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Введение 

Во многих разделах теории оценивания и 
фильтрации, обработки информации, анализа 
данных и принятия решений, разреженного 
представления данных и др. часто сталкиваются 
с ситуацией избыточности информации при 
ограниченном объёме хранилища данных, так 
что частью данных приходится жертвовать, но, 
по возможности, без заметного ущерба для каче-
ства содержащейся информации. Литература по 
данному вопросу безгранична, упомянем лишь 
несколько классических и наиболее «прорыв-
ных» работ [1-4]. В частности, в [2] приведена 
обширная библиография и подробная дискуссия 
по этой тематике. 

В данной работе мы изучаем известную мо-
дельную задачу, формулировка которой пред-
ставляется достаточно общей и важной для по-
нимания природы рассматриваемого круга 
проблем. А именно, рассмотрим следующую  
задачу: 
Из данного набора N точек xi  S ⊂	 Թn, 

i = 1,…, N, удалить ровно k штук (где k много 
меньше N) так, чтобы эллипсоид, содержащий 
оставшиеся точки, имел наименьший объем. 

Эллипсоидальная форма покрывающего мно-
жества выбрана по ряду причин. Во-первых, эл-
липсоидальные ограничения достаточно богаты 
(например, по сравнению с покомпонентными 
интервальными) и в то же время компактны в 

_________________________________________ 

* Результаты исследований П.С. Щербакова, представленные в разделе 2, получены за счет средств Российского научного
фонда (проект №21-71-30005, https://rscf.ru/project/21-71-30005/). 
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описании (например, по сравнению с много-
гранниками); они определяются лишь матрицей, 
задающей форму эллипсоида, и его центром. 
Еще важнее, эллипсоидальная формулировка 
охватывает много типичных постановок задач 
из статистики и обработки информации при 
наличии паразитных помех и выбросов в изме-
рениях, которые должны отфильтровываться. 
Например, если известно, что наблюдения 
имеют гауссовское распределение с неизвест-
ными средним и ковариационной матрицей и со-
держат небольшой шум и малое количество вы-
бросов (ошибок измерений), то естественной 
целью является восстановление исходного неиз-
вестного гауссовского распределения. Это опре-
деляет выбор формы покрывающих множеств, 
связывая изучаемую задачу с построением дове-
рительных эллипсоидов, с высокой вероятно-
стью описывающих имеющиеся данные. 

В специальной литературе, например [5], ин-
тересующая нас задача и ее варианты называ-
ется k-MVE, где k — количество отбрасываемых 
точек, а MVE означает эллипсоид минималь-
ного объёма (Minimum Volume Ellipsoid). Эта за-
дача имеет два основных компонента: а) отыска-
ние (суб)оптимального подмножества точек 
мощности (N − k) и б) точное или приближенное 
построение эллипсоида минимального объёма 
вокруг данного точечного множества. 

Задача б), часто именуемая MVEP, может 
быть численно точно решена многими спосо-
бами. Общепринятым подходом к её решению 
является сведение проблемы к задаче выпуклой 
оптимизации с последующим применением ме-
тодов внутренней точки [6; 7] и использованием 
общедоступных пакетов программ, таких, как, 
например, cvx [8]. Однако применимость такого 
способа решения ограничена задачами сравни-
тельно невысоких размерностей и мощностей 
наборов данных. С другой стороны, имеются и 
специализированные методы, основанные на 
иных идеях и пригодные для решения больших 
задач, например, [9; 10]; утверждается, что такие 
методы работоспособны вплоть до N = 30 000 и 
n = 30. 

Задача а) существенно комбинаторна; в лите-
ратуре можно найти несколько подходов к ее ре-
шению. 

Первый подход предполагает отыскание точ-
ного решения с уменьшенной вычислительной 
сложностью. Примерами таких методов могут 
служить специализированные варианты метода 
ветвей и границ [11] или использование того 
факта, что данная задача относится к классу LP-
подобных задач [12-14], которые могут пони-
маться как некоторое обобщение задачи линей-
ного программирования. Подчеркнем, что пред-
лагаемые подходы, конечно, имеют 
комбинаторную сложность, но общие затраты 
на вычисления существенно ниже. 
Второй подход основан на рандомизации ис-

