 

௖௨௥௧ݒ ൌ ;௖௨௥௧ିଵݒ ௖ܶ௨௥
௧ ൌ ௖ܶ௨௥

௧ିଵ ⋅  . ௧݋
2) Если робот находится за пределами ݒ௖௨௥௧ିଵ , 

или площадь перекрытия сканов мала, то сна-
чала производится попытка обновить значение 
 ௖௨௥௧ିଵ локаций в графеݒ ௖௨௥ на одну из соседних сݒ
(т.е. перейти по ребру). Для этого сканы локации 
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-௖௨௥௧ିଵ и соседей сопоставляются с помощью деݒ
тектора углов Харриса [19]. Относительные по-
зиции, записанные на ребрах, используются в 
качестве начальной догадки для сопоставления. 
Если среди соседей ݒ௖௨௥௧ିଵ найдена подходящая 
для перехода по ребру локация ݒ௡௘௫௧ (т.е. сканы 
успешно сопоставлены, робот находится в пре-
делах локации ݒ௡௘௫௧ и расстояние от позиции ро-
бота до точки наблюдения ݒ௡௘௫௧ меньше, чем до 
точки наблюдения ݒ௖௨௥௧ିଵ), то производится пере-
ход по ребру из ݒ௖௨௥௧ିଵ в ݒ௡௘௫௧: 

௖௨௥௧ݒ ൌ 	;௡௘௫௧ݒ ௖ܶ௨௥
௧ ൌ ௡ܶ௘௫௧, 

где ௡ܶ௘௫௧ – найденная путем сопоставления ска-
нов позиция робота относительно точки наблю-
дения ݒ௡௘௫௧. 

3) В противном случае проводится попытка 
сменить значение ݒ௖௨௥ на одну из локализован-
ных локаций. Для этого сканы локализованных 

локаций сдвигаются на относительную пози-
цию, предсказанную локализацией, после чего 
вычисляется доля перекрытия этих сканов с те-
кущим сканом робота. Если найдена локация 
-௟௢௖ с достаточной долей перекрытия, она станоݒ
вится текущей локацией и соединяется ребром с 
локацией ݒ௖௨௥௧ିଵ: 

௖௨௥௧ݒ ൌ ;௟௢௖ݒ ௖ܶ௨௥
௧ ൌ ௟ܶ௢௖;	 

௧ܧ ൌ ௧ିଵܧ ∪ ሼሺݒ௖௨௥௧ିଵ,  .௟௢௖ሻሽݒ
4) Если подходящая локация не нашлась 

среди локализованных, в граф добавляется но-
вая локация ݒ௡௘௪, наблюдаемая с текущей пози-
ции робота. После добавления локация ݒ௡௘௪ ста-
новится новой текущей локацией и соединяется 
ребрами со всеми локациями из результатов ло-
кализации: 

௖௨௥௧ݒ ൌ 	;௡௘௪ݒ ௖ܶ௨௥
௧ ൌ  ;ܫ

௧ܧ ൌ ௧ିଵܧ ∪ ሼሺݒ௡௘௪, ௖௨௥௧ିଵሻሽݒ ∪ ሼሺݒ௡௘௪,  .௟௢௖ሻ௟௢௖∈௅௢௖ሽݒ

Рис. 1. Схема обновления графа и поддержания текущего состояния в нем: проверка нахождения робота внутри  
локации ݒ௖௨௥௧ିଵ, смена ݒ௖௨௥ по ребрам и результатам локализации, добавление новой локации 
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Также для более эффективной навигации 
производится поиск и замыкание циклов, прохо-
дящих через текущую позицию робота. Для по-
иска проверяется каждая пара локализованных 
вершин. Если путь между этими двумя верши-
нами в графе ܩ௧ିଵ значительно длиннее, чем 
путь между ними через текущую позицию ро-
бота, то цикл замыкается созданием новой лока-
ции, наблюдаемой с текущей позиции робота, и 
соединением ее ребрами со всеми локализован-
ными вершинами. Во всех случаях добавления 
новой вершины она соединяется ребром с 
предыдущей локацией, что гарантирует связ-
ность построенного графа. 

3. Локализация в графе  
с помощью распознавания мест  
и сопоставления сканов 

Схема алгоритма локализации в графе лока-
ций представлена на Рис. 2. На вход подается об-
лако точек Ct , снятое сенсором робота в момент 
t, а также текущий граф ܩ௧ିଵ. Сначала прово-
дится вокселизация (понижение дискретизации) 
облака точек, и по вокселизованному облаку 
нейросетевым методом ܨ௉ோ  предсказывается де-
скриптор d. Предсказанный дескриптор сравни-
вается с дескрипторами облаков точек всех ло-
каций графа, и для рассмотрения выбирается k 
наиболее похожих на текущую локаций, (т.е. та-
ких локаций, дескрипторы которых наиболее 
близки к d). Затем для этих k локаций ищутся по-
зиции робота относительно их точек наблюде-
ния. Для поиска относительных позиций ис-
пользуется алгоритм сопоставления сканов, 

описанный ниже и основанный на двумерных 
признаках, извлекаемых из проекции облака то-
чек. Локации, чьи сканы не сопоставились со 
сканом с робота, удаляются из рассмотрения. 
Оставшиеся локации считаются локализован-
ными и вместе с относительными позициями по-
даются на вход методу обновления графа. 

