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Аннотация. В статье сформулирована задача одновременного отбора в многомерных линейных ре-
грессиях как откликов, так и объясняющих переменных. Эта задача названа «отбор ключевых при-
знаков и информативных регрессоров». Для оценивания регрессий применен метод наименьших 
квадратов. Сначала задача отбора заданного числа ключевых признаков и информативных регрес-
соров по критерию максимума суммы коэффициентов детерминации регрессий была сведена к за-
даче частично-булевого линейного программирования. Затем в нее были введены ограничения на 
знаки оценок, что позволило осуществлять отбор оптимальных структур многомерных регрессий. 
После чего добавлены ограничения на абсолютные вклады регрессоров в общие детерминации, что 
позволяет контролировать количество объясняющих переменных. При проведении вычислитель-
ных экспериментов на реальных данных при фиксированном числе ключевых признаков на постро-
ение многомерных моделей предложенным методом ушло примерно в 67,3 раза меньше времени, 
чем на построение их методом всех возможных регрессий. При этом ужесточение ограничений на 
абсолютные вклады регрессоров еще больше снизило время решения задач. 
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Введение 

На сегодняшний день модели машинного 
обучения представляют собой весьма мощный 
инструмент анализа данных, с помощью кото-
рого решаются сложные задачи в различных об-
ластях человеческой деятельности [1–3]. Суще-
ствует множество типов таких моделей, среди 
которых искусственные нейронные сети, ре-
грессионные модели, модели классификации, 
модели случайного леса, деревья решений и др. 
Данная статья посвящена проблеме построения 
регрессионных моделей – одним из главных 

представителей актуального сегодня интерпрети-
руемого машинного обучения [4]. Идентифици-
рованная регрессионная модель позволяет иссле-
дователю количественно оценить влияние 
факторов на результативный признак, получить 
прогноз отклика и принять обоснованные управ-
ленческие решения. Регрессионный анализ часто 
применяется для моделирования социально-эко-
номических процессов и явлений [5], а построен-
ная по экономическим данным модель называ-
ется эконометрической. Однако с помощью 
регрессионных моделей успешно решается мно-
жество задач и из других областей. Например,  
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в [6] с помощью регрессионного анализа полу-
чены прогнозы качества оросительной воды, в 
[7] построены регрессионные модели для выяв-
ления риска диабета, а в [8] – для прогнозирова-
ния энергопотребления зданий. 

При построении регрессионной модели пре-
тендентов на роль факторов, влияющих на ре-
зультативный признак, может быть так много, 
что приходится решать задачу выбора из них 
только наиболее значимых. Такая задача также 
известна в отечественной литературе как задача 
отбора наиболее существенных переменных [9] 
или информативных регрессоров (ОИР) в ре-
грессии, а в зарубежной – subset selection in re-
gression [10; 11]. Ее решение можно получить с 
помощью метода всех возможных регрессий [9]. 
Он состоит в оценивании моделей со всеми воз-
можными комбинациями факторов и выборе та-
кой комбинации объясняющих переменных, для 
которой, например, коэффициент детерминации 
с результирующим показателем максимален. 
Но, к сожалению, метод всех возможных регрес-
сий требует больших объемов вычислений. Для 
преодоления вычислительных трудностей, как 
отмечено в [9], используется подхода. Первый 
из них связан с использованием полуэвристиче-
ских методов оптимизации, например, метода 
«ветвей и границ», смысл которого состоит в от-
брасывании большинства бесперспективных 
комбинаций объясняющих переменных на ос-
нове некоторого грубого правила. Второй связан 
с использованием пошаговых процедур отбора 
переменных, которые также не гарантируют по-
лучения оптимального решения с точки зрения 
коэффициента детерминации. На наш взгляд, 
эффективным и гарантирующим оптимальность 
набора переменных выходом из сложившейся 
ситуации будет использование аппарата ча-
стично-целочисленного линейного программи-
рования, компьютерное оборудование и алго-
ритмы которого, как отмечено в [12], за 
последние десятилетия стали быстрее примерно 
в 1000 раз. 

В настоящее время существует множество 
различных формулировок задачи ОИР в терми-
нах математического программирования. Так, в 
[13] сформулирована задача отбора заданного 
числа регрессоров по критерию суммы квадра-
тов ошибок, в [14] – задачи отбора оптимального 

числа регрессоров по скорректированному ко-
эффициенту детерминации, критерию Акаике и 
Шварца. В [15] представлена задача ОИР с кон-
тролем мультиколлинеарности по коэффициен-
там вздутия дисперсии VIF. В [16] приведена 
формулировка задачи ОИР для линейной ре-
грессии по критерию минимальной избыточно-
сти и максимальной релевантности, а в [17] – 
для регрессии Пуассона по критерию максими-
зации логарифмической функции правдоподо-
бия. Объединяет введенные в работах [13–17] 
формулировки то, что они сделаны в рамках ап-
парата частично-целочисленного квадратичного 
программирования. Принципиально иной под-
ход был изложен в статье [18], в которой задача 
ОИР для линейной регрессии, оцениваемой ме-
тодом наименьших квадратов (МНК), была све-
дена к задаче частично-булевого линейного про-
граммирования (ЧБЛП). В [19] эта задача 
дополнилась линейными ограничениями на 
мультиколлинеарность. В [20] предложена ее 
модификация с использованием скорректиро-
ванного коэффициента детерминации, а в [21] 
введены линейные ограничения на абсолютные 
вклады переменных в общую детерминацию. В 
работе [22] экспериментально доказана высокая 
эффективность решения задач ОИР в виде задач 
ЧБЛП по сравнению с методом всех возможных 
регрессий. 