ходной задачи в духе монографии [15]: и дан-
ные, и результат решения предполагаются слу-
чайными, и при этом часто удается получить 
вероятностные оценки точности и вычислитель-
ной сложности. Соответствующая литература 
довольно богата, отметим работу [16], где при-
водится обширная библиография и предложен 
новый метод повторного генерирования вы-
борки (resampling) с доказанными статистиче-
скими свойствами получаемого решения. В 
очень глубокой работе [14] подробно описан ме-
тод со случайной выборкой и удалением 
(sampling-and-removal) для решения задач, схо-
жих с k-MVE; особое внимание уделяется LP-
подобным задачам, упомянутым выше. Этот 
подход во многом основан на идеях оптимиза-
ции со случайными ограничениями (chance-
constrained optimization) [17]. Упомянем также 
работу [18], где изучалась в некотором смысле 
близкая задача построения рандомизированных 
аппроксимаций невыпуклых множеств множе-
ствами регулярной структуры (прямоугольники, 
многогранники, эллипсоиды). 
Третий подход можно назвать приближен-

ным детерминированным. Решение основано на 
той или иной «эффективной эвристике», точ-
ность решения вряд ли может быть строго оце-
нена, но численное моделирование говорит о ра-
зумном или хорошем качестве решения. 
Примером методов такого типа является так 
называемая итеративная 2-exchange процедура, 
предложенная в [5]; она основана на сравнении 
двух эллипсоидов, покрывающих подмноже-
ства, отличающиеся одной точкой. В принципе, 
эта процедура довольно эффективна, но резуль-
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тат зависит от выбираемого начального прибли-
жения, так что на практике приходится прибе-
гать к множественным рестартам с разными 
начальными условиями. 

В настоящей работе мы следуем третьему 
направлению и предлагаем несколько простых 
приближенных детерминированных методов. 
Они основаны либо на общем здравом смысле, 
либо на тех или иных эвристических соображе-
ниях, почерпнутых из статистики, оптимизации 
и др. Далее проводится численное тестирование 
алгоритмов на простых наборах случайно сгене-
рированных данных. Для малых значений N и k 
точное решение задачи k-MVE (оптимальный 

эллипсоид E∗) может быть получено прямым 
перебором всех возможных комбинаций из  
k удаляемых точек, вычислением соответствую-
щего эллипсоида минимального объёма вокруг 
остальных точек и выбора наилучшего из них. 
Результаты работы обсуждаемых алгоритмов за-
тем сравниваются друг с другом и с оптималь-
ным решением по некоторому набору показате-
лей качества: для больших значений N, k, 
полного перебора не проводится. 

Статья организована следующим образом. В 
разделе 1 приводятся основные способы задания 
эллипсоидов и формулировка задачи MVEP в 
виде линейных матричных неравенств (linear 
matrix inequality, LMI). Предлагаемые алго-
ритмы приближенного решения задачи k-MVE и 
некоторые их модификации формулируются в 
разделе 2. Построение тестовых наборов данных 
и результаты численных экспериментов на этих 
данных описаны в разделе 3. 

1. Эллипсоид минимального  
объема, содержащий заданное 
точечное множество 

В этом разделе вводятся необходимые обо-
значения и некоторые стандартные определе-
ния, например, [6; 7]. 

Стандартное задание эллипсоида E ⊂ Թn сле-
дующее: 

E = {x  Թn: (x − xc)TP−1(x − xc) ≤ 1}, (1) 

где P ≻ 0 — положительно определенная матрица, 
определяющая форму эллипсоида, а xc 	Թn — его 
центр. Существуют иные способы описания, кото-
рые удобны при формулировках различных задач 

минимизации размера эллипсоида. Под размером 
эллипсоида понимается либо (а) радиус наимень-
шего шара, содержащего эллипсоид, либо (б) 
сумма квадратов его полуосей, либо (в) объем. 

