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Аннотация. Статья описывает исследование по разработке алгоритма для оценки сходимости сто-
хастической Парето-оптимизации. Актуальность работы обусловлена необходимостью снижения 
вычислительных затрат, возникающих при больших многокритериальных вычислениях, где требу-
ется учитывать множество конфликтующих критериев для поиска оптимальных решений. Одной из 
проблем в этом контексте является нахождение компромисса между точностью фронта Парето и 
ресурсами, необходимыми для его вычисления. В многокритериальной оптимизации важно оцени-
вать сходимость, чтобы избежать чрезмерного числа итераций, которые могут быть неэффектив-
ными с точки зрения улучшения результата. Проблема заключается в поиске оптимального количе-
ства итераций, при котором фронт Парето достигает достаточной точности, и дальнейшие итерации 
не приводят к значительному улучшению качества решений. Целью исследования является разра-
ботка алгоритма, который позволяет оценить сходимость фронта Парето и определить, когда можно 
завершить процесс оптимизации без потери качества решений. Результаты могут быть полезны спе-
циалистам, занимающимся задачами многокритериальной оптимизации и разработкой алгоритмов 
на основе стохастических условий. 
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Введение 

В задаче многокритериальной оптимизации 
целью является нахождение оптимального 
набора решений, которые формируют так назы-
ваемый фронт Парето [1]. Данный фронт содер-
жит такие решения, при которых улучшение од-
ного критерия невозможно без ухудшения 
другого [2]. Однако процесс нахождения и улуч-
шения фронта Парето может быть чрезвычайно 
вычислительно затратным, особенно при  

большом количестве итераций [3]. Проблема  
заключается в том, что с одной стороны, необ-
ходимо достаточное количество итераций для 
приближения к идеальному фронту Парето, а с 
другой – каждая итерация увеличивает вычисли-
тельные затраты [4; 5]. При малом числе итера-
ций фронт Парето будет недостаточно эффек-
тивным, а при чрезмерном количестве итераций 
процесс становится слишком долгим и ресурсо-
емким. Следовательно, необходимо разработать 
алгоритм, который бы позволил оценить опти-
мальное количество итераций, при котором 
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фронт Парето уже достаточно близок к глобаль-
ному оптимуму, но при этом затраты времени и 
вычислительных ресурсов минимальны. 

Таким образом, целью исследования является 
разработка алгоритма, который позволит оценить 
сходимость фронта Парето в процессе стохасти-
ческой оптимизации и определить оптимальное 
количество итераций, необходимое для достиже-
ния приемлемого качества решения при мини-
мальных затратах вычислительных ресурсов. Для 
этого требуется введение метрик, которые позво-
лили бы количественно оценивать качество 
фронта Парето и его приближение к идеальному 
состоянию. Такие метрики должны учитывать не 
только степень приближения к глобальному оп-
тимуму, но и ресурсоемкость процесса оптимиза-
ции, что делает задачу поиска эффективных ре-
шений еще более сложной. 

Теоретическая значимость исследования за-
ключается в развитии методов оценки сходимо-
сти многокритериальной оптимизации, в частно-
сти, в области стохастической Парето-
оптимизации. Разработанный алгоритм создает 
основу для дальнейших исследований в области 
оптимизации и моделирования сложных систем, 
пополняя методологическую и инструменталь-
ную базу. Практическая значимость работы  
проявляется в возможностях применения разра-
ботанного алгоритма в реальных задачах в таких 
областях, как инженерия, экономика, управление 
производственными процессами и IT-тех-
нологии. Алгоритм позволяет минимизировать 
время и вычислительные затраты, сохраняя при 
этом требуемое качество решений, что особенно 
актуально при работе с большими объемами дан-
ных и сложными вычислительными моделями. 

Материалы и методы 

Для решения данной задачи используется ме-
тод Монте-Карло, который применяется для ге-
нерации случайных сценариев [6], на основе ко-
торых проводится оценка качества получаемого 
фронта Парето. Данный метод основан на мно-
гократном случайном моделировании, что поз-
воляет учесть неопределенности и вариатив-
ность условий, в которых принимаются решения 
[7; 8], а также выявить наиболее усредненные 
варианты среди множества возможных. 

Основным инструментом анализа является 
принцип Парето, основанный на многокритери-
альной оптимизации. Многокритериальная опти-
мизация представляет собой процесс поиска  
решений, удовлетворяющих одновременно не-
скольким (часто конфликтующим) критериям 
[9]. В таких задачах не всегда возможно улуч-
шить один показатель без ухудшения других, что 
требует нахождения компромиссных решений. 