Приведенные в работах [13–22] задачи спра-
ведливы для отбора наиболее существенных 
факторов только во множественных линейных 
регрессиях (multiple linear regressions), состоя-
щих из одного уравнения. Однако они представ-
ляют собой лишь частный случай так называе-
мых многомерных линейных регрессий 
(multivariate linear regressions) [23; 24], в которых 
зависимых переменных не меньше двух. Науч-
ный интерес вызывает задача одновременного 
выбора в них и результативных признаков, и 
наиболее информативных регрессоров. Понятно, 
что такая задача гораздо более объемная в вычис-
лительном плане, чем задача ОИР для множе-
ственных регрессий. Но, располагая предложен-
ным в [18–22] эффективным методом, эта 
объемная задача не выглядит абсолютно недо-
ступной. Цель данной работы – сформулировать 
в терминах ЧБЛП задачу одновременного отбора 
в многомерных регрессиях и результативных 
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признаков и соответствующих им наиболее ин-
формативных регрессоров, а также протестиро-
вать скорость ее решения на реальных данных. 

1. Постановка задачи 

Предположим, что выборочная совокупность 
объема n  содержит значения  l  переменных 1x , 

2x , …, lx , причем, 3l  . Допустим, что каждая 
переменная может быть как зависимой (объяс-
няемой, эндогенной), так и независимой (объяс-
няющей, экзогенной). Тогда введем следующую 
систему независимых уравнений: 
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 (1) 

1,i n , 

где jk , 1,k l , 0,j l , k j  – неизвестный па-

раметр при j -й переменной в k -м уравнении 

системы; ik , 1,i n , 1,k l  – i -я ошибка ап-

проксимации в k -м уравнении системы. 
Сформулируем следующую задачу: из исход-

ных l  факторов требуется выделить p  резуль-

тативных признаков и m  влияющих на каждый 
из них объясняющих переменных (регрессоров) 
так, чтобы максимизировать сумму коэффици-
ентов детерминации включенных в систему (1) 
уравнений. В результате ее решения будет по-
строена многомерная линейная регрессия. Назо-
вем этот процесс отбором ключевых признаков 
и информативных регрессоров (ОКПиИР). Та-
кая задача может быть решена методом всех воз-
можных регрессий. Для этого необходимо оце-
нить p m

l l pp С C    линейных регрессий, что 

гораздо больше, чем общее число моделей 1
m
lС   

при решении задачи ОИР. 
Для оценивания уравнений в системе (1) бу-

дем использовать МНК. Для упрощения расче-
тов оценок воспользуемся известным приемом, 
описанным в [25]. Для этого проведем стандар-
тизацию (нормирование) всех переменных по 
правилам: 

j

ij j
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x
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x
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 , 1,i n , 1,j l , 

где ijx , 1,i n , 1,j l  – значения стандартизо-

ванных переменных; jx , 1,j l  – средние зна-

чения переменных; 
jx , 1,j l  – стандартные 

отклонения переменных. 
Тогда система независимых уравнений (1) в 

стандартизованном масштабе примет вид: 
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 (2) 

1,i n ,  

где jk , 1,k l , 1,j l , k j  – неизвестный 

стандартизованный коэффициент при j -й пере-

менной в k -м уравнении системы; ik
 , 1,i n , 

1,k l  – i -я ошибка аппроксимации в k -м урав-
нении системы. 

Введем матрицу корреляций между всеми пе-
ременными 
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Тогда, как следует из [25], для оценивания 
первой регрессии в системе (2) нужно сформи-
ровать систему линейных алгебраических урав-
нений. Для этого нужно исключить из матрицы 

xxR  первую строку, затем взять первый столбец 
как вектор свободных членов, а остальные эле-
менты – как основную матрицу системы. В мат-
ричном виде она будет иметь вид: 
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Альтернативная форма записи системы (3) 
такова: 

1

1

,1
1

s s j si j i

l

x x s x x
j
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где is , 1, 1i l   – элементы вектора 

 2 3 l . 

Для оценивания второй регрессии в системе 
(2), путем вычеркивания второй строки из мат-
рицы xxR , формируется система 
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альтернативная форма записи которой 
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Тогда для МНК-оценивания всех регрессий  
в системе (2) нужно решить следующую сово-
купность систем линейных алгебраических 
уравнений: 
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где k  – номер регрессии, i  – номер уравнения в 

системе, ijq , 1,i l , 1, 1j l   – элементы мат-

рицы Q , полученной путем вычеркивания глав-
ной диагонали из квадратной матрицы 
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Коэффициент детерминации регрессии в 
стандартизованном масштабе, как следует из 
[25], равен сумме произведений стандартизо-
ванных коэффициентов на соответствующие 
значения коэффициентов корреляции входных 
переменных с выходной. Тогда формулы коэф-
фициентов детерминации регрессий системы (2) 
можно записать следующим образом: 

1
2

,
1

q k kjkj

l

k x x q k
j

R r 

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Заметим, что от оценок стандартизованных 
коэффициентов регрессий системы (2) можно 
легко перейти к оценкам регрессий системы (1), 
основываясь на представленных в [25] формулах. 

