
 ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 39

Clusterix�подобные СУБД консервативного типа
класса BIG DATA

В. А. Райхлин, Р. К. Классен

Казанский национальный исследовательский технический университет им. А.Н. Туполева, Казань, Россия

Аннотация. Целесообразность разработок СУБД консервативного типа с эпизодическим обновле-
нием данных определяется особенностями OLAP-технологий. Вопросы создания таких СУБД тре-
буют серьезного обсуждения. В этом обзоре систематизированы основные результаты исследова-
ний научной группы Clusterix КНИТУ-КАИ по консервативным СУБД на базе вычислительных
кластеров. Цель проведенных исследований актуальна: разработка подходов к синтезу сравни-
тельно эффективных по критерию «производительность/стоимость» отечественных СУБД класса
Big Data. Сравнение проводилось с лучшими зарубежными открытыми системами. Разрабатывае-
мые СУБД доступны к применению организациям с ограниченными финансовыми возможностями.
Должное внимание уделено элементам теории кластерных СУБД консервативного типа. Рассмот-
рены: базовые конфигурации систем Clusterix, динамика таких СУБД, эффекты их самоорганиза-
ции. За основу исследований взята методология конструктивного моделирования систем.

Ключевые слова: кластерные СУБД консервативного типа, элементы теории, базовые конфигура-
ции, динамика процессов, эффекты самоорганизации, отечественные СУБД класса Big Data, срав-
нительная эффективность.

DOI 10.14357/20718632240304 EDN DDMDGU

Введение

Актуальность разработок СУБД консерва-
тивного типа (с эпизодическим обновлением
данных) определяется тенденциями развития
технологии аналитической обработки данных
[1, 2].

Но вопросы динамики протекающих в них
процессов и их целесообразной организации все
еще недостаточно изучены. Данный обзор ча-
стично восполняет этот пробел. Он системати-
зирует многолетние исследования научной
группы Сlusterix КНИТУ-КАИ в области кла-
стерных СУБД консервативного типа с регуляр-
ным планом [3] обработки запросов. Рассмотре-
ние проводится с позиций конструктивного
моделирования систем (КМС) [4].

Отметим главное в КМС. В условиях непол-
ноты информации процесс синтеза рассматрива-
ется с системных позиций в предположении, что
синтезируемый объект моделирует поведение
некоторой гипотетической системы, заданной
своим оператором назначения. Моделирование
системы проводится в рамках соответствующей
модели синтеза, или S-модели (S – от Synthesis).
Она строится эвристически, т.е. неформально.
Процесс конструктивного моделирования ите-
ративен и предполагает симбиоз трех равно-
правных компонент (Рис. 1).

Характерной особенностью S-модели явля-
ется постулирование выявленных в процессе
КМС свойств множества эффективных реализа-
ций системы как основ теории и предпосылки
разработки конструктивного метода. Постулаты

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

40 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

рассматриваются как декларируемые законо-
мерности, справедливые в меру накопленных
знаний и опыта. В силу последнего система по-
стулатов должна быть открытой и корректиро-
ваться с появлений новых знаний.

Объемы баз данных в десятки, сотни GB и бо-
лее нередки для относительно небольших пред-
приятий с ограниченными финансовыми воз-
можностями. Коммерческие СУБД обладают
высокой производительностью и надежностью,
но чрезмерно большой стоимостью.

Удачной альтернативой дорогостоящим па-
раллельным СУБД являются свободно распро-
страняемые разработки с открытым исходным
кодом Hadoop [5] и Spark [6]. Они высокопроиз-
водительны, хорошо масштабируются, их тре-
бования к аппаратной платформе весьма скром-
ные. Но это – зарубежные системы.

Чтобы не оказаться в догоняющей позиции,
новые отечественные СУБД следует создавать
на базе инструментальных СУБД с открытым
кодом, поддерживаемых международным сооб-
ществом [7]. Этому требованию удовлетворяет
отечественная разработка Postgres Pro [8]. Но
она – одноузловая, а потому – недостаточно про-
изводительная. Целесообразна разработка эле-
ментов теории кластерных СУБД консерватив-
ного типа, что было сделано выявлением
свойств базовых версий СУБД Clusterix неболь-
шой производительности при ограниченных
объемах данных. Исследования по СУБД класса
Big Data развивались с ориентиром на размеще-
ние БД в суммарной оперативной памяти испол-
нительных узлов кластера, полную загрузку
процессорных ядер и GPU-акселерацию.

1. Элементы теории кластерных
СУБД консервативного типа

Исходные посылки. Для консервативных
СУБД свойственна OLAP нагрузка [9], характе-
ризующаяся высоким удельным весом сложных

запросов типа «селекция (σ)– проекция (π) – со-
единение (⊗ߪ)», ⊗ߪ – декартово произведе-
ние, оперирующих множеством таблиц с боль-
шим числом операций соединения. По условию
соединение всегда естественное [10].

Постулат 1 [11]: Для параллельных СУБД
консервативного типа регулярный план обра-
ботки запросов (Рис. 2), является предпочти-
тельным.

Согласно постулату, кластер консерватив-
ных баз данных включает: Host ЭВМ, процес-
соры нижнего IOr и верхнего Joinj уровней. Об-
щее число физических процессоров в базовых
системах Clusterix N=h+1, h=2n, n=1, 2,…
Обозначим: m – число страниц базы данных, p и
q=m=h–p – числа процессоров Joinj и I/Or.
Рассмотрение ограничено вариантами:
k-1 ∈ {0,⅓,½,1}. Вариант k-1 =0 (p=0), когда функ-
ции IOr и Joinj (r = j) реализуются на одном про-
цессоре, назван линейкой. Вариант k=1 – сим-
метрией.

Есть еще три процессора. Процессор УПР ре-
ализует функции управления всеми процессо-
рами системы. Процессор ПТР претранслирует
исходный запрос к виду регулярного дерева.
Процессор SORT, объединяет результаты на
множестве узлов, выполняет операции агрега-
ции (SUM, AVG, MAX, MIN и др.) и сортировки

Рис. 1. Процесс конструктивного моделирования систем

Рис. 2. Регулярный план обработки запросов

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 41

указанных результатов. Все три процессора
функционируют на Host ЭВМ. Работа на уровне
файловой системы, системных буферов, алго-
ритмов доступа к данным, работы с индексами и
т.п. реализуется с помощью инструментальной
СУБД MySQL. Для обеспечения устойчивого
функционирования программной системы ис-
пользуется барьерная синхронизация [12].