Для рассматриваемой задачи первый крите-
рий, очевидно, является очень грубым и не дает 
полной информации об эллипсоиде. Второй по-
казатель достаточно информативен, и построе-
ние эллипсоида по этому критерию (равно как и 
по первому) сводится к стандартной задаче  
полуопределенного программирования (semi-
definite programming, SDP). Мы, однако, примем 
наиболее естественную характеристику размера 
– объём, который дается формулой 

Vol(E) = vn(det P)1/2, 

где через vn обозначен объём n-мерного единич-
ного евклидового шара, а det() обозначает опре-
делитель матрицы. Для оптимизации такого 
критерия нам будет удобнее пользоваться следу-
ющим описанием эллипсоида, эквивалентным 
определению (1): 

E = {x  Թn: ∥Qx − a∥ ≤ 1}, (2) 

где: Q = P−1/2, a = P−1/2xc, а ∥∥ — евклидова век-
торная норма. Используя дополнение по Шуру, 
неравенство в (2) может быть переписано в эк-
вивалентной форме в виде линейного матрич-
ного неравенства 

T1 ( )Qx a

Qx a I

 
 

 
≽0, 

где I — единичная матрица подходящего раз-
мера. Поскольку функция –log det X выпукла для 
матриц X ≻ 0, то, имея в виду P = Q−2, получаем 
log det P = −2 log det Q. Таким образом, для дан-
ных точек x1, …, xN сформулируем следующую 
задачу выпуклой оптимизации с переменными  
Q = Q١  Թnn и a  Թn: 

MVE Problem: −log det Q → min (3) 

при LMI ограничениях 
T1 ( )i

i

Qx a

Qx a I

 
 

 
≽0, i = 1, ..., N, Q ≻	0. 

Решение этой задачи MVEP (Minimum Vol-
ume Ellipsoid Problem) определяет матрицу 
P = Q−2 и центр xc = Q−1a искомого эллипсоида 
(1) минимального объёма, покрывающего задан-
ные точки x1, …, xN . 
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Для простоты предполагается, что точечное 
множество {x1, …, xN} полномерно, т.е. не при-
надлежит никакому подпространству Թn мень-
шей размерности. 

Оптимизационная задача MVEP корректно 
определена и может быть эффективно решена 
численно с помощью общедоступных пакетов 
программ; мы будем пользоваться Matlab-сов-
местимым пакетом cvx [8]. Из структуры задачи 
видно, что количество переменных и ограниче-
ний растет медленно с ростом n и N, и требова-
ния к памяти компьютера тоже невысоки, так 
что задачи разумной размерности легко могут 
решаться с помощью пакета cvx. Тем не менее 
даже при невысоких размерностях и небольших 
N решение требует определённого времени, 
например, в очень простой ситуации n = 2, 
N = 10 вычисления занимают около 0,1 с на стан-
дартном ноутбуке, при N = 100 для решения тре-
буется около 1 с, и порядка 9 с – при n = 10, 
N = 200. В экспериментах мы ограничивались 
невысокими значениями n и N; см. обсуждение 
в разделе 3. 

Задача MVEP лежит в основе всех методов, 
предлагаемых в работе; ее нужно решать неод-
нократно в процессе работы алгоритмов, по-
этому число обращений к этой процедуре может 
рассматриваться как мера вычислительной 
сложности методов. 

2. Шесть эвристических алгоритмов 

Общая структура всех методов, рассматрива-
емых в работе, очень проста: на каждой итера-
ции отбрасывается одна точка, пока количество 
оставшихся точек не окажется равным N − k, а 
выбор отбрасываемой точки происходит на ос-
нове той или иной эвристики, определяющей ло-
кально оптимальный выбор. Таким образом, все 
методы являются «жадными» (greedy). 

В этом разделе предложим шесть методов та-
кого типа и обсудим их возможные модификации. 

2.1. «Наивные» подходы 

Алгоритмы этой группы очень просты и ос-
нованы на общих соображениях здравого 
смысла. 

                                                      
1 Калька с английского peeling (отшелушивание, очистка) от peel (кожура, очищать). 

Метод I: «Шелушение» сферы1 (Spherical 
Peeling, SP). На очередной итерации, имея M 
оставшихся точек xi, вычисляем среднее  
значение 

1

1 M

i
i

x x
M 

    (4) 

и строим с центром в этой точке содержащий их 
шар минимального радиуса. Удаляем любую из 
точек, лежащих на границе шара (иными сло-
вами, удаляем точку, максимизирующую рас-
стояние до среднего). После k итераций решаем 
задачу MVEP (3) для оставшихся N − k точек. 