Перейдем к формализации задачи ОКПиИР в 
многомерной линейной регрессии в терминах 
аппарата математического программирования. 

Введем булевы переменные k , 1,k l , по  
правилу 

1,  если в систему (2) включается 

               -я линейная регрессия,

0,  в противном случае.
k k


 



 

Учитывая, что в систему должно входить 
ровно p  регрессий, введем ограничение 

1

l

k
k

p


 .  (6) 

Если регрессия под номером k  не входит в 
систему (2), то соответствующая ей система ли-
нейных алгебраических уравнений должна ка-
ким-то образом исключаться из совокупности 
(4), а соответствующие оценки обнуляться. Это 
можно получить с помощью следующих линей-
ных ограничений: 

,kjk q k kM M       , 1,k l , 1, 1j l  , (7) 

   
1

,
1

1 1
q q kj q kki kj ki

l

k x x q k x x k
j

M r r M  




       , 

1,k l , 1, 1i l  ,  (8) 

где M  – большое положительное число. 
Если 1k  , то  , ,

kjq k M M   , т.е. никаких 

ограничений на МНК-оценки в k -й регрессии 

нет, а 
1

,
1

0
q q kj q kki kj ki

l

x x q k x x
j

r r




   , т.е. в совокуп-

ность (4) включается k -я система линейных ал-
гебраических уравнений. Если же 0k  , то 

, 0
kjq k  , а  

1

,
1

,
q q kj q kki kj ki

l

x x q k x x
j

r r M M




    , что 

означает неучастие k -й системы линейных ал-
гебраических уравнений в совокупности (4). 
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Очевидно, что если 1k  , то 2
kR  принимает 

значение коэффициента детерминации k -й ре-

грессии в системе (2), а если 0k  , то 2 0kR  . 
Тогда, используя формулу (5), введем целевую 
функцию: 

1
2

,
1 1 1

max
q k kjkj

l l l

k x x q k
k k j

R r 


  

    . (9) 

Тем самым, решение задачи ЧБЛП с целевой 
функцией (9) и с линейными ограничениями (6) – 
(8) приводит к отбору в системе (2) ровно p  клю-
чевых признаков с максимальной суммой коэф-
фициентов детерминации. При этом на каждый 
признак влияют абсолютно все переменные. По-
этому далее дополним эту задачу ограничениями 
для отбора ровно m  одинаковых информативных 
регрессоров в каждой регрессии. 

Введем бинарные переменные j , 1,j l , по 

правилу 
1,  если я переменная входит 

            в  отобранные регрессии,

0,  в противном случае.
j

j




 



 

Количество регрессоров в регрессиях регули-
руется ограничением 

1

l

j
j

m


 .  (10) 

Если состав регрессоров во всех регрессиях 
одинаковый, то каждая переменная может быть 
только либо зависимой, либо независимой. Для 
этого сформулируем ограничения вида 

1k k   , 1,k l . (11) 

Из (11) следует, что если 1k  , т.е. k -я пе-
ременная является ключевым признаком, то 

0k  , т.е. она никогда не может быть включена 

в состав регрессоров. Если же 0k  , то 1k  , 
т.е. k -я переменная может как входить, так и не 
входить в состав регрессоров. 

Для контроля конфигураций систем линей-
ных алгебраических уравнений в совокупности 
(4) введем следующие ограничения: 

,kj kj kjq q k qM M       , 1,k l , 1, 1j l  , (12) 

   
1

,
1

1 1
ki q q kj q k kiki kj ki

l

q x x q k x x q
j

M r r M  




       ,

1,k l , 1, 1i l  . (13) 

Если 1
kjq  , то  , ,

kjq k M M   , т.е. никаких 

ограничений на МНК-оценку при kjq -й пере-

менной в k -й регрессии нет, а 
1

,
1

0
q q kj q kki kj ki

l

x x q k x x
j

r r




   , т.е. в совокупность (4) 

в k -ю систему линейных алгебраических урав-
нений включается kjq -е уравнение. Если же 

0
kjq  , то , 0

kjq k  , а 

 
1

,
1

,
q q kj q kki kj ki

l

x x q k x x
j

r r M M




    , что означает 

неучастие kjq -го уравнения в k -й системе ли-

нейных алгебраических уравнений в совокупно-
сти (4). 