В прототипе СУБД Clusterix [13] реализо-
ваны два вида параллелизма:

1) Горизонтальный – достигается параллель-
ной обработкой несколькими процессорами од-
ного уровня разных частей данных. Хеш-функ-
ция, использованная в Clusterix:

hash=((key_field1 mod q) + (key_field2 mod q) +
… + (key_fieldP mod q)) mod q, (1)

где P – количество полей в первичном ключе;
mod q – операция деления по модулю q. Как

показали эксперименты, данный подход обеспе-
чивает достаточно равномерное распределение
данных по страницам.

2) Вертикальный – конвейерный механизм
обработки запросов. Обусловлен обработкой за-
проса согласно регулярному плану.

Исходный SQL-запрос пользователя транс-
лируется в пакет MySQL-фрагментов для про-
цессоров IO и JOIN. В каждом такте конвейера
совмещается выполнение по одному фрагменту
того и другого. Совмещение как таковое имеет
место только для архитектуры «симметрия». В
случае «линейка» процессы IO и JOIN идут с
разделением времени. В Табл. 1 дано краткое
описание действий, выполняемых системой на
каждом этапе.

Масштабируемость и производитель-
ность. Модельный эксперимент проводился с
использованием натурной модели базовой

Табл. 1. Описание действий на каждом этапе

IO_EXEC Исполнение операций π и σ над исходным отношением БД, получение промежуточного
отношения R′ (сохраняется в главной памяти процессора IO).

IO_HASH Проведение операции хеширования (деление по модулю на число процессоров IO) над
отношением R′і по полю, участвующему в соответствующей операции соединения.

IO_WAIT_
LOAD

Пересылка частей отхешированных отношений R′i между процессорами IO в соответ-
ствии с полученными на предыдущем этапе значениями хеш-функций и формирование
итоговых отношении R′i на каждом IO.

IO_WAIT_
SYNC

Ожидание, пока все модули IO выполнят текущую операцию (барьерная синхронизация
модулей IO).

IO_NET_IO_
JOIN

Пересылка итоговых промежуточных отношений R′i с процессоров IO на соответству-
ющие процессоры JOIN.

JOIN_creating
INDEX before

JOIN
Создание индексов для промежуточного отношения R′i, полученного на предыдущем
такте работы IO.

JOIN_EXEC Выполнение операции соединения над R′i и временным отношением Rв(i-1), полученным
на предыдущем такте работы JOIN, формирование временного отношения Rв(i).

JOIN_HASH
Проведение операции хеширования (деление по модулю на число процессоров JOIN)
над отношением Rв(i) по полю, участвующему в следующей операции соединения.

JOIN_WAIT_
LOAD

Пересылка отхешированных отношений Rв(i) между процессорами JOIN (пересылка
кортежей по сети и формирование итоговых отношении Rв(i))

JOIN_WAIT_
SYNC

Ожидание, пока все модули JOIN выполнят текущую операцию (барьерная синхрони-
зация модулей JOIN)

JOIN_creating
INDEX after

JOIN
Создание индексов для сформированных отношении Rв(i).

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

42 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

СУБД Clustrerix [13] на трех различных плат-
формах. Основной среди них является вычисли-
тельный кластер фирмы SUN из 22 узлов 2
Quad-core Intel Xeon E5450 CPU/1,87GHz/32GB.
Интерконнект – GigabitEthernet/Infiniband 4X
(20Gbps DDR) с коммутаторами Cisco. SAS
диски XRB-SS2CD-146G10KZ с пропускной
способностью 300 МB/s.

Мы стремились выявить некоторые общие
закономерности поведения кластерных СУБД
при изменении числа узлов и объемов баз дан-
ных для случаев одно- и двухпроцессорных
(SMP) узлов. В качестве представительского те-
ста (ПТ) взят ограниченный тест TPC-H из 14 за-
просов, не содержащих операций записи. За кри-
терий эффективности принято отношение
«производительность/стоимость».

По результатам работ [13-16], сформулиро-
ван постулат 2.

Постулат 2. Для кластеров консервативных
баз данных всегда существует граничное число
страниц (число процессоров IO) m=mG, кото-
рому отвечает максимум производительности
на действующем ПТ. Это число зависит от ис-
пользуемой платформы, схемы БД, потока за-
просов и, при неизменных ПТ и схемы БД рас-
тет с увеличением объема VБД. При работе на
грани масштабируемости эффективность
максимальна на «линейке».

Вопросы динамической перестройки архи-
тектуры кластера рассмотрены в работах [15,
16]. На Рис. 3 приведен график изменения вре-
мени выполнения ПТ (сек.) с ростом числа рабо-
чих 2-процессорных SMP-узлов «линейки» в
случае VБД =5,4GB. Видимый порог масштаби-
руемости mG = hG = 7-8.

Наличие двух процессоров в узле позволяет
повысить масштабируемость и быстродействие
системы на границе масштабируемости. Это до-
стигается установкой на каждый SMP-узел двух
серверов MySQL. Один из них связан с процес-
сами IO, другой – с процессами Join [17]. Для
сравнения архитектур «линейка» и «новая сим-
метрия» проведена обработка конкатенации
трех перестановок ПТ. Полученные результаты
представлены на Рис. 4, a.

При использовании в кластере с архитекту-
рой «линейка» 2-процессорных узлов с одним
сервером MySQL один из процессоров остается
практически незагруженным. Число исполни-
тельных узлов «линейки» можно удвоить уста-
новкой на каждый рабочий узел кластера двух
серверов MySQL и реализацией на каждом его
процессоре пары (IO-JOIN) – т.н. конфигурация
«совмещенная линейка» [18]. Она улучшает ба-
лансировку нагрузки между процессорами. На
Рис. 4, b приведены полученные для нее графики
T(h) (сплошная линия – сеть Gigabit Ethernet,
пунктир – Infiniband) [18]. Сравнение графиков

Рис. 3. SUN;кластер, VБД =5,4GB.
Конфигурация «линейка»

 a) b)

Рис. 4. SUN;кластер, VБД = 5,4GB: a) Конкатенация 3;х перестановок ПТ; b) «Совмещенная линейка»

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 43

Рис. 3 и 4, b показывает, что переход от «ли-
нейки» к «совмещенной линейке» дает рост эф-
фективности в 2 раза.