Фильтрация похожих локаций путем сопо-
ставления сканов позволяет устранить ошибки 
нейросетевой локализации и избежать добавле-
ния неконсистентных ребер в граф. Также полу-
чаемая в ходе сопоставления оценка относитель-
ной позиции позволяет скорректировать 
зашумленную оценку позиции по одометрии и 
задавать более точные относительные позиции 
ребрам графа локаций для повышения навигаци-
онной эффективности. 

Алгоритм сопоставления сканов принимает 
на вход пару облаков точек и вычисляет преоб-
разование координат между точками наблюде-
ния первого и второго облака, либо (в случае 
ненахождения преобразования) выдает сообще-
ние об ошибке. В начале работы алгоритма оба 
облака точек проецируются на плоскость, пере-
водятся в формат воксельной сетки и затем про-
ецируются в черно-белое изображение. Затем из 
полученных изображений извлекаются особые 
точки детектором ORB [20] и сопоставляются с 
помощью метода FLANN [21]. Пример сопо-
ставления особых точек показан на Рис. 3. Далее 
искомое преобразование координат вычисля-
ется методом наименьших квадратов после N 
итераций удаления выбросов. На каждой итера-
ции i по текущему набору сопоставлений вычис-
ляется преобразование координат методом 

Рис. 2. Локализация в графе локаций: распознавание места по дескрипторам, предсказанным нейросетевым 
энкодером ܨ௉ோ, фильтрация и нахождение относительных позиций путем сопоставления сканов 
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наименьших квадратов. Далее преобразование 
применяется к особым точкам первого облака, 
после чего преобразованные особые точки срав-
ниваются с сопоставленными особыми точками 
второго облака. Если расстояние между ними 
превышает значение ߜ௜, то данная пара удаля-
ется из набора сопоставлений. Если сопоставле-
ний осталось менее K, то сканы считаются не со-
поставленными, и алгоритм выдает сообщение 
об ошибке. Если все N итераций успешно прой-
дены, то алгоритм выдает преобразование коор-
динат, полученное методом наименьших квад-
ратов по оставшимся сопоставлениям. 

В экспериментах в качестве ܨ௉ோ  использо-
вался нейросетевой метод MinkLoc3D, описан-
ный в работе [22]. Дообучение нейросети не 

                                                      
1 https://github.com/facebookresearch/faiss 

проводилось, использовались параметры, 
предоставленные авторами метода MinkLoc3D. 
Архитектура метода изображена на Рис. 4. На 
вход метод принимал облако точек, а на выходе 
давал дескриптор в виде вектора размерности 
256. Для оценки близости дескрипторов исполь-
зовалось евклидово расстояние в 256-мерном 
векторном пространстве. Значение k числа рас-
сматриваемых ближайших локаций в графе 
было выбрано равным 5. Для быстрого поиска 
близких дескрипторов использовалась про-
граммная библиотека faiss1. Для алгоритма со-
поставления сканов использовались следующие 
значения параметров: 

 ܰ ൌ ௜ߜ	;5 ൌ ሾ2.5, 1, 0.5, 0.25, 0.25ሿ; ܭ	 ൌ 5. 

Рис. 3. Пример сопоставления облаков точек путем извлечения особых точек из двумерных проекций

Рис. 4. Архитектура нейросети MinkLoc3D 
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4. Экспериментальное  
исследование 

Для проверки эффективности предложен-
ного метода было проведено экспериментальное 
исследование на пяти симуляционных сценах из 
набора данных Matterport3D [23]. На каждой из 
сцен виртуальный агент, оснащенный панорам-
ной RGB-D камерой, двигался по предвари-
тельно заданному маршруту. Площадь сцен ва-
рьировалась от 175 до 450 м2, длины траекторий 
– от 127 до 322 м. Примеры сцен, траекторий и 
панорамных RGB-D изображений представлены 
на Рис. 5.  

Задачей агента было построение графа лока-
ций, покрывающего всю сцену. Построенный 
граф оценивался по метрикам, описанным в раз-
деле 1: количество компонент связности,  
площадь, покрытая главной компонентой, доля 
неконсистентных ребер, навигационная эффек-
тивность (SPL). С помощью этих метрик было 
проведено сравнение предложенного метода с 
двумя метрико-топологическими методами кар-
тирования (Hydra [11] и S-graphs+ [24]) и совре-
менным нейросетевым чисто топологическим 

методом TSGM [13]. Результаты сравнения 
представлены в Табл. 1. Примеры графов, по-
строенных методами, представлены на Рис. 6. 