По-видимому, это самый простой и самый 
быстрый метод, который только может быть 
предложен. Он требует лишь одного обращения 
к процедуре MVEP, но, очевидно, точность та-
кого метода ожидается быть довольно низкой, 
что и подтверждается экспериментами. 
Метод II: «Шелушение» эллипсоида 

(Ellipsoidal Peeling, EP). Этот метод по существу 
заимствован из [15] (алгоритмы 12.2 и 12.3) и яв-
ляется естественным обобщением предыдущего 
подхода. На каждой итерации решается задача 
MVEP (3) для имеющихся M точек и выбрасы-
вается любая точка, лежащая на границе получа-
емого эллипсоида. Итерации продолжаются до 
тех пор, пока остается ровно (N − k) точек. Ме-
тод требует (k + 1) обращений к процедуре 
MVEP. 

В «упрощенной» версии алгоритма на каж-
дой итерации удаляется сразу k точек, наиболее 
близких к границе эллипсоида (это в равной сте-
пени относится к предыдущему методу SP), или 
все точки, лежащие на границе и т.д. Экспери-
менты в целом свидетельствуют в пользу основ-
ной версии алгоритма, когда на каждой итера-
ции удаляется одна точка. 
Метод III: «Шелушение» выпуклой оболочки 

(Convex Hull Peeling, CHP). В основе метода ле-
жит следующее соображение. Имея M точек на 
текущей итерации, можно рассмотреть все M 
комбинаций из M − 1 точки, строить минималь-
ный эллипсоид вокруг каждой из комбинаций и 
выбирать наилучшую (минимизирующую 
объём). Вместо этого, чтобы понизить вычисли-
тельную сложность, предлагается рассматри-
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вать лишь наборы мощности (M − 1), получае-
мые удалением из общего набора одной точки из 
выпуклой оболочки. Известно [19], что мощность 
выпуклой оболочки множества из N точек,  
равномерно распределённых в кубе в Թn, имеет 
порядок O(logn−1 N). Поэтому такой алгоритм 
требует порядка k O(logn−1 N) обращений к про-
цедуре MVEP. Существуют аналогичные 
оценки мощности выпуклой оболочки для то-
чек, имеющих гауссовское распределение [20]. 

Однако следует заметить, что вычисление 
выпуклой оболочки в пространствах высоких 
размерностей является довольно трудоёмкой 
операцией. 

Далее обсудим более продвинутые подходы, 
основанные на эвристиках, известных из стати-
стики, оценивания и разреженного представле-
ния и восстановления данных. 

2.2. Выборочная ковариационная матрица 

Методы, рассмотренные выше, не брали во 
внимание происхождение имеющихся данных. 
В этом разделе изучим подход в основе которого 
лежит предположение о стохастической при-
роде располагаемой информации, а именно, счи-
таем, что точки сгенерированы случайным меха-
низмом и имеют некоторое вероятностное 
распределение. 
Метод IV: Ковариационная матрица (Cov). 

Имея M точек на очередной итерации, вычислим 
их среднее (4) и выборочную ковариационную 
матрицу 

T

1

1
( )( ) .

M

i i
i

H x x x x
M 

    (5) 

Отбрасываем точку xout, наиболее удалённую от 

x в метрике, задаваемой матрицей H: 
1Targ m ) ( )ax .( io t iu

i
x x Hx x x    

Продолжаем итерации до тех пор, пока не бу-
дут удалены ровно k точек. 

Как и в методе SP, здесь требуется всего одно 
обращение к процедуре MVEP, но качество по-
лучаемого решения оказывается значительно 
выше. Общее время исполнения чуть больше, 
чем у алгоритма SP из-за дополнительных опе-
раций по вычислению матрицы (5). Для пере-
счета этой матрицы можно предложить простую 
рекуррентную процедуру, которая, впрочем, не 
сильно влияет на скорость метода. 

2.3. Метод главных компонент 

Второй «продвинутый» подход к решению 
задачи основан на идеях метода главных компо-
нент [21; 22], нацеленного на отбраковку выбро-
сов в данных. 
Метод V: Метод главных компонент (Princi-

pal Component Analysis, PCA). Простейшая вер-
сия метода выглядит следующим образом. 
Строим эллипсоид минимального объёма во-
круг всех имеющихся на данной итерации точек, 
проектируем точки на малую ось эллипсоида и 
отбрасываем ту точку, чья проекция наиболее 
удалена от центра. 