Значительное повышение эффективности
консервативной СУБД на кластерной плат-
форме, число узлов которой h кратно превышает
hG, достигается переходом к мультикластериза-
ции (один мощный узел на каждый запрос) [17].
Мощный узел реализуется как монокластер, ра-
ботающий на грани масштабируемости. На од-
ном кластере реализуется множество одновре-
менно функционирующих СУБД Clusterix с
репликацией между ними консервативной базы
данных. Для архитектур «линейка» либо «новая
симметрия» на платформе SUN-кластера при
VБД = 5,4GB наблюдался рост производительно-
сти по сравнению с однокластерной системой в
2 и 3 раза соответственно.

Эффекты самоорганизации. Кластерная
СУБД – сложная диссипативная система [19]. В
данном случае роль «трения» играют коллизии
в сети, латентность, неравномерное распределе-
ние нагрузок по процессорам и др. Но суще-
ствует и «отрицательное трение» – добавки
в систему новых узлов. Они повышают произво-
дительность системы, пока рост противодей-
ствия не доминирует. Процессы в IOr и Joinr с
ростом h усложняются.

Обратимся к исследованиям на SUN-
кластере [20]. Исследовалась динамика «ли-
нейки» при VБД =5,4GB. Разработанная измери-
тельная подсистема фиксировала объемы работ
на отдельных этапах обработки. Усредненные
графики изменения объемов работ на множестве
5 перестановок запросов ПТ, суммарных и по
отдельным этапам, показаны на Рис. 5.

За объем работ было принято число эквива-
лентных скалярных операций длительностью 1
секунда каждая. При h>10 объем работ резко
нарастает. Замечаем, что при h > hG высок удель-
ный вес операций, так или иначе связанных с се-
тевыми передачами. По аналогии с влиянием
«опосредованных сил трения» в физико-хими-
ческих системах вводится

Постулат 3. Резкое нарастание объемов ра-
бот при добавлении всего лишь 1 узла к уже име-
ющимся 10 означает переход кластера в точке
бифуркации к новому режиму работы.

2. Развитие системы Clusterix�N

Решаемая задача. Задачей данного раздела
является анализ возможностей реализации эко-
номичных консервативных СУБД повышенных
объемов, сравнимых по эффективности с систе-
мой Spark при обработке потока запросов к БД
объемом в сотни GB и более на сравнительно не-
дорогих кластерных платформах с использова-
нием регулярного плана обработки запросов,
применением средств MySQL и GPU-
акселераторов на исполнительном уровне. Post-
greSQL является более совершенной открытой
СУБД в сравнении с MySQL и активно позици-
онируется на территории России [7, 8]. Но
MySQL позволяет использовать различные
«движки» и имеет систему расширений [21]. Эти
особенности упрощают и ускоряют разработку.

Согласно требованиям экономичности все
исследовательские эксперименты были прове-
дены на платформе GPU-кластера, состоящего
из 7 узлов. Параметры узлов: 2 six-core E5-2640
CPU/2,5 GHz/DDR3 128GB; 2x GPU Tesla C-

 a) b)

Рис. 5. Объемы работ на кластере: a) – cуммарный; b) – по отдельным этапам

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

44 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

2075/1,15GHz/GDDR5 6GB (на Mgm GPU отсут-
ствуют). Дисковая подсистема узла – RAID 10 из
4 WD1000 DHTZ/ 1TB суммарным объемом (за
вычетом «зеркала») 2 TB. Операционная си-
стема – Windows Server 2012 R2. Интерконнект
между узлами – GigabitEthernet c 24-портовым
коммутатором SSE G24-TG4. Объемы БД – 120
GB. Представительский тест (ПТ) – конкатена-
ция 6 перестановок TPC-H Throughput Test без
операций записи.

В эксперименте со Spark БД была представ-
лена в виде структурированных текстовых фай-
лов и равномерно распределена по 6 исполни-
тельным узлам. Доступ к данным был
реализован с помощью Hadoop (HDFS). Балан-
сировка нагрузки производилась модулем
YARN, также входящим в состав Hadoop. Обра-
ботка запросов выполнялась Spark в конфигура-
ции «worker на ядро» (итого 6x12=72 worker'а на
кластер). За работу с SQL-запросами отвечало
расширение Spark spark-sql.

Сравнительная оценка производительности
Clusterix-подобных архитектур и Spark проводи-
лась по двум показателям: 1) суммарное время
обработки пакета запросов Т; 2) время задержки
tзд для каждого запроса от момента его поступ-
ления в систему до момента отправки ответа tзд
= tобр+ tожд. Здесь: tобр – время обработки запроса
сервером, tожд – время простоя запроса в очереди
запросов сервера. Полученные данные исполь-
зуются для подсчета математического ожидания
зд൯ݐ൫ܯ ൌ ൫∑ здݐ

௡
௞ୀଵ ൯ ݊⁄ и среднеквадратиче-

ского отклонения ߪ൫ݐзд൯ ൌ ටݐൣܯзд െ зд൯൧ݐ൫ܯ
ଶ
,

k – номер запроса ПТ, n – число запросов в ПТ.
Поскольку значения М и σ немаловажны для
пользователя, то сравнительная эффективность
Clusterix-подобных систем определяется как
кортеж <߂T,߂M,߂σ>, где ߂T = TSp/TCl , ߂M =
MSp/MCl , ߂σ = σSp/σ Cl (Sp – Spark. Cl – Clusterix).

Типовая архитектура реляционной СУБД
по Стоунбрейкеру и Хелерстейну [22] включает
5 компонентов: 1) менеджер коммуникации с
клиентом; 2) менеджер управления процессами;
3) менеджер управления транзакциями; 4) об-
щие компоненты и утилиты; 5) реляционный
процессор. MySQL является самодостаточной
СУБД и соответствует типовой архитектуре. Но
все ее компоненты ориентированы на работу с

одним потоком. Поэтому из MySQL использо-
ван только реляционный процессор. Компо-
ненты (1-4) разрабатывались отдельно для каж-
дой версии Clusterix-подобных СУБД. Заведомо
неизвестно, как поведет себя система при ориен-
тации на процессорные ядра и GPU-
акселерацию в случае размещения БД в опера-
тивной памяти процессоров I/O. Поэтому реали-
зован полный процесс иерархического (IS) мо-
делирования [4].