Как показано в таблице, представленный ме-
тод значительно превосходит по навигацонной 
эффективности как классические метрико-топо-
логические методы S-graphs+ и Hydra, так и 
нейросетевой чисто топологический метод 
TSGM. Значения SPL у методов Hydra и S-
graphs+ составили менее 0.4, что обусловлено 
несвязностью построенных графов и низкой 
площадью покрытия сцены. Метод TSGM по-
строил связные графы, но они имели высокую 
долю неконсистентных ребер из-за отсутствия 
методов фильтрации нейросетевого распознава-
ния мест, что также привело к сравнительно низ-
кому значению SPL (0.6). Предложенный метод 
построил связные графы с низкой долей некон-
систентных ребер, что позволило достичь значе-
ния SPL, равного 0.77. 

Помимо экспериментального исследования в 
симуляционных сценах, предложенный метод 
также был протестирован на данных с реального 
робота. Для тестирования использовался робот 
Clearpath Husky, оснащенный трехмерным  

Рис. 5. Карта препятствий (показана вверх, черные пятна обозначают препятствия, белые – свободные зоны), 
траектория (показана вверху тонкой линией), панорамные изображения и глубины (показаны внизу)  

для двух сцен из экспериментального исследования 
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лазерным сканером (лидаром), а также RGB-D 
камерами с видом вперед и назад. В ходе экспе-
римента робот двигался по предварительно за-
данному маршруту, проходящему по коридору 
длиной 100 м в обе стороны. Управление движе-
нием осуществлялось вручную. На вход методу 
подавались облака точек с лидара, а также дан-
ные лидарной одометрии, полученные алгорит-
мом Cartographer [4]. Данные с проезда робота 
(облака точек и одометрия по RGB-D камерам) 
подавались на вход методу в режиме реального 
времени. 

Построенный предложенным методом граф в 
сравнении с двумерной картой занятости кори-
дора и пройденной траекторией показан на 
Рис. 7. Несмотря на присутствие динамических 

объектов (люди, идущие рядом с роботом), раз-
реженные облака точек с лидара и погрешности 
одометрии, метод успешно построил связный 
граф локаций, покрывающий весь коридор, 
отождествив коридор при прямом и обратном 
проезде. Видео с демонстрацией построения 
графа локаций на данных с робота доступно по 
ссылке https://disk.yandex.ru/i/7tzfEeJl1fBqcA. 

Заключение 

Предложенный метод поддерживает и обнов-
ляет граф локаций, а также локализуется в нем с 
использованием нейросетевого распознавания 
мест и классического двумерного сопоставле-
ния сканов. Эксперименты в симуляционных 

Табл. 1. Результаты экспериментов на симуляционных сценах 
 

Метод Связность Покрытие Доля неконсистентных  
ребер 

SPL 

Hydra 7.2 0.74 0.02 0.39 
S-graphs+ 6.2 0.54 0.02 0.29 
TSGM 1.0 0.95 0.07 0.60 
Ours 1.0 0.92 0.02 0.77 

 

 
Рис. 6. Примеры графов локаций, построенных предложенным методом (Ours) и другими современными методами: 

Hydra, SCgraphs, TSGM 

Рис. 7. Построенный граф локаций (линии – ребра, точки на линиях – вершины),  
в сравнении с двумерной картой среды (показана бледными контурами) 
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средах показали, что предложенный метод 
строит связные графы с низкой долей неконси-
стентных ребер и высокой площадью покрытия 
сцены, обеспечивающие высокую эффектив-
ность навигации. По навигационной эффектив-
ности метод значительно превосходит другие 
современные методы топологического картиро-
вания. Эксперименты, проведенные на данных с 
реального робота, показали работоспособность 
метода в реальном мире с разреженными обла-
ками точек, неточной одометрией и динамиче-
скими объектами. В дальнейшем планируется 
добавление семантической информации в граф 
локаций для более полного представления 
сцены и более точной локализации, а также раз-
работка методов навигации по графу локаций. 
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Abstract. Map building is one of the key tasks of autonomous mobile robots’ navigation. Traditional 
mapping methods build dense metric map (e.g. as an occupancy grid). Maintaining such map in case of 
long-term navigation is difficult because of high computational costs and odometry error accumulation. 
Representing the environment as a sparse topological structure (e.g. a graph of locations) lets us elimi-
nate these drawbacks and provide fast path planning. In this work, we propose a topological mapping 
method which builds and updates a graph of locations without use of global metric coordinates. For 
localization, the proposed method uses neural network-based place recognition in pair with 2D projec-
tion-based scan matching. We carry out experiments with our method in several photorealistic simulated 
scenes and on data from a real robot. In simulation, we compare our method with some state-of-the-art 
topological mapping methods. According to the results, the proposed method significantly outperforms 
competitors in terms of navigational efficiency, keeping graph connectivity, high scene coverage, and 
low part of inconsistent edges. 
Keywords: simultaneous localization and mapping (SLAM), topological map, mobile robots. 
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