К сожалению, совместное применение огра-
ничений (8) и (13) приводит к некорректному от-
бору переменных. Например, если 1k  , то в 
совокупности (4) в k-й системе все уравнения 
срабатывают, т.е. обращаются в строгие равен-
ства. Поэтому ограничения (13) уже не будут 
оказывать на их срабатывания никакого влия-
ния. Для устранения сложившейся проблемной 
ситуации совместим ограничения (8) и (13) сле-
дующим образом: 

   

     

1

,
1

,  .     14

1 1

1 1 ,  1, 1, 1

ki q q kj q kki kj ki

ki

l

k q x x q k x x
j

q k

M M r r

M M k l i l

  

 





       

      



 
Теперь в совокупности (4) в k-й системе бу-

дет срабатывать kiq -е уравнение только тогда, 

когда 1k   и 1
kiq  , т.е. когда выбрана k -я ре-

грессия и kiq -й регрессор. 
Таким образом, решение задачи ЧБЛП с це-

левой функцией (9) и с линейными ограничени-
ями (6), (7), (10) – (12), (14) приводит к отбору в 
системе (2) ровно p  ключевых признаков и m  
влияющих на них информативных регрессоров 
по критерию максимума суммы коэффициентов 
детерминации. 
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Заметим, что если в этой задаче ОКПиИР 
ключевой признак ровно один и он известен, то 
ее решение будет равносильно решению задачи 
ОИР, рассмотренной в [18]. 

Поскольку решение задачи ОИР, как следует 
из [22], становится эффективнее при введении 
ограничений на знаки МНК-оценок, то было 
принято решение ввести их и для задачи ОК-
ПиИР, предложив новую формулировку. Идея 
состоит в том, чтобы согласовать знаки МНК-
оценок со знаками коэффициентов корреляции 
между ключевыми признаками и информатив-
ными регрессорами. Такое согласование пози-
тивно скажется на мультиколлинеарности в ре-
грессиях, а также сделает доступными величины 
абсолютных вкладов регрессоров в общие де-
терминации. 

Введем следующие ограничения: 

,0
kjq k kM    , 1,k l , 1, 1j l  , , 0

q kkj
x xr  , 

 (15) 

, 0
kjk q kM      , 1,k l , 1, 1j l  , , 0

q kkj
x xr  , 

(16) 

,0
kj kjq k qM    , 1,k l , 1, 1j l  , , 0

q kkj
x xr  , 

(17) 

, 0
kj kjq q kM      , 1,k l , 1, 1j l  , , 0

q kkj
x xr  . 

(18) 

Тогда решение задачи ЧБЛП с целевой функ-
цией (9) и с линейными ограничениями (6), (10), 
(11), (14), (15) – (18), если оно существует, при-
водит к отбору в многомерной линейной регрес-
сии ровно p  ключевых признаков и m  влияю-
щих на них информативных регрессоров с 
согласованными знаками МНК-оценок. Если из 
этой задачи исключить ограничения (6), то осу-
ществляется отбор оптимального числа ключе-
вых признаков для m  информативных регрессо-
ров. Если же из нее исключить ограничения (10), 
то осуществляется отбор оптимального числа 
информативных регрессоров для p  ключевых 
признаков. А если исключить (6) и (10), то осу-
ществляется отбор и оптимального числа при-
знаков, и оптимального числа информативных 
регрессоров. 

Из-за ограничений (15) – (18) становятся до-
ступны величины: 

абс
, ,k q q k kjkj kj

x x x x q kС r   , 1,k l , 1, 1j l  , 

где абс
, 0

k qkj
x xC   – абсолютный вклад kjq -го ре-

грессора в общую детерминацию 2
kR  для k -го 

ключевого признака. Очевидно, что для этих ве-
личин справедливы следующие тождества: 

1
абс 2

,
1

k qkj

l

x x k
j

C R




 , 1,k l . 

Тогда введем следующие линейные ограни-
чения на эти величины: 

 , 1
q k kj kjkj

x x q k q kr        , 

1,k l , 1, 1j l  , 
(19)

 

где [0,1)   – нижнее пороговое значение абсо-
лютных вкладов регрессоров во входящих в си-
стему (2) регрессий. Из (19) следует, что ограни-
чение вида ,q k kjkj

x x q kr     на абсолютный вклад 

kjq -го регрессора в детерминацию для k-го клю-

чевого признака срабатывает только тогда, ко-
гда в систему (2) включены обе этих перемен-
ных, т.е. когда 1k   и 1

kjq  . В противном 

случае ограничения (19) принимают либо вид 

, 0
q k kjkj

x x q kr   , либо ,q k kjkj
x x q kr     , что спра-

ведливо в любом случае. Чем больше значение 
 , тем жестче требование к степени влияния ре-
грессоров на ключевые признаки, и тем больше 
шансов на снижение числа регрессоров в регрес-
сиях. Ограничения (19) могут быть использо-
ваны для контроля абсолютных вкладов регрес-
соров в задаче ЧБЛП (9), (6), (10), (11), (14), (15) 
– (18) и в упомянутых выше различных ее вари-
ациях. 