Фронт Парето представляет собой множе-
ство решений, каждое из которых не доминиру-
ется по всем критериям другими решениями, то 
есть ни одно из решений на фронте Парето не 
может быть улучшено по одному критерию без 
ухудшения хотя бы по одному другому [10; 11]. 
Таким образом, фронт Парето позволяет учиты-
вать только такие решения, которые являются 
оптимальными с точки зрения всех рассматри-
ваемых критериев, исключая доминируемые ва-
рианты и фокусируя внимание на тех, что обес-
печивают лучший возможный компромисс 
между конфликтующими целями [12]. 

Используемая модель, на основе которой 
формируется фронт Парето по генерации слу-
чайных сценариев, рассматривается как "чер-
ный ящик", то есть ее внутренняя структура и 
механизмы работы не должны приниматься во 
внимание при оценке эффективности получае-
мых решений. Принципиальная структура мо-
дели управления показана на Рис. 1. 

Данная принципиальная структура модели 
управления используется во многих организаци-
онных системах [13 - 15]. На приведенной схеме 
представлена структура модели управления с 
использованием метода Монте-Карло. Данная 
схема иллюстрирует основные этапы взаимо-
действия между элементами системы. Внешнее 
воздействие, реализуемое через метод Монте-
Карло, играет ключевую роль в генерации слу-
чайных сценариев, что позволяет учесть неопре-
деленности и вариативность условий. Получен-
ные сценарии поступают на вход модели, 
которая, преобразует входные данные в выход-
ные результаты, не раскрывая внутренней 
структуры или механизма работы. Выходные 
данные содержат множество решений, каждое 
из которых оценивается на предмет оптимально-
сти в рамках фронта Парето. Подсистема обрат-
ной связи используется для корректировки  
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сценариев управления на основе анализа выход-
ных данных, что позволяет адаптировать про-
цесс моделирования и постепенно улучшать ре-
зультаты, не дублируя одинаковые случайные 
сценарии. 

Результаты 

Для оценки сходимости Парето-оптимизации 
был разработан алгоритм, который состоит из 
нескольких ключевых шагов, обеспечивающих 
комплексный подход к анализу качества реше-
ний и эффективному определению момента 
остановки процесса оптимизации. Данный алго-
ритм позволяет наглядно и количественно оце-
нивать изменения в структуре фронта Парето по 
мере выполнения итераций, а также оптимизи-
ровать количество шагов, необходимых для до-
стижения качественного решения. Для демон-
страции работы алгоритма была произведена 
реализация на языке программирования Java. 
Разработанный алгоритм показан на Рис. 2. 

На начальном этапе определяется параметр n, 
который влияет на количество будущих стоха-
стически сгенерированных сценариев. Далее 
вычисляется t – коэффициент для метода Монте-
Карло, отражающий количество прогонов (ите-
раций). Данный коэффициент рассчитывается 
по формуле 1. 

 2N nt   (1)

где 1t  , 

2 maxlog ( )N K , 

maxK  – максимальное возможное количе-

ство сценариев. 
На следующем шаге происходит генерация 

2n
 случайных сценариев, после чего проверя-

ется максимизация или минимизация целевых 

Рис. 1. Принципиальная структура модели управления 

Рис. 2. Алгоритм оценки качества фронта Парето 
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функций. В случае если функции минимизиру-
ются, то происходит инвертирование перемен-
ных по формуле 2. 

 1
*

1
*

x
x

y
y

 

 
  

(2)

Данное действие необходимо для дальней-
шего применяемого способа оценки сходимости 
Парето-оптимизации. Фронт Парето при мини-
мизации целевых функций показан на Рис. 3. 

В данном случае необходимо инвертировать 
переменные, таким образом фронт будет пере-
вернут. Фронт Парето при инвертировании пе-
ременных показан на Рис. 4. 

После инвертирования переменных произво-
дится формирование сильного (строго выпук-
лого) фронта Парето. Сильный фронт представ-
ляет собой сглаженную версию фронта Парето, 
что позволяет нивелировать влияние небольших 
флуктуаций, шумов или случайных изменений 
[16]. Сильный фронт Парето строится путем ис-
ключения решений, которые являются слабыми 
с точки зрения оптимальности, то есть тех, кото-
рые уступают другим решениям по целевым 
функциям. Данный процесс позволяет получить 
более четкую и устойчивую кривую, которая 
представляет тенденцию к сходимости фронта 
Парето к оптимальному решению. Сильный 
фронт Парето показан на Рис. 5. 