Пусть пара (Q, a) определяет текущий эллип-
соид (2) и пусть e — собственный вектор мат-
рицы Q, отвечающий минимальному собствен-
ному значению. Тогда проекция точки xi на 
малую ось эллипсоида вычисляется как  

πe(xi) = eT(xi − xc)e + xc, 
а расстояние до центра xc равно 

dist (πe(xi), xc) = ∥πe(xi) − xc∥ =  
=∥eT(xi − xc)e∥ = |eT(xi − xc)|. 

Удаляем ту точку, которая максимизирует 
это расстояние, обозначим ее через xsmall. 

В экспериментах также рассматривались 
проекции на большую ось, определялась соот-
ветствующая точка xlarge, максимизирующая рас-
стояние до центра, и отбрасывалась наихудшая 
точка из пары (xsmall, xlarge). Эксперименты свиде-
тельствуют о большей эффективности такой мо-
дификации, она требует 2k + 1 вызовов проце-
дуры MVEP. 

2.4. Подход на основе ℓ1'оптимизации 

Еще один содержательный подход основан на 
идеях ℓ1-оптимизации и разреженности [7; 3]. 
Метод VI: Идеи ℓ1-оптимизации (ℓ1). Схема 

алгоритма следующая. Пусть пара (Q, a) опреде-
ляет эллипсоид на текущей итерации. Вместо 
условия ∥Qx − a∥2 ≤ 1 в (2) рассмотрим ограни-
чения 

∥Qxi − a∥2 ≤ 1 + di,  di ≥ 0;  i = 1, …, M, 
где число di имеет смысл штрафа для xi за нахож-
дение вне эллипсоида. Введем векторную пере-
менную d = (d1, …, dM)T и решим следующую за-
дачу выпуклой оптимизации с переменными Q, 
a, d:  

–log det Q + µ∥d∥1 → min 
при ограничениях 
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∥Qxi − a∥ ≤ 1 + di,  di ≥ 0;  i = 1, …, M,  Q ≻ 0, 
где ∥d∥1 =i |d1| — векторная ℓ1-норма, а µ > 0 — 
скалярный параметр. Понятно, что введенные 
ограничения могут быть переписаны в форме 
линейных матричных неравенств подобно огра-
ничениям в MVEP (3). 

Пусть Eµ обозначает эллипсоид, определяемый 
решением (Q, a) сформулированной оптимизаци-
онной задачи. Ясно, что при больших значениях 
параметра µ все точки окажутся внутри эллипсо-
ида Eµ, а с уменьшением µ получающийся эллип-
соид сжимается и не содержит точек. Поэтому на 
каждой итерации начинаем с некоторого боль-
шого значения µ и уменьшаем его (например, ди-
хотомией) до тех пор, пока вне соответствующего 
эллипсоида Eµ не окажется ровно одна точка. От-
брасываем ее и переходим к следующей итерации 
с оставшимися точками; останавливаемся, когда 
ровно k точек отброшены. 

В экспериментах пользовались следующей 
модификацией метода. На каждой итерации ве-
личина параметра µ уменьшается до тех пор, 
пока вне эллипсоида Eµ не окажется ровно поло-
вина точек (точнее ہM/2ۂ), после чего отбрасы-
вается точка xi с наибольшим значением штрафа 
di. Эвристика, лежащая в основе такой модифи-
кации, не вполне ясна, но по результатам экспе-
риментов такая версия алгоритма оказалась 
много более эффективной. В обоих случаях оце-
нить количество обращений к процедуре MVEP 
представляется затруднительным, но очевидно, 
что оно «велико». 

2.5. Еще о возможных модификациях 

Возможны следующие более или менее оче-
видные модификации, ускоряющие или упроща-
ющие решение, или делающие его чуть более 
точным за счет небольшого усложнения алго-
ритма. 

1. Методы допускают гораздо более быст-
рую, но, разумеется, и более грубую модифика-
цию, в которой на одной единственной итерации 
сразу удаляются ровно k наихудших точек. 

2. На каждой итерации центр эллипсоида не 
является оптимизационной переменной, а фик-
сируется как среднее значение текущих остав-
шихся точек. 

3. Осуществление полного перебора на по-
следней итерации: имея оставшиеся N – k + 1 то-
чек, проверить все комбинации из N − k точек и 
выбрать ту, которая минимизирует объём (ср. с 
методом CHP). 