2. Вычислительные эксперименты 

Для проведения экспериментов были исполь-
зованы статистические данные из базы Феде-
ральной службы государственной статистики, 
характеризующие научную и инновационную 
деятельность в Иркутской области за период с 
2000 по 2021 гг. Всего было задействовано 25 
переменных: 
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x1 – организации, выполнявшие научные ис-
следования и разработки (единиц); 

x2 – численность исследователей, занятых 
научными исследованиями и разработками (че-
ловек); 

x3 – численность техников (человек); 
x4 – численность вспомогательного персо-

нала (человек); 
x5 – численность прочего персонала (человек); 
x6 – численность исследователей с ученой 

степенью доктора наук (человек); 
x7 – с ученой степенью кандидата наук (чело-

век); 
x8 – внутренние текущие затраты на оплату 

труда (млн руб.); 
x9 – внутренние текущие затраты на страхо-

вые взносы на ОПС, ОМС, ОСС (млн руб.); 
x10 – внутренние текущие затраты на приоб-

ретение оборудования (млн руб.); 
x11 – другие материальные затраты (млн руб.); 
x12 – прочие текущие затраты (млн руб.); 
x13 – капитальные затраты на научные иссле-

дования и разработки (млн руб.); 
x14 – внутренние текущие затраты на фунда-

ментальные исследования (млн руб.); 
x15 – внутренние текущие затраты на при-

кладные исследования (млн руб.); 
x16 – внутренние текущие затраты на разра-

ботки (млн руб.); 
x17 – подано патентных заявок на изобрете-

ния (единиц); 
x18 – подано патентных заявок на полезные 

модели (единиц); 
x19 – выдано патентов на изобретения (единиц); 
x20 – выдано патентов на полезные модели 

(единиц); 
x21 – используемые передовые производ-

ственные технологии (единиц); 
x22 – общие затраты на инновационную дея-

тельность организаций (млн руб.); 
x23 – затраты на инновационную деятель-

ность в процентах от общего объема отгружен-
ных товаров, выполненных работ, услуг (%); 

x24 – общий объем инновационных товаров, 
работ, услуг (млн руб.); 

x25 – объем инновационных товаров в про-
центах от общего объема отгруженных товаров, 
выполненных работ, услуг (%). 

Главной целью вычислительных экспери-
ментов было сравнение эффективности решения 
задач построения многомерных линейных ре-
грессий методом всех возможных регрессий и 
предложенным нами методом. Эксперименты 
проводились на персональном компьютере с 
процессором AMD Ryzen 3 4300U (2,70 ГГц) и 
объемом оперативной памяти 16 Гб. Для реше-
ния задач ЧБЛП был использован бесплатный 
оптимизационный решатель LPSolve, имеющий 
встроенный счетчик, с помощью которого 
можно фиксировать точное время поиска реше-
ния. Для оценивания времени решения задач ме-
тодом всех возможных регрессий была исполь-
зована справедливая при 2 36m   следующая 
экспериментально полученная в [22] зависи-
мость: 

  12,9507 1,45763v m e m  , 

где  v m  – число моделей с m  регрессорами, 

оцениваемых методом всех регрессий в пакете 
Gretl за 1 секунду на нашем персональном ком-
пьютере. Например, если 5m  , то скорость со-
ставляет 40325,33 моделей в секунду. Зная эту 
скорость и общее число моделей, можно без 
труда определить время. 

Во всех задачах ЧБЛП большое число M 
было выбрано равным 100. И все они решались 
с использованием ограничений на знаки МНК-
оценок (15) – (18). 
Эксперимент №1. Двумя методами решались 

задачи ОКПиИР при фиксированном числе клю-
чевых признаков p  (1 3p  ) и числе информа-

тивных регрессоров m  (1 3m  ). В задачах 
ЧБЛП с целевой функцией (9) использовались 
ограничения (6), (10), (11), (14), (15) – (18), т.е. 
ограничения на абсолютные вклады (19) не ста-
вились. 

Результаты эксперимента представлены в 
Табл. 1. В ней в первом столбце указан номер за-
дачи, во втором – число ключевых признаков p, в 
третьем – число информативных регрессоров m, в 
четвертом, пятом и шестом – коэффициент детер-
минации каждой регрессии в системе, состав при-
знаков и состав регрессоров, в седьмом и восьмом 
– время t1 решения задачи методом всех регрессий 
в пакете Gretl и время t2 решения нашим методом 
в пакете LPSolve. Время решения методом всех  
регрессий определялось по формуле 



Применение математического программирования для выбора оптимальных структур многомерных линейных регрессий 

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2024 39 

 
25

1 25

m
pp C

t pC
v m

 . 

Как видно из Табл. 1, наш метод оказался су-
щественно менее эффективным, чем метод всех 
возможных регрессий. Схожий эффект прояв-
лялся и ранее при решении задач ОИР [18] для 
фиксированного числа регрессоров. Выправить 
ситуацию, например, в [22], позволило исключе-
ние из задачи ЧБЛП ограничений на число ре-
грессоров. Поэтому было решено провести сле-
дующий эксперимент. 
Эксперимент №2. Двумя методами решались 

задачи ОКПиИР только при фиксированном 
числе ключевых признаков p  (1 3p  ). В за-
дачах ЧБЛП с целевой функцией (9) использова-

лись ограничения (6), (11), (14), (15) – (18). Сна-
чала ограничения на абсолютные вклады не ста-
вились, а потом пороговое значение   в (19) 
принималось равным 0,1. 