Сглаживание важно для устранения локаль-
ных выбросов и шума [17], который может иска-
жать реальную картину сходимости. Таким обра-
зом, сильный фронт лучше отражает общую 
структуру множества решений и позволяет более 
объективно оценивать прогресс оптимизации. 

На следующем этапе проводится вычисление 
площади под сильным фронтом Парето, как по-
казано на Рис. 5. Площадь под кривой является 
важной количественной характеристикой, кото-
рая позволяет оценить качество решений на 
фронте. Большая площадь означает, что реше-
ния находятся ближе к глобальному оптимуму, 
то есть фронт представляет собой более каче-
ственные компромиссные решения. 

В ходе оптимизации на каждом шаге может 
происходить изменение структуры фронта Па-
рето, поэтому важно уметь корректно оценивать 

Рис. 3. Фронт Парето при минимизации целевых функций

Рис. 4. Фронт Парето при инвертировании переменных Рис. 5. Сильный фронт Парето 
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прогресс на ранних стадиях процесса. Для этого 
в алгоритм вводится механизм моделирования 
количества итераций методом Монте-Карло, ко-
торый помогает сгладить результаты на первых 
шагах оптимизации.  

Ранние этапы часто характеризуются быст-
рыми изменениями на фронте, так как алгоритм 
активно ищет возможные улучшения. Однако со 
временем эти изменения становятся менее зна-
чительными, и прогресс замедляется. Модели-
рование количества итераций помогает сгладить 
резкие скачки на начальных шагах и улучшить 
анализ фронта на протяжении всей оптимиза-
ции. Данный факт важен при работе с большим 
количеством итераций, когда ранние этапы про-
цесса требуют более тщательного анализа для 
оценки остаточной эффективности [18]. На ос-
нове множества сгенерированных вариантов 
производится расчет средней площади относи-
тельно количества сгенерированных сценариев.  

Заключительный этап алгоритма включает 
анализ процента изменений площади под кри-
вой. Данный шаг важен для определения мо-
мента, когда можно остановить процесс оптими-
зации, так как дальнейшее увеличение числа 
итераций не будет давать значительного улуч-
шения качества решений. Для этого на каждом 
шаге итераций вычисляется процентное измене-
ние площади под кривой по сравнению с преды-
дущим количеством сценариев по формуле 3. 

 
1

(2 )
1

(2 )

n

n

S
a

S     (3)

Если процентное изменение становится до-
статочно малым (например, менее необходимой 

точности приближения а от предыдущего шага), 
это свидетельствует о том, что процесс сходимо-
сти замедлился, и дальнейшая оптимизация не 
принесет существенных улучшений. График за-
висимости площади от количества итераций (в 
логарифмической шкале) показан на Рис. 6. 

Данный алгоритм позволяет оптимизировать 
количество сценариев, необходимых для полу-
чения качественного фронта Парето. Оптимиза-
ция продолжается до тех пор, пока изменения в 
качестве решений остаются значительными. Как 
только алгоритм достигает минимальных изме-
нений, он прекращает работу, что экономит вы-
числительные ресурсы и время. 

Также был построен график зависимости a 
(необходимой точности) от количества итера-
ций. Данный график показан на Рис. 7. 

На основе данной визуализации можно выби-
рать необходимую точность и настраивать сразу 
определенное количество генерации начальных 
сценариев. 

Обсуждение 

Разработанный алгоритм для оценки сходи-
мости стохастической Парето-оптимизации 
имеет свои сильные и слабые стороны. К силь-
ным сторонам можно отнести его способность 
эффективно вычислять точность фронта Парето 
с помощью расчета площади под сильным фрон-
том. Данный подход позволяет получить более 
точные оценки прогресса сходимости и избе-
жать избыточных итераций. Использование ме-
тода Монте-Карло в генерации случайных сце-
нариев способствует сглаживанию результатов 

Рис. 6. График зависимости площади от количества итераций 
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на первых шагах оптимизации, что делает алго-
ритм более адаптивным и универсальным в при-
менении. Однако среди слабых сторон алго-
ритма следует выделить его зависимость от 
качества сгенерированных сценариев. В случае 
недостаточного количества или плохого каче-
ства сценариев результаты могут быть иска-
жены. Также алгоритм может требовать увели-
ченных вычислительных ресурсов на ранних 
этапах, когда необходимо генерировать много 
итераций с малым набором сценариев для полу-
чения надежных результатов. 

Для более глубокого анализа эффективности 
алгоритма в дальнейшем необходимо рассчи-
тать асимптоту, к которой стремится сходи-
мость. Такие графики могут помочь оценить 
максимально возможный глобальный оптимум 
и позволят определить, насколько близко до-
стигнутые решения приближаются к этому оп-
тимуму. Построение асимптоты поможет вы-
явить, в каких точках алгоритм приближается к 
своему идеальному состоянию, что является 
ключевым при оптимизации вычислительных 
затрат. 