Постулат 4 [23]. Решение поставленной за-
дачи должна обеспечить эволюция Clusterix-
подобных СУБД от начальной реализации прин-
ципов гибридной технологии (см. ниже приня-
тое начальное состояние IS-модели).

Состояние IS-модели – это совокупность
взаимодействующих программных модулей. Их
полная программная разработка названа полным
состоянием. От пространства полных состоя-
ний можно перейти к пространству парамет-
ров. Под параметром понимается среднее время
обработки одного запроса ПТ на том или ином
этапе: select-project, join, sort, динамическая сег-
ментация отношений, их индексация, сетевой и
др. Для заданной платформы существует одно-
значное отображение пространства полных со-
стояний в пространство параметров. По анало-
гии с принятым в синергетике [24], для каждого
полного состояния выделяется «параметр
порядка», снижение влияния которого на произ-
водительность системы определяет переходы
между состояниями-итерациями. В качестве
такового принят временной параметр, имеющий
максимальное значение для данного полного
состояния [23].

В Табл. 2 показано изменение временных па-
раметров системы на множестве рассмотренных
итераций [25, 26]. Их формирование излагается
далее в меру, принятой для обзора. Оно де-
тально рассмотрено в [26-29]. Все разработки
программной системы помещены в открытый
доступ [26] и могут быть использованы заинте-
ресованными организациями.

Характеристика начального состояния. В
первых Clusterix-подобных системах для ускоре-
ния операций join было использовано динамиче-
ское сегментирование промежуточных и времен-
ных отношений по мере формирования отдельных
записей Ri' и RBj. Оно занимало достаточно много

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 45

времени и с ростом числа узлов могло приво-
дить к сбоям в работе системы. В работе [25] по-
казано, что повысить производительность
можно переходом к архитектуре Clusterix-N (N
– от New) путем разделения кластера на две раз-
личные части – блоки IO и JOIN – с независимой
вариацией числа многоядерных узлов в каждом
блоке. При этом число процессоров JOIN (физи-
ческих или виртуальных) всегда не меньше
числа процессоров IO.

База данных хешировалась на уровне узлов
IO. В них реализована стратегия «отношение на
ядро». На уровне узлов Join использовалась
стратегия «запрос на ядро» (реализуемость та-
кой стратегии средствами MySQL показана в ра-
ботах [27, 30]), что позволило исключить дина-
мическую сегментацию. Детальная программная
разработка начального состояния [26] позволила
создать своеобразные «модули-заготовки», кото-
рые в дальнейшем модифицировались для каж-
дого нового состояния. Однако эффективность
начального состояния оказалась существенно
ниже, чем у Spark. Кроме того, уже при VБД <
100GB большой суммарный объем промежуточ-
ных отношений по некоторым запросам теста
TPC-H приводил к перегрузке оперативной па-
мяти узлов JOIN.

Первая итерация. Надежная работа с БД
больших объемов требует использования стра-
тегии «множество ядер в каждом блоке на одно
отношение». Она восстановлена в первой итера-
ции Сlusterix-N [28, 29], но (в отличие от Clus-
terix) с передачей полученных в результате
динамической сегментации промежуточ-
ных/временных отношений сегментов в целом.
Хеширование осуществляет модуль HASH на
выделенном узле с GPU-ускорителями, распре-
деляя данные по всем процессорным ядрам

уровня JOIN. Хеширование выполняется с ис-
пользованием алгоритма деления (1). Результат
хеширования помещается в буфер отправки по
ядрам (для каждого ядра в узлах JOIN модуль
HASH формирует буфер в своей памяти). От-
правка данных происходит по готовности опера-
ции хеширования.

В результате внесенных изменений про-
грамма Clusterix-N теперь состоит из 5 модулей:
MGM (модуль управления), IO, JOIN, HASH,
SORT. Как и ранее, БД распределена по узлам
IO. Модули IO и JOIN реализуют стратегию
«группа узлов на отношение». Архитектура этой
итерации и ее алгоритмические особенности де-
тально рассмотрены в работе [29]. Конфигура-
ция кластера при проведении эксперимента та-
кова: 2 узла IO, 3 узла JOIN, 1 узел HASH и 1
узел MGM, совмещающий модули MGM и
SORT. Но и теперь Clusterix-N остается некон-
курентоспособной. Результаты экспериментов
для времени обработки ПТ: Clusterix-N – 19,7
час; Spark – 4,5 час. Они явно не в пользу
Clusterix-N. Параметр порядка – временной
вклад сетевого уровня.

Вторая итерация. Основная идея, положен-
ная в ее основу, состоит в реализации операций
динамического сегментирования промежуточ-
ных/временных отношений в модулях IO и JOIN
c передачей хешированных данных напрямую
между исполнительными узлами, минуя MGM
(Рис. 6).

Модуль IO выполняет операцию select-pro-
ject для одного отношения параллельно на мно-
жестве доступных процессорных ядер с получе-
нием набора блоков результата. Эти блоки
подвергаются хешированию с ускорением на
GPU [28] и передаются сразу в определенные
узлы JOIN. Модуль JOIN полностью повторяет

Табл. 2. Среднее время выполнения операций в Clusterix;N для итераций 1 – 5

 Итер. 1, сек Итер. 2, сек Итер. 3, сек Итер. 4, сек Итер. 5, сек
Передача данных 569,77 190,34 133,62 106,12 116,17
Удаление отношений Ri', Rвj 375,27 308,17 180,03 140,91 41,06
Подготовка к загрузке 18,90 18,19 22,40 24,15 25,29
Хеширование данных 177,03 148,93 93,61 56,43 56,14
Загрузка данных в MySQL 466,64 562,10 447,28 164,01 85,18
Выполнение «join» 186,09 122,43 89,09 54,77 26,76
Выполнение «select-project» 522,73 685,37 159,86 55,40 59,93
Выполнение «sort» 162,61 164,00 178,42 42,90 43,41

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

46 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

алгоритм его работы в первой итерации. Отличие
заключается лишь в обработке результата join. Те-
перь он хешируется на GPU и передается в узлы
JOIN (для выполнения следующей операции join)
или SORT с совмещением операций аналогично
IO. Модуль SORT использует стратегию «запрос
на ядро» и передает результат в MGM. Единствен-
ное изменение в его работе – это получение дан-
ных от узлов JOIN, а не из MGM.