Результаты эксперимента представлены в 
Табл. 2. В ней в первом столбце указан номер за-
дачи, во втором – число ключевых признаков p, 
в третьем – число отобранных регрессоров, в 
четвертом – сумма коэффициентов детермина-
ции регрессий в системе, в пятом – общее число 
моделей для оценивания методом всех регрес-
сий, в шестом – время t1 решения задачи мето-
дом всех регрессий, в седьмом – время t2 реше-
ния нашим методом. Поскольку объем выборки 

22n  , то максимальное число регрессоров в 
уравнении может быть 21, поэтому общее число 

Табл. 1. Результаты эксперимента №1 

№ p m R2 Признаки Регрессоры t1, сек t2, сек 
1 1 1 0,96938 x8 x9 0,0014 3,366 

2 2 1 
0,96938 x9 x8 0,033 41,623 
0,93411 x14 

3 3 1 
0,96938 x9 

x8 0,361 334,073 0,93411 x14 
0,89782 x15 

4 1 2 0,98959 x8 x9, x12 0,045 14,87 

5 2 2 
0,97004 x9 x8, x10 0,99 237,727 
0,98827 x14 

6 3 2 
0,93783 x2 

x8, x21 10,395 2195,324 0,98462 x9 
0,9403 x14 

7 1 3 0,99319 x8 x9, x16, x20 0,596 57,892 

8 2 3 
0,9862 x9 x3, x8, x10 12,515 895,723 

0,98887 x14 

9 3 3 
0,94635 x2 

x7, x14, x15 125,146 8349,368 0,97484 x8 
0,97152 x9 

 

Табл. 2. Результаты эксперимента №2 

№ p Регрессоры Сумма R2 Число моделей для перебора t1, сек t2, сек 
Нет ограничений на вклады 

1 1 15 0,99869 419 422 850 37784,9 601,7 
2 2 12 1,99259 5 033 149 800 426419,1 7206,6 
3 3 12 2,98018 28 940 683 800 2299615,4 46860,1 

θ = 0,1
4 1 5 0,99384 113 509 625 6644,6 125,8 
5 2 4 1,97506 1 705 335 000 98393,9 1083,1 
6 3 3 2,87356 12 036 601 500 682792,3 7659,9 
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моделей для метода всех регрессий определя-
лось по формуле 

 1 2 21
25 25 25 25...p

p p pN pC C C C      , 

а время 
1 2 21
25 25 25

1 25 ...
(1) (2) (21)

p p pp C C C
t pC

v v v
   

     
 

. 

При 0,1   максимальное число регрессоров 
в уравнении может быть 10, поэтому в этих фор-
мулах в скобках нужно оставить только первые 
десять слагаемых. 

Из Табл. 2 видно, во-первых, что все задачи 
требуют больших объемов вычислений методом 
всех возможных регрессий. Так, при отсутствии 
ограничений на вклады при p=1 на решение уй-
дет примерно 10,5 часов, при p=2 – 118,45 часов, 
при p=3 – 638,78 часов. При наличии ограниче-
ний на вклады это время, конечно же, сокра-
тится, но все равно останется довольно боль-
шим: 1,85 часа для p=1, 27,33 часов для p=2 и 
189,66 часов для p=3. Во-вторых, наш метод во 
всех шести случаях оказался гораздо эффектив-
нее метода всех возможных регрессий. Так, для 
задачи №1 время решения уменьшилось в 62,8 
раза, для задачи №2 – в 59,17 раз, для задачи №3 
– в 49,07 раз, для задачи №4 – в 52,82 раза, для 
задачи №5 – в 90,84 раз, для задачи №6 – в 89,14 
раз. Тем самым, в среднем время уменьшилось 
примерно в 67,3 раз. В-третьих, использование 
ограничений на вклады во всех трех случаях 
привело к снижению времени решения задач 
ЧБЛП. Так, при p=1 время уменьшилось в 4,78 
раза, при p=2 – в 6,65 раз, при p=3 – в 6,18 раз. 
Исходя из этого, в среднем время уменьшилось 
в 5,85 раз. Судя по всему, при p>3 наш метод 
также будет эффективнее метода всех регрес-
сий, но на доказательство этого факта потребо-
валось бы довольно много времени. Поэтому 
было принято решение провести другой более 
простой в вычислительном плане эксперимент. 
Эксперимент №3. Двумя методами решались 

задачи ОИР для конкретного набора ключевых 
признаков. В задачах ЧБЛП с целевой функцией 
(9) использовались ограничения (11), (14), (15) – 
(18). Вместо ограничений (6) булевым перемен-
ным придавались конкретные значения. Сна-
чала ограничения на абсолютные вклады не  

ставились, а потом пороговое значение   в (19) 
назначалось равным 0,1. 

Общий состав ключевых признаков был вы-
бран на основе пятого столбца Табл. 1, содержа-
щего переменные x2, x8, x9, x14, x15. Комбинируя 
сочетания переменных из этого множества, в об-
щей сложности решалась 52 1 31   задача. 

Результаты эксперимента представлены в 
Табл. 3. В ней в первом столбце указан номер за-
дачи, во втором – состав признаков, в третьем, 
четвертом, пятом и шестом – полученные при 
отсутствии ограничений на вклады показатели: 
число отобранных регрессоров, сумма коэффи-
циентов детерминации регрессий, время t1 реше-
ния задачи методом всех регрессий и время t2 ре-
шения задачи нашим методом. Аналогичные 
показатели, полученные при ограничениях на 
вклады, приведены в седьмом, восьмом, девятом 
и десятом столбцах. При отсутствии ограниче-
ний на вклады время решения задачи методом 
всех регрессий определялось по формуле 

1 2 21
25 25 25

1 ...
(1) (2) (21)

p p pC C C
t p

v v v
   

     
 

, 

а при наличии ограничений на вклады в этой 
формуле в скобках брались только первые де-
сять слагаемых. 

