
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ  

74 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2024 

Сегментация легочных узлов  
на снимках компьютерной томографии 

А. Р. Теплякова 

Обнинский институт атомной энергетики – филиал Национального исследовательского ядерного 
университета «МИФИ», Обнинск, Россия 

Аннотация. В статье описывается решение задачи автоматизации процесса сегментации легочных 
узлов на снимках компьютерной томографии для расширения функционала разработанного ранее 
модуля определения размеров и объемов легочных узлов. Акцент в работе делается на сравнении 
точности работы моделей, имеющих архитектуры ResU-Net, Attention U-Net и Dense U-Net, при обу-
чении на снимках компьютерной томографии в исходном виде и с применением двух предлагаемых 
трехканальных подходов к их предварительной обработке. Для трех рассмотренных архитектур до-
стигнуты значения коэффициента схожести Дайса и пересечения над объединением в диапазонах 
0,8570–0,8735 и 0,7545–0,7881 при обучении на трехканальных снимках с усреднением. Получен-
ные результаты позволяют сделать вывод о том, что применение методов предварительной обра-
ботки является перспективным для повышения точности сегментации. Также в статье описано обу-
чение модели сегментации долей легких. Доработанный программный модуль принимает на вход 
снимки компьютерной томографии, а его выходные данные представляют собой обработанные 
снимки и структурированный отчет DICOM SR. 
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Введение 

На протяжении последних лет рак легкого яв-
ляется первым по заболеваемости и смертности 
среди всех видов рака в мире [1]. Авторы статьи 
[2] исследовали статистические данные о забо-
леваемости раком легкого (за 1993-2021 годы) и 
смертности (за 1965-2021 годы) в России и при-
шли к выводу о том, что распространение ис-
пользования компьютерной томографии (КТ) за 
последние 20 лет более, чем в 7 раз, оказало вли-
яние на снижение смертности от рака легкого за 
счет повышения выявляемости этого заболева-
ния. Проведение скрининга рака легкого (СРЛ) 
позволяет выявлять образования в легких  
 

 
на ранних стадиях заболевания и снижать про-
цент смертельных исходов, поэтому разработка 
и развитие программных инструментов, которые 
бы снижали рутинную нагрузку на специалистов-
рентгенологов при проведении СРЛ, является 
важной задачей. Автоматизация этапов СРЛ за 
счет применения моделей и методов компьютер-
ного зрения может ускорить и упростить процесс 
его проведения. Целью данной статьи является 
описание расширения функциональных возмож-
ностей модуля, разработанного на предыдущем 
этапе исследования и описанного в работе [3],  
за счет автоматизации этапа сегментации легоч-
ных узлов. 
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1. Постановка задачи исследования 

В основе СРЛ лежит анализ снимков, получа-
емых в результате выполнения низкодозной КТ. 
Специалисту-рентгенологу необходимо про-
смотреть все снимки томографического иссле-
дования, оконтурить обнаруженные на них 
узлы, после чего определить их размеры и объ-
емы в соответствии с рекомендациями по веде-
нию легочных узлов Британского торакального 
общества, Флейшнеровского общества, Евро-
пейского консорциума по скринингу рака лег-
кого или Lung-RADS [4] для принятия решения 
о планировании лечения пациента. Для сниже-
ния нагрузки на рентгенолога формирование ма-
сок бинарной сегментации легочных узлов, со-
ответствующих аксиальным срезам КТ, может 
выполняться моделями компьютерного зрения. 
Перед выполнением этапа расчета количествен-
ных показателей легочных узлов полученные 
маски могут анализироваться и корректиро-
ваться рентгенологом.  