Экспериментальное исследование новой вер-
сии Clusterix-N производилось в конфигурации
GPU-кластера (Рис. 7): 2 узла IO, 4 узла JOIN, 1
узел MGM. БД распределена по узлам IO. Время
передач по сети уменьшилось ~ в 3 раза, операции
join ускорились ~ в 1,5 раза. Но время выполнения
ПТ составило 14,5 часа, т.е. говорить о возможной

конкуренции со Spark по-прежнему не прихо-
дится. Параметр порядка для итерации 2 – время
выполнения операций на уровне select-project.

Третья итерация. Для ускорения этих оп
ераций надо уменьшить объем данных, обраба-
тываемых в одном узле, что требует увеличения
числа узлов каждого блока. Нужного эффекта
можно добиться возвратом к конфигурации «но-
вая симметрия». Для этого требуется настройка
1) количества занимаемых процессорных ядер,
2) для связывания каждого модуля со «своим»
GPU-ускорителем. Теперь для одного модуля
вполне достаточно одного ускорителя. Новое
распределение узлов GPU-кластера (Рис. 8): 6
узлов с модулями IO и JOIN, 1 узел MGM, сов-
мещающий модули MGM и SORT.

IO

IO

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

SORT

MGM

Группа IO
Группа
JOIN

Группа
JOIN

Группа
SORT

JOIN

JOIN

JOIN

JOIN

Группа
JOIN

JOIN

JOIN

JOIN

JOIN

Группа
JOIN

N JOIN

Рис. 6. Взаимодействие программных модулей Clusterix;N, итерация 2

IO1

2x CPU
12 ядер

Mgm

2x CPU
12 ядер

IO2

2x CPU
12 ядер

БД

JOIN1

2x CPU
12 ядер

JOIN2

2x CPU
12 ядер

JOIN4

2x CPU
12 ядер

УПР

SORT

ROUTER

Сеть GigabitEthernet

2x GPU

JOIN3

2x CPU
12 ядер

2x GPU2x GPU2x GPU

2x GPU 2x GPU

Рис. 7. Конфигурация программных модулей Clusterix;N, итерация 2

Node 1

JO
IN
: 1
xC
P
U

 6
 я
д
ер

Mgm

2x CPU
12 ядер

УПР

SORT

ROUTER

Сеть GigabitEthernet

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

Node 2

JO
IN
: 1
xC
P
U

 6
 я
д
ер

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

Node 3

JO
IN
: 1
xC
P
U

 6
 я
д
ер

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

Node 4

JO
IN
: 1
xC
P
U

 6
 я
д
ер

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

Node 5

JO
IN
: 1
xC
P
U

 6
 я
д
ер

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

Node 6

JO
IN
: 1
xC
P
U

 6
 я
д
ер

GPU

IO
: 1
xC
P
U

 6
 я
д
ер

GPU

БД

Рис. 8. Конфигурация программных модулей Clusterix;N в итерации 3

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 47

Каждому модулю выделен один CPU (6 ядер) и
один GPU-ускоритель. На исполнительных узлах
функционирует сразу две СУБД MySQL: одна –
для IO, другая – для JOIN. Самой длительной опе-
рацией осталась загрузка данных в MySQL – «па-
раметр порядка» для третьей итерации.

Четвертая итерация. Загрузка данных в
MySQL для модулей JOIN ускорена увеличе-
нием числа ядер, на которых реализуются эти
модули. В каждом узле итерации 3 процессор, на
котором реализован модуль IO, простаивает
продолжительное время. Возврат к архитектуре
«совмещенная линейка» исключает эти простои
со значительным ускорением загрузки. В каж-
дом узле используется по одному GPU для хе-
ширования результатов работы модулей IO и
JOIN. Эффективность итерации 4 дополни-
тельно повышена, во-первых, переходом в IO от
хеширования БД по узлам к хешированию по яд-
рам. Это значительно ускорило select-project.
Во-вторых, – переходом на более совершенную
версию MySQL 8.0. Но к прежнему «параметру
порядка» добавилось удаление отработанных
отношений Ri', Rвj (Табл. 2).

Пятая итерация. В [21] сказано, что для
движка MEMORY сервера MySQL блокировка
производится на уровне таблиц: при выполне-
нии операций изменения данных (insert, update,
delete, alter и др.) запрещается доступ к таблице
плоть до завершения названных операции.

Детальный анализ исходных кодов помог уста-
новить, что блокировка одной таблицы вызы-
вает блокировку всей памяти движка MEMORY
в рамках одного процесса. Обойти это ограниче-
ние можно запуском нескольких экземпляров
MySQL в количестве ядер CPU.

Работа со множеством MySQL требует нала-
живания множества связей Clusterix-N ↔
MySQL, контроля распределения данных ре-
зультата хеширования и тиражирования запро-
сов во множестве подключенных MySQL. В экс-
перименте для итерации 5 на каждом узле
запускалось 13 серверов MySQL: 1 – для IO, 12
– для JOIN. MySQL для IO использует движок
InnoDB, у которого нет указанных ранее про-
блем. Схема эксперимента показана на Рис. 9.
Сравнение эффективностей итерации 5 и Spark
дано в Табл. 3.

3. Возврат к идее
мультикластеризации

При ориентации на использование сравни-
тельно недорогих вычислительных кластеров в
случае Big Data число исполнительных узлов
кластера h << hG. И все же понятие мощного
узла можно ассоциировать с его многоядерно-
стью даже при работе вдали от грани масштаби-
руемости. При этом можно по иному (в сравне-
нии с Clusterix-N) подойти к построению СУБД

Node 1

JO
IN

Mgm

2x CPU
12 ядер

УПР

SORT

ROUTER

Сеть GigabitEthernet

IO

GPU

Node 2 Node 3 Node 4 Node 5 Node 6

12xБД

JO
INIO

GPU

12xБД

JO
INIO

GPU

12xБД

JO
INIO

GPU

12xБД

JO
INIO

GPU

12xБД

JO
INIO

GPU

12xБД

Рис. 9. Схема эксперимента

Табл. 3. Cравнение по T, M и σ итерации 5 и Spark, VБД = 120 GB

 Итерация 5 (и.5), мин. Spark (S), мин. Отношение и.5/S
T 276 261 1,06
M 4,8 3,1 1,54
σ 4,5 0,9 4,78

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

48 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

консервативного типа. Самостоятельное приме-
нение MySQL последних версий позволяет пол-
ностью использовать ресурсы многоядерных уз-
лов (стратегия «ядро на запрос»). В работе [27]
удалось обеспечить 100% загрузку всех ядер при
специальной настройке MySQL 5.6 (технология
PerformSys по терминологии [30]). Конфигурация
экспериментального полигона для PerformSys на
прежней платформе показана на Рис. 10. Распре-
деление узлов GPU-кластера: 6 узлов исполни-
тельных и 1 узел управляющий.