Из Табл. 3 видно, что, во-первых, во всех ше-
стидесяти двух случаях наш метод снова ока-
зался эффективнее метода всех возможных ре-
грессий. Так, при отсутствии ограничений на 
вклады при p=1 время решения уменьшилось в 
7,8 – 162,52 раз, при p=2 – в 9,48 – 78,1 раз, при 
p=3 – в 8,25 – 25,97 раз, при p=4 – в 6,08 – 12,13 
раз, при p=5 – в 5,61 раз. При наличии ограниче-
ний при p=1 время уменьшилось в 42,19 – 156,35 
раз, при p=2 – в 45,54 – 149,04 раз, при p=3 – в 
36,65 – 106,04 раз, при p=4 – в 38,23 – 70,67 раз, 
при p=5 – в 45,24 раз. Во-вторых, использование 
ограничений на вклады во всех тридцати двух 
случаях привело к снижению времени решения 
задач ЧБЛП. Так, без ограничений на вклады 
среднее время решения составило 68,358 сек., а 
с ограничениями – 4,367 сек., что в 15,65 раз 
меньше. В-третьих, применение ограничений на 
вклады приводит к построению более компакт-
ных моделей с меньших числом регрессоров. 
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Для демонстрации корректности полученных 
в Табл. 3 результатов рассмотрим многомерную 
линейную регрессию с ключевыми признаками 
x8, x9, x14, x15, построенную при 0,1  : 

(0,3026) (0,4047) (0,2566)
*
8 11 12 21

(4,285) (5,157) (8,014)

(0,3068) (0,2596) (0,3835)
*
9 11 12 21

(3,927) (3,022) (9,015)

(0,100
*
14

(0,981)

576,196 2,584 1,538 0,519 ,

209,975 0,789 0,3 0,194 ,

848,568 1,199

x x x x

x x x x

x

    

    

  
1) (0,4984) (0,3048)

11 12 21
(4,055) (5,494)

(0,3581) (0,4237) (0,1251)
*
15 11 12 21

(3,055) (3,34) (3,033)

2,45 0,721 ,

205,271 1,143 0,618 0,122 ,

x x x

x x x x







  


     


(20) 

для которой 2
8 0,96399R  , 2

9 0,94985R  , 
2
14 0,90318R  , 2

15 0,90688R  . 
В модели (20) в скобках над коэффициентами 

указаны значения абсолютных вкладов перемен-
ных в общую детерминацию. Как видно, все 
они, как и ожидалось, превосходят величину 0,1. 
А в скобках под коэффициентами указаны зна-
чения t-критерия Стьюдента. Оказалось, что все 
коэффициенты значимы для уровня значимости 

0,01  , кроме коэффициента в третьем урав-
нении при переменной 11x . Это легко исправить, 

исключив незначимую переменную 11x  и пере-
оценив регрессию с помощью МНК: 

Табл. 3. Результаты эксперимента №3 

№ Признаки 
Нет ограничений на вклады θ = 0,1 

Регрес-
соры 

Сумма 
R2 

t1, сек t2, сек 
Регрес-
соры 

Сумма 
R2 

t1, сек t2, сек 

1 x2 13 0,99359 1511,4 26,5 5 0,98019 265,8 2 
2 x8 15 0,99869 1511,4 193,7 5 0,99384 265,8 4,8 
3 x9 11 0,99739 1511,4 32,7 3 0,9916 265,8 3,2 
4 x14 14 0,99431 1511,4 53,1 4 0,98989 265,8 6,3 
5 x15 10 0,9506 1511,4 9,3 5 0,93687 265,8 1,7 
6 x2, x8 13 1,98599 1421,4 150 3 1,86696 327,9 3,2 
7 x2, x9 11 1,98253 1421,4 92,5 4 1,92356 327,9 4,2 
8 x2, x14 12 1,97896 1421,4 49,5 3 1,83493 327,9 3,9 
9 x2, x15 9 1,92555 1421,4 18,2 2 1,76002 327,9 2,2 