Задача исследования сводится к автоматиза-
ции процесса получения масок сегментации ле-
гочных узлов и доработке разработанного ранее 
модуля определения их размеров и объемов. 
Могут быть выделены следующие подзадачи: 

- формирование набора для обучения мо-
дели сегментации долей легких (снимки КТ в ба-
зовом виде и соответствующие им маски муль-
тиклассовой сегментации); 

- обучение модели сегментации долей легких; 
- разработка программного кода для реали-

зации двух трехканальных алгоритмов предва-
рительной обработки снимков КТ легких; 

- формирование наборов для обучения и те-
стирования моделей сегментации легочных уз-
лов (снимки КТ в базовом виде, обработанные 
двумя предлагаемыми методами и соответству-
ющие маски бинарной сегментации); 

- обучение моделей сегментации легочных 
узлов, оценка влияния предобработок, выбор 
оптимального подхода; 

- доработка алгоритма предоставления спе-
циалисту-рентгенологу необходимой информа-
ции (оконтуривание долей легких, дополнение 
DICOM SR информацией о долях, в которых об-
наруживаются узлы); 

- внедрение новых моделей и алгоритмов в 
ранее разработанный модуль. 

2. Обзор существующих решений  
и описание предлагаемого  
подхода 

Рассмотрен ряд публикаций, в которых опи-
сываются подходы к решению задачи сегмента-
ции легочных узлов по снимкам КТ и приво-
дятся результаты их тестирования на данных из 
набора LIDC-IDRI [5]. В большинстве работ 
приводятся достигнутые подходами значения 
коэффициента схожести Дайса (Dice Similarity 
Coefficient, DSC) и пересечения над объедине-
нием (Intersection over Union, IoU).  

Авторы [6] предлагают рассматривать серию 
снимков КТ-исследования как набор кадров ви-
део и использовать для решения задачи сегмен-
тации легочных узлов методы оптического по-
тока, принимая узлы за движущиеся объекты. 
Для 16 рассмотренных в работе узлов значения 
точности, чувствительности и специфичности 
составили 0,9, 0,745 и 0,9. В работе [7] предлага-
ется архитектура UGMCS-Net, включающая ме-
ханизм внимания с учетом неопределенности и 
позволяющая учитывать информацию о консен-
сусе и разногласиях нескольких аннотаций.  
Получены значения DSC 0,8765 и IoU 0,7878. 
Авторы [8] предлагают использовать для сег-
ментации узлов комбинацию ResNeXt, UNet++ 
и модуля внимания SCSCE. Сегментации под-
вергается предварительно выделяемая область 
интереса, содержащая легкие, достигаются DSC 
0,8343 и IoU 0,7251. В работе [9] значения DSC 
0,8205 и IoU 0,7539 достигаются при использо-
вании базовой версии U-Net. Предлагаемая в 
[10] пирамидальная архитектура на основе вни-
мания Lung_PAYNet, кодер и декодер в которой 
спроектированы с использованием инвертиро-
ванного остаточного блока, достигает значений 
DSC 0,957 и IoU 0,9175. Особенность SAtUNet, 
представленной в работе [11], заключается в ис-
пользовании серии объединенных расширенных 
сверточных блоков после каждого этапа на пу-
тях кодера и декодера. Эта архитектура демон-
стрирует DSC 0,8110 и IoU 0,7224. Авторы [12] 
предлагают MDRU-Net – модификацию U-Net, 
которая, подобно SAtUNet, включает расширен-
ные свертки для расширения рецептивного 
поля, а также использует плотные блоки и оста-
точный механизм. MDRU-Net достигает значе-
ний DSC 0,9237 и IoU 0,9213. Авторы [13]  



 ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ А. Р. Теплякова 

76 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2024 

предлагают применение функции унифициро-
ванных фокальных потерь при обучении 3D 
nnUNet, улучшенной за счет использования 
блока Res2Net и расширенной свертки. Предла-
гаемая архитектура демонстрирует DSC 0,834. В 
[14] представлена архитектура для сегментации 
легочных узлов 3DSqU2 Net, применяющая пол-
номасштабные пропускные соединения и глубо-
кий надзор, идея которого заключается в добав-
лении сопутствующих целевых функций на 
каждом скрытом слое. 3DSqU2 Net продемон-
стрировала значение IoU 0,9135. В [15] пред-
ставлена архитектура трехмерной сегментации 
Dig-CS-VNet – улучшенная версия V-Net, осно-
ванная на пороговом разделении пикселей и 
применении механизма внимания. Продемон-
стрированы значения DSC 0,949 и IoU 0,903. Ар-
хитектура для сегментации узлов, предложенная 
авторами [16], использует обрезанные области 
исходных снимков КТ, имеющие различные раз-
меры, и достигает значений DSC 0,982 и IoU 
0,964. В работе [17] приводятся результаты 
сравнения метрик, полученных для архитектур 
U-Net, SegNet, GCN, FCN, DeepLabV3+, PspNet 
TransUNet, SwinUNet при сегментации узлов на 
обычных и на предварительно обработанных 
снимках КТ. Рассмотрены два способа обра-
ботки: наложение маски на пиксели, лежащие за 
пределами легких, и обрезка областей интереса. 
Авторы делают вывод, что второй подход повы-
шает точность сегментации. Для 8 рассмотрен-
ных в работе архитектур DSC принимает значе-
ния от 0,816 до 0,887.  

Суть подавляющего большинства существу-
ющих подходов к сегментации легочных узлов 
заключается в повышении точности за счет со-
здания новых архитектур или модификации уже 
существующих, однако методам предваритель-
ной обработки уделяется мало внимания не-
смотря на то, что они также могут обеспечивать 
повышение точности. 

2.1. Теоретическое описание  
предлагаемого подхода 

В настоящей работе основной акцент дела-
ется на изучении влияния предлагаемых мето-
дов предобработки снимков КТ на метрики мо-
делей сегментации легочных узлов, имеющих 
архитектуры ResU-Net, Attention U-Net и Dense 

U-Net. Все три рассматриваемые в работе архи-
тектуры представляют собой модификации U-
Net и включают в себя пути сжатия (кодер) и 
расширения (декодер). Что касается отличитель-
ных особенностей, то: 

- ResU-Net использует остаточные соедине-
ния, которые обеспечивают возможность изуче-
ния остаточных признаков с учетом входных 
данных; 

- Attention U-Net использует ворота внима-
ния, благодаря которым учится фокусироваться 
на существенных деталях, имеющих различные 
размеры и формы; 

- Dense U-Net использует плотные блоки, 
благодаря чему достигаются увеличение глу-
бины и повторное использование признаков. 

Также в рамках исследования производится 
расширение функционала ранее разработанного 
модуля за счет реализации автоматической сег-
ментации долей легких и легочных узлов. В рам-
ках расширения функционала обучена модель 
сегментации долей легких, которая заменила 
модель бинарной сегментации паренхимы лег-
кого, применявшуюся в предыдущей версии мо-
дуля. Обученная модель имеет архитектуру At-
tention U-Net и позволяет получать маски 
мультиклассовой сегментации, показывающие, 
к какому из шести классов (один соответствует 
фону, пять – долям легких) относится каждый 
пиксель. Схема, приведенная на Рис. 1, демон-
стрирует логику функционирования модуля с 
учетом описываемых изменений.  

Для автоматического получения масок би-
нарной сегментации легочных узлов, соответ-
ствующих срезам загружаемых исследований, 
обучено 9 моделей сегментации легочных узлов, 
имеющих архитектуры ResU-Net, Attention U-
Net, Dense U-Net и работающих с различными 
типами входных данных: одноканальными 
снимками и трехканальными, полученными при 
помощи двух предлагаемых подходов к предоб-
работке. Первый из этих подходов ранее уже 
применялся при решении задачи сегментации 
мышечной ткани на отдельных снимках КТ и 
позволил повысить точность сегментации для 
ряда случаев [18]. Второй учитывает специфику 
решаемой в рамках данного исследования за-
дачи, связанную с необходимостью анализа 
набора снимков. Первый и третий каналы в 
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обоих подходах представляются изображени-
ями в базовом виде и с применением анизотроп-
ной диффузной фильтрации. Второй канал в 
первом подходе представляется изображением с 
применением адаптивного выравнивания гисто-
грамм с ограниченным усилением контраста, во 
втором – усредненным изображением. 