Управляющий узел выполняет функции ро-
утеризации и ведения очереди запросов. Каж-
дый исполнительный узел включает в себя соб-
ственно модуль сервера PerformSys и СУБД
MySQL с полной копией БД на каждом узле.
PerformSys использует стратегию «ядро на за-
прос». Поэтому в системе могут параллельно об-
рабатываться 72 запроса (6 узлов по 12 ядер в
узле дают 72 ядра). Как только очередной запрос
выполнен, на его место отправляется новый,
вплоть до исчерпания очереди на управляющем
узле. Требуется некоторая настройка сервера
MySQL. Разработка программной системы
PerformSys помещена в открытый доступ [31].

Сравнительные результаты выполнения ПТ
на прежней платформе для двух БД объемом
VБД = 60 и VБД = 120 GB представлены в Табл. 4.

Превосходство PerformSys при VБД = 60 GB объ-
ясняется высоким параллелизмом работ: в си-
стеме сразу выполняется 72 запроса, в то время
как в Clusterix-N всего 2. Но значения M и σ для
Clusterix-N всегда меньше. Это немаловажно
для пользователя. Низкая производительность
PerfromSys при VБД = 120GB в основном объяс-
няется недостаточным объемом оперативной па-
мяти для хранения в инструментальной СУБД
результата обработки и всех промежуточ-
ных/временных отношений по запросу.

Заключение

Нами показано, что использование регуляр-
ного плана обработки запросов и архитектурных
решений согласно приведенным элементами тео-
рии при соответствующей программно-алгорит-
мической разработке экономичных консерватив-
ных СУБД класса BigData дает результаты,
сравнимые по производительности с лучшими
открытыми системами. Стоимость приобретения
и ввода в эксплуатацию GPU-кластера, аналогич-
ного использованному при проведении экспери-
ментов, сравнительно невелика. Все версии про-
граммных систем Clusterix-N и PerformSys
помещены в открытый доступ и могут быть ис-
пользованы заинтересованными организациями.

Serv1

2x CPU
12 ядер

Mgm

2x CPU
12 ядер

Serv2

БД

Сеть GigabitEthernet

2x CPU
12 ядер

БД

Serv3

2x CPU
12 ядер

БД

Serv4

2x CPU
12 ядер

БД

Serv5

2x CPU
12 ядер

БД

Serv6

2x CPU
12 ядер

БД

Рис. 10. Экспериментальный полигон для PerformSys

Табл. 4. Сравнительные результаты выполнения ПТ

VБД , GB 60 120

СУБД PerformSys Clusterix-N
(итерация 4)

Spark PerformSys Clusterix-N
(итерация 5)

Spark

T, мин 55,8 172,2 200 3015 276,13 260,6
M, мин 11,05 3,2 2,4 699,36 4,8 3,1
σ, мин 14,04 3,0 0,5 692,75 4,5 0,9

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 49

В работе над этим обзором использованы ре-
зультаты, полученные в свое время по СУБД
Сlusterix кандидатами наук Е.В. Абрамовым и
Р.Ш. Минязевым, магистрами Д.О. Шагеевым и
А.В. Поповым. Авторы приносят им искреннюю
благодарность за их труд.

Литература

1. Барсегян А.А., Куприянов М.С., Степаненко В.В., Хо-
лод И.И. Технологии анализа данных: Data Mining, Vis-
ual Mimning, Text Mining, OLAP // 2-е изд. – СПб.:БХВ-
Петербург, 2007.

2. Cohen J., Dolan B., Dunlap M., Hellerstein J. M. and Welton
C. MAD Skills: New Analysis Practices for Big Data // Pro-
ceedings of the VLDB Endowment Volume 2 Issue 2, Au-
gust 2009. P. 1481-1492.

3. Raikhlin, V.A. Simulation of Distributed Database Ma-
chines //Programming and Computer Software. Vol. 22, Is-
sue 2, 1996, P. 68-74.

4. Райхлин В.А. Конструктивное моделирование систем //
Казань: Изд-во «Фəн» («Наука»), 2005.

5. EMC Education Services. Data Science and Big Data Ana-
lytics: Discovering, Analyzing, Visualizing and Presenting
Data //John Wiley & Sons.

6. Xin, Reynold & Rosen, Josh & Zaharia, Matei & J. Frank-
lin, Michael & Shenker, Scott & Stoica, Ion. (2012). Spark:
SQL and Rich Analytics at Scale // Proceedings of the ACM
SIGMOD International Conference on Management of
Data. 10.1145/2463676.2465288.

7. Российская отрасль СУБД продвигается на «слонах»
//Connect. 2017. №5-6. C.34-38.

8. Российская СУБД Postgres Pro //Postgres Professional.
2018. URL:https://postgrespro.ru/products/postgrespro
(дата обращения: 03.05.2018).

9. Codd E.F.. Providing OLAP to user-analysts: an it mandate
// Technical Report. Apr. 1993.

10. Ульман Дж. Основы систем баз данных // М.: Финансы
и статистка, 1983.

11. Райхлин В.А., Вершинин И.С., Классен Р.К., Гибадуллин
Р.Ф., Пыстогов С.В.. Конструктивное моделирование про-
цессов синтеза /Под ред. В.А. Райхлина // Казань: Изд-во
«ФƏН» (Наука) АН РТ, 2020.

12. Воеводин В.В., Воеводин Вл.В.. Параллельные вычис-
ления // СПб.: БХВ-Петербург, 2004.