10 x8, x9 12 1,99259 1421,4 136,4 4 1,97506 327,9 5,9 
11 x8, x14 10 1,99082 1421,4 119,5 4 1,93126 327,9 7,2 
12 x8, x15 9 1,93626 1421,4 51,1 2 1,91111 327,9 4,1 
13 x9, x14 12 1,98493 1421,4 59,2 2 1,92839 327,9 6,7 
14 x9, x15 8 1,93328 1421,4 27,1 3 1,89089 327,9 3,2 
15 x14, x15 7 1,9238 1421,4 39,4 2 1,84956 327,9 5,5 
16 x2, x8, x9 11 2,97625 999,8 121,1 3 2,82871 296,9 4,1 
17 x2, x8, x14 11 2,97011 999,8 85,5 3 2,76785 296,9 4 
18 x2, x8, x15 9 2,9059 999,8 39,6 1 2,6881 296,9 2,9 
19 x2, x9, x14 10 2,96059 999,8 80,7 2 2,80107 296,9 4,7 
20 x2, x9, x15 7 2,8975 999,8 38,5 2 2,66691 296,9 2,9 
21 x2, x14, x15 8 2,87953 999,8 44,7 2 2,65802 296,9 2,8 
22 x8, x9, x14 12 2,98018 999,8 80 3 2,87228 296,9 8,1 
23 x8, x9, x15 8 2,92482 999,8 48,9 3 2,87356 296,9 5,1 
24 x8, x14, x15 7 2,91858 999,8 58,3 2 2,83915 296,9 6,9 
25 x9, x14, x15 7 2,91039 999,8 53,9 1 2,80131 296,9 5,2 
26 x2, x8, x9, x14 10 3,94928 623,3 102,5 3 3,71668 233,2 4,6 
27 x2, x8, x9, x15 7 3,88227 623,3 51,4 2 3,59417 233,2 3,3 
28 x2, x8, x14, x15 7 3,85504 623,3 62,4 1 3,60394 233,2 3,5 
29 x2, x9, x14, x15 7 3,86088 623,3 60,9 1 3,56602 233,2 3,4 
30 x8, x9, x14, x15 9 3,89844 623,3 67,8 3 3,7239 233,2 6,1 
31 x2, x8, x9, x14, x15 7 4,8439 363,1 64,7 2 4,49217 167,4 3,7 
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(0,5987) (0,2993)
*
14 12 21

(8,783) (5,429)
798,074 2,944 0,708x x x    , 

для которой 2
14 0,898R  . Теперь в ней все 

оценки значимы. Также хочется обратить вни-
мание, что знаки всех оценок в многомерной ли-
нейной регрессии (20) согласуются с содержа-
тельным смыслом факторов. 

Многомерную линейную регрессию (20) 
можно воспринимать, как первый шаг двухша-
гового МНК, предназначенного для оценки си-
стем одновременных уравнений. 

Заключение 

В статье сформулирована задача отбора клю-
чевых признаков и информативных регрессоров 
в многомерных линейных регрессиях. С исполь-
зованием элементов корреляционного анализа 
эта задача была сведена к задаче частично-буле-
вого линейного программирования. В ней 
можно контролировать число ключевых призна-
ков, число информативных регрессоров, знаки 
оценок регрессий, абсолютные вклады перемен-
ных в общие детерминации. При фиксирован-
ном числе ключевых признаков и информатив-
ных регрессоров наш метод построения 
многомерных моделей существенно уступил ме-
тоду всех возможных регрессий. Но при фикси-
ровании только числа ключевых признаков пре-
взошел метод всех регрессий по времени в 67,3 
раз. При этом, при использовании ограничений 
на абсолютные вклады переменных в детерми-
нации время решения оказалось в 5,85 раз 
меньше, чем без них. При заданном конкретном 
составе ключевых признаков наш метод превзо-
шел метод всех регрессий по времени в 16,6 раз 
без ограничений на вклады, и в 65,8 раз с огра-
ничениями на вклады. При этом снова подтвер-
дилось снижение времени решения задач ЧБЛП 
при использовании ограничений на вклады. 

Стоит подчеркнуть, что в данной работе все 
вычислительные эксперименты были проведены 
на конкретном персональном компьютере. При 
использовании более мощных вычислительных 
систем время решения рассмотренных задач ОК-
ПиИР как методом всех возможных регрессий, 
так и с помощью аппарата ЧБЛП, естественным 
образом, уменьшится. Но, вероятнее всего, значе-

ния ускорений вычислений останутся практиче-
ски без изменений. Для проверки достоверности 
этой гипотезы в дальнейшем планируется прове-
сти дополнительные исследования. 

Предложенный математический аппарат мо-
жет успешно применяться для решения реаль-
ных задач анализа данных. Однако особенно ак-
куратно его стоит использовать при построении 
многомерных линейных регрессий с неизвест-
ными ключевыми признаками, чтобы в резуль-
тате отбора в состав откликов не вошли пере-
менные, не связанные с регрессорами причинно-
следственными отношениями. 
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Abstract. In this article formulates the problem of simultaneous selection of both responses and explan-
atory variables in multivariate linear regressions. This problem is called «key responses and relevant 
features selection». The ordinary least squares method is used to estimate regressions. First, the problem 
of selecting a given number of key responses and relevant features by the criterion of the maximum sum 
of the regression determination coefficients was reduced to a mixed 0-1 integer linear programming 
problem. Then, restrictions on the signs of the estimates were introduced into it, which made it possible 
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to select optimal structures of multivariate regressions. After that, restrictions on the absolute contribu-
tions of regressors to the overall determinations were added, which allows controlling the number of 
explanatory variables. When conducting computational experiments on real data with a fixed number of 
key responses, the time required to construct multivariate models using the proposed method was ap-
proximately 67.3 times less than the time required to construct them using the generating all subsets 
method. At the same time, tightening the restrictions on the absolute contributions of regressors further 
reduced the time required to solve problems. 
Keywords: multivariate linear regression, ordinary least squares, coefficient of determination, key re-
sponses and relevant features selection, mixed 0-1 integer linear programming problem, absolute con-
tribution of a variable to determination, generating all subsets method. 
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