Изображение в базовом виде представляет 
собой массив пикселей, извлеченный из тега 
PixelData (7FE0,0010) файла DICOM и обрабо-
танный определенным образом. Суть обработки 
заключается в переходе от значений, выдавае-
мых томографом, к единицам Хаунсфилда 
(Hounsfield Units, HU). Уровень и ширина окна 
принимаются за -600 и 1600. Чтобы ограничить 
область интереса (преобразовать пиксели за пре-
делами тела пациента в черные), также анализи-
руется изображение, полученное для уровня и 
ширины окна, равных -50 и 450. К нему приме-
няется порог, что позволяет получить бинарную 
маску, соответствующую области интереса. 

Пример фрагмента изображения в базовом виде 
показан на Рис. 2, а. Усредненное изображение 
(Рис. 2, б) позволяет обогатить входные данные 
информацией, получаемой из срезов, соседних к 
рассматриваемому. Оно формируется следую-
щим образом: вычисляется среднее изображе-
ние для текущего аксиального среза, предше-
ствующего ему и следующего за ним. Для 
формирования изображения с применением 
адаптивного выравнивания гистограмм с огра-
ниченным усилением контраста (Contrast 
Limited Adaptive Histogram Equalization, 
CLAHE) предел отсечения принят равным 2 
(пример фрагмента на Рис. 2, в). Применение 
анизотропной диффузной фильтрации 
(Anisotropic Diffusion Filtering, ADF) позволяет 
сгладить изображение, при этом не размыв края 
и сохранив детали мелких структур [19], что яв-
ляется важным условием при работе со сним-
ками КТ. ADF – преобразование, в основе кото-
рого лежит итеративное создание семейства 

Рис. 1. Схема, демонстрирующая логику работы модуля 

а б в г 

Рис. 2. Фрагменты изображений, формирующих трёхканальные снимки: базового (а), усреднённого (б),  
с применением CLAHE (в) и ADF (г) 
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изображений, для получения каждого последу-
ющего из которых применяется набор вычисле-
ний (в качестве начального изображения высту-
пает исходное). Уравнение ADF записывается 
следующим образом [20]:  
௧ܫ ൌ ,ݔሺܿሺݒ݅݀ ,ݕ ሻܫ׏ሻݐ ൌ ܿሺݔ, ,ݕ ܫ∆ሻݐ ൅ ܿ׏ ∙  ,ܫ׏

где ݀݅ݒ обозначает дивергенцию, ׏ – градиент, 
∆ – лапласиан,	ܿሺݔ, ,ݕ -ሻ – коэффициент диффуݐ
зии. Создатели ADF, П. Перона и Д. Малик, 
предложили две функции для расчета коэффи-
циента диффузии, одна из которых использова-
лась в настоящей работе: 

ܿሺݔ, ,ݕ ሻݐ ൌ ݃ሺ‖ܫ׏ሺݔ, ,ݕ ሻ‖ሻݐ ൌ ݁
ି൬
‖ூ׏‖
௄ ൰

మ

. 

Значение ܭ оказывает влияние на чувстви-
тельность к краям и выбирается эксперимен-
тально. Для подготовки изображений с примене-
нием ADF в рамках настоящего исследования ܭ 
принято равным 50, количество итераций ADF – 
2. Пример фрагмента изображения в базовом 
виде, к которому применена ADF, показан на 
Рис. 2, г. 

3. Практическая реализация 

Для создания, обучения и тестирования мо-
делей сегментации применен Keras, представля-
ющий собой верхнеуровневый программный 
интерфейс приложения (Application Program-
ming Interface, API) для платформы TensorFlow. 
Для обработки изображений использована биб-
лиотека OpenCV, для работы с файлами DICOM 
– пакет Pydicom. 