4. В специальном случае n = 2 эллипсоид за-
дается небольшим числом параметров (два для 
центра и три для матрицы); в этом случае можно 
организовать «недорогую» прямую оптимиза-
ционную процедуру поиска минимального эл-
липса. 

3. Численные эксперименты 

В экспериментах мы ограничились маломер-
ными (n) данными малого и небольшого объе-
мов (N). Причина — в использовании пакета 
cvx, в котором оптимизационные процедуры ос-
нованы на методах внутренней точки. При вы-
соких размерностях принятый в этом пакете 
способ представления данных может потребо-
вать очень большой памяти компьютера и серь-
езных временных затрат. Как упоминалось во 
введении, в ситуации с большими объемами 
данных можно пользоваться более мощными 
средствами; например такими, как в [9; 10]. В 
настоящей работе мы прежде всего интересова-
лись выяснением работоспособности и сравни-
тельной эффективности методов, основанных на 
различных эвристиках. 

3.1 Генерирование тестовых данных 

В каждом эксперименте качество решений, 
полученных по алгоритмам, сравнивалось на 
Nset = 500 наборах данных, случайно сгенериро-
ванных из разных распределений. Первое из  
распределений — наиболее естественное гаус-
совское x ∼ ࣨ(0, Σ), которое моделировалось 
как x = F ∗ randn(n, 1), где F  Թnn, так что 
Σ = FFT. Матрица F либо фиксировалась раз и 
навсегда, либо также генерировалась случайно 
как F = 2 ∗ rand(n) − 1. Второе распределение — 
равномерное на единичном кубе B = {x  Թn: 
∥x∥∞ ≤ 1}. 

Имеем три свободных параметра для набора 
данных: размерность n пространства, количе-
ство N точек и число k удаляемых точек. Соот-
ветствующие данные будем обозначать (n, N, k). 
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Далее, обозначим через vi(A) объем эллипсо-
ида, полученного алгоритмом A для набора дан-
ных i, а через vi — наилучший среди алгоритмов 
результат, полученный для набора i. В экспери-
ментах с малыми N доступно точное решение, 
получаемое полным перебором. Соответствую-
щая (последняя) строка в Табл. 1 и 2 c результа-
тами экспериментов имеет обозначение true. 

В каждом эксперименте качество алгоритма 
A характеризуем следующими показателями: 

• средний относительный объём: 

1

(A)1
volume(A) ;

setN
i

iset i

v

N 

 
v

 

• стандартное уклонение случайной вели-

чины 
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i

v
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v
: 

1/2
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std(A) ( ) ;

1 i
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 


 
   

  

• среднее число «побед» в эксперименте (по-
беда для набора i означает, что алгоритм A дает 
наименьший объём) либо среднее количество 
точных (оптимальных) решений: 

wins(A) = #{vi(A) = vi}; 

• среднее число calls обращений к процедуре 
MVEP; 

• среднее время исполнения time(A), с. 

3.2 Моделирование 

Первый эксперимент: (2, 10, 3). В этом про-
стом маломерном примере легко может быть по-
лучено точное решение vi. Он призван проде-
монстрировать, что часто некоторые методы 
дают точное решение задачи и что эллипсы, по-
лученные по разным алгоритмам, могут значи-
тельно отличаться. 

В этом эксперименте данные генерировались 
по гауссовскому распределению ࣨ(0, Σ) 
с Σ = FFT и фиксированной матрицей F: 

1 1
.

0 1
F

 
  
 

 

Результаты приведены в Табл. 1. 
Первое наблюдение: все алгоритмы дают эл-

липсы очень схожего объёма (кроме метода SP, 
который даёт много худшие результаты), что, 
вероятно, объясняется малой размерностью то-
чек и мощностью наборов. Всё же при этом ме-
тоды Cov и ℓ1 выглядят предпочтительнее. 

Второе наблюдение: очень часто методы 
дают оптимальное решение; особенно это отно-
сится к Cov и ℓ1. Вероятно, причина та же – ма-
лые размерности и мощности. 

Третье наблюдение: методы Cov и ℓ1 в 95% 
дают один и тот же эллипс, но при этом второй 
метод гораздо более трудоёмок. 

Наконец, в целом, результаты свидетель-
ствует о действительно разной природе рассмат-
риваемых методов, дающих значительно отли-
чающиеся формы эллипсов, например, Рис. 1. 