13. Абрамов Е.В. Параллельная СУБД Clusterix. Разра-
ботка прототипа и его натурное исследование //Вестник
КГТУ им. А.Н. Туполева. 2006. №2. С.50-55.

14. Райхлин В.А., Абрамов Е.В. Кластеры баз данных. Мо-
делирование эволюции //Вестник КГТУ им. А.Н. Тупо
лева. 2006. №3. С. 22-27.

15. Райхлин В.А., Абрамов Е.В., Шагеев Д.О. Эволюцион-
ное моделирование процесса выбора архитектуры кла-
стеров баз данных //Высокопроизводит. паралл. вычис-
ления на кластерных системах. Тр. 8 Межд. конф. HPC-
2008. – Казань: Изд. КГТУ, 2008. С.249-256.

16. Райхлин В.А., Шагеев Д.О. Информационные кластеры
как диссипативные системы //Нелинейный мир. Т.7.
2009. №5. С.323-334.

17. Райхлин В.А., Минязев Р.Ш. Мультикластеризация
распределенных СУБД консервативного типа //Нели-
нейный мир. 2011. №8. С.473-481.

18. Райхлин В.А., Минязев Р.Ш. Анализ процессов в кла-
стерах консервативных баз данных с позиций самоор-
ганизации //Вестник КГТУ им. А.Н. Туполева. 2015.
№2. С. 120-126.

19. Николис Г., Пригожин И. Познание сложного. – М.:
УРС, 2003.

20. Минязев Р.Ш., Попов А.В. Временные доминанты кла-
стеров баз данных //Методы моделирования /Под ред.
В.А. Райхлина. Труды Респ. науч. семинара АН РТ
«Методы моделирования». Вып.4. – Казань: Изд-во
«Фəн» («Наука»), 2010. С.125-134.

21. Oracle. The MySQL Plugin API //MySQL Documentation.
2018. URL: https://dev.mysql.com/doc/ ref-
man/5.7/en/plugin-api.html (дата обращения:
09.04.2018).

22. Hellerstein J.M., Stonebraker M., Hamilton J. Architecture
of a Database System //Foundations and Trends in Data-
bases. 2007. Vol. 1. No. 2. pp. 141-259.

23. Vadim A. Raikhlin, Roman K. Klassen. Clusterix-Like Big-
Data DBMS //Data Science and Engineering, 5(1), p.80–93
(2020). DOI:10.1007/s41019-020-00116-2
http://link.springer.com/article/10.1007/s41019-020-0116-2

24. Haken, Hermann. Synergetics: Introduction and Advanced
Topics // 2004, DOI: 10.1007/978-3-662-10184-1.

25. Райхлин В.А., Классен Р.К. Сравнительно недорогие ги-
бридные технологии консервативных СУБД больших
объемов //Информационные технологии и вычислитель-
ные системы. 2018. Т. 68. №1. С. 46-59.

26. Классен Р.К. Clusterix-N. // BitBucket. 2019. URL:
https://bitbucket.org/rozh/clusterixn/ (дата обращения:
09.03.2019).

27. Классен Р.К. Повышение эффективности параллельной
СУБД консервативного типа на кластерной платформе
с многоядерными узлами //Вестник КГТУ им. А.Н.Ту-
полева. 2015. № 1. С. 112-118.

28. Классен Р.К. Ускорение операций хеширования с при-
менением графических ускорителей //Вестник КГТУ
им. А.Н.Туполева. 2018. № 1. С.134-141.

29. Классен Р.К. Особенности эффективной обработки
SQL запросов к базам данных консервативного типа
//Информационные технологии и вычислительные си-
стемы. 2018. Т. 68. № 4. С. 108-118.

30. Классен Р.К. Программа региональной балансировки
нагрузки к базе данных консервативного типа на кла-
стерной платформе «PerformSys». Свидетельство о гос-
ударственной регистрации программы для ЭВМ
№2017611785 от 09.02.2017.

31. Классен Р.К. PerformSys // GitHub. 2019. URL:
https://github.com/rozh1/PerformSys/ (дата обращения:
09.12.2018).

ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ В. А. Райхлин, Р. К. Классен

50 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024

Райхлин Вадим Абрамович. Казанский национальный исследовательский технический университет им. А.Н. Туполева
– КАИ, г. Казань. Профессор кафедры компьютерных систем, доктор физ.-мат. наук, профессор. Область научных инте-
ресов: конструктивное моделирование систем.E-mail: varaikhlin@gmail.com

Классен Роман Константинович. Казанский национальный исследовательский технический университет им. А.Н. Тупо-
лева – КАИ, г. Казань. Доцент кафедры компьютерных систем, канд. техн. наук. Область научных интересов: высокопро-
изводительные системы, big data, информационные технологии, интернет вещей. E-mail: klassen.rk@gmail.com

BIG DATA Class Conservative�Type Clusterix�Like DBMSs

V. A. Raikhlin, R. K. Klassen

Kazan National Research Technical University named after A. N. Tupolev ; KAI, Kazan. Russia

Abstract. The reasonability of developing a conservative type DBMS with episodic data updating is
determined by the features of OLAP-technologies. The issues of creating such DBMSs require serious
discussion. In this review we systematize the main results of research of the research group of Clusterix
KNITU-KAI on conservative DBMSs based on computational clusters. The purpose of the performed
researches is actual: development of approaches to synthesize comparatively effective by the criterion
“performance/cost” domestic Big Data class DBMSs. The comparison was made with the best foreign
open systems. The developed DBMSs are available for use by organizations with limited financial re-
sources. Due attention is paid to the elements of the theory of cluster DBMS of the conservative type.
The basic configurations of Clusterix systems, the dynamics of such DBMSs, and the effects of their self-
organization are considered. The research is based on the constructive system modeling methodology.
Keywords: conservative type cluster DBMSs, theory elements, basic configurations, process dynamics,
self-organization effects, domestic Big Data class DBMSs, comparative efficiency.

DOI 10.14357/20718632240304 EDN DDMDGU

References

1. Barsegjan A.A., Kuprijanov M.S., Stepanenko V.V., Ho-
lod I.I. Data analysis technologies: Data Mining, Visual
Mimning, Text Mining. OLAP. SPb.:BHV-Peterburg.
2007; 2 ed. In Russ.