Для оценки моделей сегментации долей лег-
ких и легочных узлов использовались две мет-
рики: DSC и IoU. Для их расчета применяются 
следующие формулы: 

ܥܵܦ ൌ 2 ∙
݀݁ݎ݌| ∩ |݄ݐݑݎݐ_݀݊ݑ݋ݎ݃
|݀݁ݎ݌| ൅ |݄ݐݑݎݐ_݀݊ݑ݋ݎ݃|

	, 

ܷ݋ܫ ൌ
݀݁ݎ݌| ∩ |݄ݐݑݎݐ_݀݊ݑ݋ݎ݃
݀݁ݎ݌| ∪ |݄ݐݑݎݐ_݀݊ݑ݋ݎ݃

, 

где pred – предсказанная моделью маска, а 
ground_truth – истинная. Стоит отметить, что в 
случае мультиклассовой сегментации долей лег-
ких перед расчетом метрик выполняется преоб-
разование масок из одноканальных массивов, 
пикселям которых соответствуют значения от 0 
до 5, в такие бинарные маски, каждый канал  

которых соответствует отдельному классу (One 
Hot Encoding). Все модели обучались и тестиро-
вались на снимках размером 512×512 пикселей. 

3.1. Сегментация долей легких 

Набор данных для обучения модели сегмен-
тации долей легких сформирован из данных 
набора TotalSegmentator (версия 2.0.1). Этот 
набор содержит 1228 случайно отобранных в 
рамках клинической практики исследований КТ 
со 117 сегментированными анатомическими 
структурами [21]. Метки классов, соответствую-
щие пикселям масок сегментации, следующие: 

- 0 для фона; 
- 1 для нижней доли левого легкого;  
- 2 для верхней доли левого легкого; 
- 3 для нижней доли правого легкого; 
- 4 для средней доли правого легкого;  
- 5 для верхней доли правого легкого. 
Пример снимка КТ и соответствующей ему 

маски сегментации долей легкого показан на 
Рис. 3 (выбранный аксиальный срез содержит 
все доли, кроме верхней доли правого легкого).  

Для обучения модели сегментации долей лег-
ких из TotalSegmentator было отобрано 109930 
пар «снимок КТ, соответствующая ему маска 
мультиклассовой сегментации» (для обучения и 
валидации – 98126 пар, для тестирования – 
11804). Значения метрик DSC и IoU обученной 
модели, рассчитанные на тестовой выборке, со-
ставляют 0,9791 и 0,9591. Модель внедрена в 
модуль не только для определения того, к каким 
долям относятся обнаруживаемые узлы, но и 
для ограничения области интереса, соответству-
ющей легким, с целью уменьшения количества 
аксиальных срезов, которые обрабатываются 
моделью сегментации легочных узлов (это поз-
воляет экономить вычислительные и временные 
ресурсы, затрачиваемые на обработку одного 
исследования). 

3.2. Сегментация легочных узлов 

Наборы для обучения моделей сегментации 
легочных узлов были сформированы из данных 
набора LIDC-IDRI, содержащего в общей слож-
ности 1018 исследований КТ грудной клетки, 
собранных ретроспективно для 1010 уникаль-
ных пациентов. В LIDC-IDRI вошли исследова-
ния как со стандартной, так и с низкой дозами.  
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В процессе аннотации набора, включавшем 
фазы слепой и повторной открытой обработки 
исследований, принимали участие 12 рентгено-
логов. Каждое исследование отсматривалось че-
тырьмя рентгенологами, каждый обнаруженный 
узел идентифицировался как: 

1. узел, размер которого больше или равен 3 мм; 
2. узел, размер которого менее 3 мм; 
3. не узел (к этой категории относились дру-

гие легочные поражения, размеры которых бо-
лее и равны 3 мм). 

Для всех узлов, отнесенных к первой катего-
рии (размер ≥ 3 мм), выполнялось оконтурива-
ние [22]. В подвыборку, содержащую только ис-
следования с оконтуренными узлами, попало 
875 серий снимков КТ [23]. Снимки 708 из них 
вошли в обучающую выборку, 79 – в валидаци-
онную, 85 – в тестовую (в общей сложности для 
обучения и валидации моделей использовалась 
13071 пара «снимок КТ, соответствующая ему 
маска бинарной сегментации легочных узлов», 
для тестирования – 1503 пары). 