Табл. 1. Результаты первого эксперимента 

 volume wins calls time std 
SP 1,4011 29% 1 0,2912 0,5640 
EP 1,1203 62% 4 1,1811 0,2317 

CHP 1,1131 64% 19,47 4,7216 0,2271 
Cov 1,0312 76% 1 0,3054 0,0882 
PCA 1,1189 57% 7 1,7439 0,2047 
ℓ1 1,0292 78% 20,02 8,1572 0,0854 

true 1 100% 120 32,5175 0 

Рис. 1: Результаты работы разных алгоритмов 
для случайного набора точек (2, 10, 3) 
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Второй эксперимент: (2, 10, 3). В отличие от 
первого эксперимента точки генерировались 
равномерно на единичном квадрате. Результаты 
приведены в Табл. 2. 

Результаты работы алгоритмов заметно отли-
чаются от предыдущего эксперимента, указывая 
на то, что качество решения может существенно 
зависеть от априорного знания о природе набора 
данных. 

В самом деле, в то время как число обраще-
ний к процедуре MVEP осталось тем же (что 
очевидно), количество точных решений заметно 
уменьшилось, как и средняя точность (столбцы 
3 и 2 таблицы). Еще одно наблюдение — ощути-
мое увеличение стандартного отклонения (по-
следний столбец) для всех методов, кроме SP. 
Однако, как и ранее, методы Cov и ℓ1 превосхо-
дят остальные методы (столбцы 2 и 3). 
Третий эксперимент: (2, 100, 3). В этом бо-

лее размерном эксперименте точки генерирова-
лись из гауссовского распределения с различной 
случайно генерируемой ковариационной матри-
цей для каждого из Nset = 500 наборов данных 
(начало раздела 3.1), а все показатели качества 
методов оставлены теми же. Понятно, что отыс-
кание точного решения слишком трудоёмко из-
за большого объёма данных (для каждого 
набора требуется 161 700 обращений к проце-
дуре MVEP). Результаты сведены Табл. 3.  

Имеют место несколько очевидных наблюде-
ний. 

Во-первых, разумеется, время вычислений 
значительно возросло, поскольку на порядок 
увеличилось количество ограничений в оптими-
зационной задаче (3). 

Во-вторых, метод CHP приводит к суще-
ственно лучшим результатам по сравнению с 
другими методами, хотя и за счет много более 
тяжелых вычислений (время исполнения алго-
ритма выросло в 8,5 раз при десятикратном уве-
личении количества N точек). Возможным объ-
яснением является схожесть алгоритма CHP с 
переборными методами, поэтому он вряд ли мо-
жет применяться к решению задач больших раз-
мерностей. 

Наконец, методы Cov, PCA и ℓ1 продемон-
стрировали очень близкие по точности резуль-
таты, но при этом метод Cov оказывается значи-
тельно более быстрым. 

Подытоживая результаты проведенных экс-
периментов и имея в виду все показатели каче-
ства алгоритмов (прежде всего точность и время 
исполнения), можем сделать вывод о том, что 
метод Cov, основанный на использовании выбо-
рочной ковариационной матрицы, представля-
ется наиболее предпочтительным. 
Четвертый эксперимент: (4, 62, 2). Этот 

практический пример заимствован из [23], где 
изучалась взаимосвязь между свойствами цел-
люлозного волокна и получаемой из него  
бумаги. Данные представляют из себя N = 62  

Табл. 2. Результаты второго эксперимента 

 volume wins calls time std 
SP 1,3313 15% 1 0,2728 0,3277 
EP 1,2611 42% 4 1,1643 0,3527 

CHP 1,2209 40% 18,65 4,8882 0,3414 
Cov 1,1237 61% 1 0,2861 0,2317 
PCA 1,2528 45% 7 1,7439 0,4403 
ℓ1 1,1287 55% 20,73 8,0745 0,2289 

true 1 100% 120 30,5180 0 

Табл. 3. Результаты третьего эксперимента 

 volume wins calls time std 
SP 1,1392 5% 1 1,4408 0,1529 
EP 1,0911 31% 4 6,1843 0,0527 