2. Cohen J., Dolan B., Dunlap M., Hellerstein J. M. and Wel-
ton C. MAD Skills: New Analysis Practices for Big Data.
Proceedings of the VLDB Endowment. 2009; 2 (2): 1481-
1492.

3. Raikhlin, V.A. Simulation of Distributed Database Ma-
chines. Programming and Computer Software. 1996; 22
(2): 68-74.

4. Raikhlin V.A. Constructive modeling of systems. Kazan:
Izd-vo «Fən» («Nauka»). 2005; In Russ.

5. EMC Education Services. Data Science and Big Data An-
alytics: Discovering, Analyzing, Visualizing and Present-
ing Data. John Wiley & Sons. 2015;

6. Xin, Reynold & Rosen, Josh & Zaharia, Matei & J. Frank-
lin, Michael & Shenker, Scott & Stoica, Ion. Spark: SQL
and Rich Analytics at Scale. Proceedings of the ACM
SIGMOD International Conference on Management of
Data. 2012; DOI: 10.1145/2463676.2465288.

7. Russian DBMS industry advances on "elephants". Con-
nect. 2017; 5-6: 34-38. In Russ.

8. Russian DBMS Postgres Pro. Postgres Professional. 2018;
Available from: https://postgrespro.ru/products/post-
grespro [Accessed 03.05.2018]. In Russ.

9. Codd E.F.. Providing OLAP to user-analysts an it man-
date. Technical Report. 1993;

10. Ullman, Jeffrey D. Principles of database systems. Galgo-
tia publications. 1983.

11. Raikhlin V.A., Vershinin I.S., Klassen R.K., Gibadullin
R.F., Pystogov S.V.. Constructive modeling of synthesis
processes. Kazan: Izd-vo «Fən» («Nauka»). 2020; In Russ.

12. V.V. Voevodin, V.V. Voevodin. Parallel Computing.
SPb.:BHV-Peterburg. 2004; In Russ.

13. Abramov E.V. Parallel DBMS Clusterix. Prototype devel-
opment and its field study. Vestnik KGTU im. A.N. Tu-
poleva. 2006; 2: 50-55. In Russ.

14. Raikhlin V.A., Abramov E.V. Database Clusters. Model-
ing of evolution. Vestnik KGTU im. A.N. Tupoleva. 2006;
3: 22-27. In Russ.

15. Raikhlin V.A., Abramov E.V., Shageev D.O. Evolutionary
modeling of the process of choosing the architecture
of database clusters. 8 Mezhdunarodnaia Konferentciia
"Vysokoproizvoditelnye parallelnye vychisleniia na

Clusterix;подобные СУБД консервативного типа класса BIG DATA

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 3/2024 51

klasternykh sistemakh" HPC-2008. Kazan: Izd. KGTU.
2008: 249-256. In Russ.

16. Raikhlin V.A., Shageev D.O. Information clusters as dissipa-
tive systems. Nelineinyi mir. 2009; 7 (5): 323-334. In Russ.

17. Raikhlin V.A., Minyazev R.S. Multiclustering of distrib-
uted DBMS of conservative type. Nelineinyi mir. 2011; 8:
473-481. In Russ.

18. Raikhlin V.A., Minyazev R.Sh. Analysis of processes in
clusters of conservative databases from the position of
self-organization. Vestnik KGTU im. A.N. Tupoleva.
2015; 2: 120-126. In Russ.

19. Nicolis G., Prigogine I. Cognition of the complex. M.:
URS. 2003; In Russ.

20. Minyazev R.Sh., Popov A.V. Temporal dominants of da-
tabase clusters. Trudy Respublikanskogo nauchnogo sem-
inara AN RT «Metody modelirovaniia». Kazan: Izd-vo
«Fən» («Nauka»). 2010; 4: 125-134. In Russ.

21. Oracle. The MySQL Plugin API. MySQL Documentation.
2018; Available from: https://dev.mysql.com/doc/ref-
man/5.7/en/plugin-api.html [Accessed: 09.04.2018]

22. Hellerstein J.M., Stonebraker M., Hamilton J. Architecture
of a Database System. Foundations and Trends in Data-
bases. 2007; 1 (2): 141-259.

23. Vadim A. Raikhlin, Roman K. Klassen. Clusterix-Like
BigData DBMS. Data Science and Engineering. 2020;
5(1): 80–93. DOI:10.1007/s41019-020-00116-2

24. Haken, Hermann. Synergetics: Introduction and Advanced
Topics. Springer. 2004; DOI: 10.1007/978-3-662-10184-1.

25. Raikhlin V.A., Klassen R.K. Comparatively inexpensive
hybrid technologies of conservative DBMS of large vol-
umes. Informatcionnye tekhnologii i vychislitelnye sis-
temy. 2018; 68(1): 46-59. In Russ.

26. Klassen R.K. Clusterix-N. 2019; Available from:
https://bitbucket.org/rozh/clusterixn/ [Accessed:
09.03.2019]. In Russ.

27. Klassen R.K. Increasing the efficiency of a parallel DBMS
of conservative type on a cluster platform with multicore
nodes. Vestnik KGTU im. A.N.Tupoleva. 2015; 1: 112-
118. In Russ.

28. Klassen R.K. Acceleration of hashing operations using
graphics accelerators. Vestnik KGTU im. A.N.Tupoleva.
2018; 1: 134-141. In Russ.

29. Klassen R.K. Features of effective processing of SQL que-
ries to databases of conservative type. Informatcionnye
tekhnologii i vychislitelnye sistemy. 2018; 68 (4): 108-
118. In Russ.

30. Klassen R.K. The program for regional load balancing to a
conservative type database on the cluster platform «Per-
formSys». Certificate of state registration of the computer
program No. 2017611785 of 09.02.2017. In Russ.

31. Klassen R.K. PerformSys. 2018; Available from:
https://github.com/rozh1/PerformSys/ [Accessed:
09.12.2018]. In Russ.

Raikhlin Vadim A. Department for Computer Systems, Institute for Computer Technologies and Information Protection, Kazan
National Research Technical University named after A. N. Tupolev - KAI, Kazan. Russia. E-mail: no-form@evm.kstu-kai.ru

Klassen Roman K. Department for Computer Systems, Institute for Computer Technologies and Information Protection, Kazan
National Research Technical University named after A. N. Tupolev - KAI, Kazan. Russia. E-mail: klassen.rk@gmail.com

	39_51