На базе полученного набора пар снимков и 
масок были подготовлены три набора данных: 
одноканальный и два трехканальных. Для их со-
здания был написан программный код, реализу-
ющий предобработки, суть которых изложена в 
теоретическом описании предлагаемого подхода. 

Для каждой из трех рассматриваемых архитектур 
(ResU-Net, Attention U-Net, Dense U-Net) было 
обучено по три модели на входных данных трех 
типов:  

- одноканальные изображения; 
- трехканальные изображения, второй ка-

нал в которых представляется снимками с при-
менением CLAHE; 

- трехканальные изображения, второй ка-
нал в которых представляется усредненными 
снимками. 

Стоит отметить, что 9 обученных моделей те-
стировались на данных того же типа, что и дан-
ные, на которых производилось их обучение. 
Значения метрик DSC и IoU, рассчитанные для 
моделей, приведены в Табл. 1. Для всех трех ар-
хитектур лучшие значения DSC (0,8570–0,8735) 
и IoU (0,7568–0,7881) продемонстрировали мо-
дели, обученные на снимках, к которым приме-
нен предложенный подход к предобработке с 
усреднением. Что касается моделей, обученных 
на данных, полученных с применением метода 
предобработки с CLAHE, для ResU-Net такая 
версия дала самые низкие значения DSC и IoU, 
а для Attention U-Net и Dense- U-Net – превосхо-
дящие метрики моделей с одноканальными 
входными данными, но уступающие метрикам 
моделей, работающих на трехканальных данных 

а б 

Рис. 3. Пример снимка КТ (а) и соответствующей ему маски сегментации долей лёгких (б) 
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с усреднением. Из моделей, обученных на трех-
канальных данных с усреднением, для внедре-
ния в программный модуль выбрана модель  
с архитектурой Attention U-Net, так как она 
имеет значение DSC, близкое к достигнутому 
моделью с архитектурой Dense U-Net, при этом 
превосходит ее по IoU, а также затрачивает на 
предсказание в 1,55 меньше времени (временная 
оценка усреднена для предсказаний на вычисли-
тельных устройствах с графическим процессо-
ром и без него), что является немаловажным 
фактором при необходимости обработки боль-
шого количества снимков. 

3.3. Представление выходных данных 

В качестве входных данных доработанного 
модуля выступают снимки КТ, хранящиеся в 
файлах DICOM. Эти снимки преобразуются с 
применением методов предварительной обра-
ботки и подаются на вход моделей сегментации 
для формирования бинарных масок легочных 
узлов и мультиклассовых масок долей легких. 
Массив масок, выдаваемый моделью сегмента-
ции легочных узлов, поступает на вход алгорит-
мов количественной оценки узлов в соответ-
ствии с рекомендациями по ведению легочных 
узлов Британского торакального общества, 
Флейшнеровского общества, Европейского кон-
сорциума по скринингу рака легкого и Lung-
RADS. Реализация этих алгоритмов подробно 
описана в работе [3]. Алгоритм формирования 
выходных данных модифицирован с учетом того, 
что для каждого узла стала доступна информация 
о том, в какой доле легкого он находится. В фор-
мируемом модулем структурированном отчете 
содержатся метаданные исследования, информа-
ция об объеме, двумерных размерах каждого из 
узлов, а также указание долей. Помимо отчета, 

модулем формируются изображения, представ-
ляющие собой обработанные аксиальные срезы 
КТ, содержащие узлы. На эти изображения  
наносятся дата и время обработки исследования 
модулем, контуры узлов, размеры их коротких и 
длинных осей (в мм), а также порядковые но-
мера для удобства соотнесения с данными об уз-
лах, содержащимися в DICOM SR. Также окон-
туриваются доли легких. Пример формируемого 
изображения показан на Рис. 4. 