CHP 1,0053 85% 29,75 41,3714 0,0152 
Cov 1,0393 45% 1 1,4824 0,0523 
PCA 1,0474 40% 7 9,5766 0,0573 
ℓ1 1,0393 45% 49,70 100,5363 0,0523 
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измерения следующих четырех (n = 4) характе-
ристик волокна: длина волокна, доля длинного 
волокна, доля тонкого волокна и прочность при 
растяжении. В работе [16] набор таких измере-
ний анализировался на наличие и отбраковку 
выбросов в измерениях (аномальных значений 
четырех измеренных характеристик) с использо-
ванием разработанного авторами метода на ос-
нове решения задачи k-MVE. Получаемый эл-
липсоид имеет минимальный объем среди 
доверительных эллипсоидов с уровнем доверия 
ν = 0,975. В нашей постановке задачи это соот-
ветствует нецелому числу k1 = 1,55 выбрасывае-
мых точек, поэтому в экспериментах мы поло-
жили k = 2. Как и ранее, при моделировании 
точки генерировались нами из гауссовского рас-
пределения с различной случайно генерируемой 
ковариационной матрицей для каждого из 
Nset = 500 наборов данных. Сравнение проводи-
лось между методом из [16] и наиболее перспек-
тивным методом Cov, описанным выше в раз-
деле 2.2. 

Среднее (по Nset = 500 наборам данных) время 
вычислений по методу Cov оказалось равным 
1,0604 с против 1,2831 с для метода из [16], а 
средний объем эллипсоида составил 12,5501 
против 12,6171 для метода из [16]. Небольшое 
преимущество нашего метода по объему может 
объясняться тем, что формально мы выбрасы-
ваем «чуть больше» точек. Иными словами, ка-
чество методов сопоставимо, в то время как ме-
тод Cov продемонстрировал ощутимо более 
высокую скорость. Поскольку метод из [16] осу-
ществляет пусть и неполный, но все же перебор, 
то с ростом мощности набора данных преиму-
щество по скорости метода Cov, по-видимому, 
будет увеличиваться. 

4. Направления  
дальнейших исследований 

В работе предложено несколько простых ме-
тодов приближенного решения задачи k-MVE и 
приведены результаты предварительных число-
вых экспериментов. Теоретические оценки  
эффективности методов вряд ли возможны.  
Желательно проведение более масштабного мо-
делирования, которое предполагается осуще-
ствить в будущем. Сюда прежде всего относится 
оптимизация как используемых числовых  

процедур, так и реализованного программного 
кода – для ускорения работы методов и эконо-
мии памяти при больших объемах и размерно-
стях данных. Существенными при проведении 
такого моделирования являются следующие по-
казатели тестовых точечных множеств: 

• происхождение точек (из предварительных 
экспериментов следует, что поведение каждого 
отдельного метода зависит от принятого вероят-
ностного распределения и формы носителя S); 

• количество N точек и соотношение между  
N и k; 

• наличие выбросов (использование загряз-
нённого гауссовского распределения); 

• наличие кластеров. 
Далее, вероятно, знание числа k может быть 

использовано для оптимизации алгоритмов. 

Заключение 

Сформулируем на физическом уровне стро-
гости три задачи, имеющие прямое отношение к 
рассмотренной проблеме и представляющиеся 
важными. 

Задача 1: Дано вероятностное распределе-
ние точек xi и размер выборки. Оценить вероят-
ность того, что эллипсоид, полученный тем или 
иным методом, отличается от оптимального не 
более чем на заданную величину. 

Задача 2: Даны N точек равномерно распре-
делённых в единичном n-мерном кубе, и пусть 
ν — случайная величина, имеющая смысл объ-
ёма содержащего их минимального эллипсоида. 
Оценить математическое ожидание Eν вели-
чины ν. 

Задача 3: Задан объём эллипсоида. Макси-
мизировать (по матрице и центру) количество 
точек, им покрываемых. Эта задача может рас-
сматриваться как «обратная» к задаче k-MVE. 
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Heuristic Approaches to Constructing a Minimum Volume Ellipsoid  
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Abstract. The paper deals with the following essentially combinatorial problem: Given N points in Թn, 
compose the ellipsoid of minimum volume containing exactly N – k points where k is much less than N. 
Six algorithms for an approximate solution of this problem are proposed; they are based on certain 
heuristic considerations. Under various assumptions on the mechanism of generating the points and their 
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amount, the comparative efficiency of the algorithms was conducted and the results of numerical exper-
iments were presented. 
Keywords: point sets, partial information rejection, convex optimization, minimum volume ellipsoid, 
heuristics. 
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