Заключение 

Выполнена доработка разработанного ранее 
программного модуля определения размеров и 
объемов легочных узлов, благодаря которой  

Табл. 1. Значения DSC и IoU 

Тип входных снимков 
Архитектуры моделей сегментации 

ResU-Net Attention U-Net Dense U-Net 
Значения DSC 

одноканальные 0,8495 0,8509 0,8488 
трехканальные с CLAHE 0,8420 0,8529 0,8526 
трехканальные с усреднением 0,8570 0,8719 0,8735 

Значения IoU 
одноканальные 0,7091 0,6973 0,6878 
трехканальные с CLAHE 0,6967 0,7014 0,7030 
трехканальные с усреднением 0,7568 0,7881 0,7545 

Рис. 4. Пример аксиального среза с нанесёнными  
размерами узлов и контурами долей лёгких 
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может быть снижена нагрузка на рентгенологов 
на этапе формирования масок бинарной сегмен-
тации легочных узлов. Модуль в текущей  
версии выполняет анализ снимков КТ, в автома-
тическом режиме сегментирует легочные узлы, 
после чего определяет их размеры и объемы в 
соответствии с используемыми при проведении 
СРЛ рекомендациями по ведению легочных уз-
лов. Также добавлен функционал сегментации 
долей легких и определения принадлежности к 
ним обнаруживаемых узлов.  

Для решения задачи автоматизации процесса 
сегментации легочных узлов обучено 9 моделей 
с архитектурами ResU-Net, Attention U-Net и 
Dense U-Net. Из данных LIDC-IDRI сформиро-
вано три набора данных, содержащих снимки 
КТ в исходном виде и с применением двух пред-
лагаемых трехканальных методов предобра-
ботки. Для всех трех рассмотренных архитектур 
лучшие значения DSC и IoU продемонстриро-
вали модели, обученные на трехканальных 
снимках с усреднением (первый канал представ-
ляется изображением в базовом виде, второй – 
изображением с применением анизотропной 
диффузной фильтрации, третий – изображе-
нием, являющимся средним трех соседних акси-
альных срезов). Лучшее значение DSC (0,8735) 
из обученных в рамках исследования моделей 
продемонстрировала модель с архитектурой 
Dense U-Net, а IoU (0,7881) – с архитектурой 
Attention U-Net. В модуль внедрена модель с ар-
хитектурой Attention U-Net, работающая с трех-
канальными снимками с усреднением. Значения 
метрик DSC и IoU обученной на данных набора 
TotalSegmentator модели мультиклассовой сег-
ментации долей легких, имеющей архитектуру 
Attention U-Net, составляют 0,9791 и 0,9591. 

В рамках дальнейшей доработки разработан-
ного программного модуля возможна реализа-
ция функционала автоматической классифика-
ции легочных узлов. Также интерес 
представляет исследование влияния предложен-
ного трехканального метода предобработки 
снимков КТ с усреднением на точность моделей 
сегментации различных тканей и органов. 
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Abstract. The article describes a solution to the problem of automating the process of segmentation of 
pulmonary nodules on computed tomography scans to expand the functionality of the previously devel-
oped module for determining the size and volume of pulmonary nodules. The main focus of the article 
is on comparing the accuracy of the models with the ResU-Net, Attention U-Net and Dense U-Net ar-
chitectures when training on computed tomography images from the LIDC-IDRI dataset in their original 
form and using two proposed three-channel approaches to their preprocessing. For the three architec-
tures considered, the DSC and IoU values in the ranges 0.8570–0.8735 and 0.7545–0.7881 were 
achieved. The best metric values were demonstrated by models trained on three-channel images with 
averaging. In such images, the first channel is represented by a scan in its original form, the second by 
an averaged scan, and the third by a scan to which anisotropic diffuse filtration is applied. The obtained 
results allow us to conclude that the use of preprocessing methods is promising for improving the accu-
racy of segmentation. The article also describes the training of the lung lobes segmentation model using 
data from the TotalSegmentator dataset. The input data of the modified software module are computed 
tomography scans, and its output data are processed images and a structured report (DICOM SR). This 
report, in addition to data on the size and volume of pulmonary nodules, contains information on the 
lobes in which the detected nodules are located.  
Keywords: computer vision, segmentation, lung cancer, lung nodule, computed tomography, medical 
images, diagnostics, medical decision support system 
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