Перспектива применения разработанного ал-
горитма выходит за рамки стохастической Па-
рето-оптимизации. Алгоритм также может быть 
адаптирован для использования в других моде-
лях «черного ящика», где необходимо учиты-
вать неопределенности и множество критериев. 
Например, он может быть применен в задачах 
оптимизации процессов в киберфизических си-
стемах [19], а также в целом в организационных 
системах [20], где часто требуется находить 
компромиссные решения между конфликтую-

щими целями. Возможность генерации случай-
ных сценариев и анализа их влияния на итого-
вые решения делает алгоритм универсальным 
инструментом, который может значительно 
улучшить процесс принятия решений в сложных 
многокритериальных задачах. Таким образом, 
дальнейшие исследования в этом направлении 
могут открыть новые возможности для практи-
ческого применения алгоритма и его модифика-
ций в различных областях. 

Заключение 

В данной работе представлен алгоритм для 
оценки сходимости стохастической Парето-оп-
тимизации. Основное внимание в исследовании 
было уделено нахождению оптимального коли-
чества итераций, что позволяет эффективно сба-
лансировать качество решений и необходимые 
вычислительные ресурсы. Использование ме-
тода Монте-Карло для генерации случайных 
сценариев стало важным инструментом в оценке 
качества фронта Парето, поскольку он учиты-
вает сглаживание результатов на первых шагах 
оптимизации. Разработанный подход позволяет 
динамически оценивать, насколько быстро алго-
ритм достигает желаемого фронта, а также вы-
являть момент, когда дальнейшие итерации пе-
рестают существенно улучшать качество 
решений. 

Разработанный алгоритм предоставляет спе-
циалистам возможность более целенаправленно 
распределять ресурсы, что особенно важно в 
условиях ограниченных вычислительных мощ-
ностей. Для более глубокого анализа эффектив-
ности алгоритма в дальнейшем необходимо  

Рис. 7. График зависимости необходимой точности от количества сценариев 
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сосредоточиться на расчете асимптоты сходи-
мости, что позволит оценить максимально воз-
можный глобальный оптимум и определить, 
насколько близко достигнутые решения прибли-
жаются к этому оптимуму. 

Дальнейшие исследования в данном направ-
лении могут открыть новые возможности для 
практического применения алгоритма и его мо-
дификаций в различных областях. Разработан-
ный алгоритм не только способствует эффектив-
ному решению задач многокритериальной 
оптимизации, но и создает основу для дальней-
ших исследований в данной области. 
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Abstract. The research is devoted to the development of an algorithm for estimating the convergence 
of stochastic Pareto optimization. The relevance of the work is due to the need to reduce the computa-
tional costs that arise with large multi-criteria calculations, where it is necessary to take into account 
many conflicting criteria to find optimal solutions. One of the problems in this context is finding a 
compromise between the accuracy of the Pareto front and the resources needed to calculate it. In multi-
criteria optimization, it is important to evaluate convergence in order to avoid an excessive number of 
iterations, which may be ineffective in terms of improving the result. The problem lies in finding the 
optimal number of iterations, at which the Pareto front reaches sufficient accuracy, and further iterations 
do not lead to a significant improvement in the quality of solutions. The aim of the study is to develop 
an algorithm that allows us to evaluate the convergence of the Pareto front and determine when it is 
possible to complete the optimization process without losing the quality of solutions. The results can be 
useful for specialists involved in multi-criteria optimization tasks and the development of algorithms 
based on stochastic conditions. 
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DOI 10.14357/20718632240409 EDN HBLXQQ 

 
References 

1. Tirkolaee E.B., Goli A., Faridnia A., Soltani M., Weber 
G.W. Multi-objective optimization for the reliable pollu-
tion-routing problem with cross-dock selection using Pa-
reto-based algorithms. Journal of cleaner production. 
2020;276:122927. DOI: 10.1016/j.jclepro.2020.122927. 

2. Hua Y., Liu Q., Hao K., Jin Y. A survey of evolutionary algo-
rithms for multi-objective optimization problems with irregular 
Pareto fronts. IEEE/CAA Journal of Automatica Sinica. 
2021;8(2):303-318. DOI: 10.1109/JAS.2021.1003817. 

3. Asilian Bidgoli A., Rahnamayan S., Erdem B., Erdem Z., Ibra-
him A., Deb K., Grami A. Machine learning-based framework 
to cover optimal Pareto-front in many-objective optimization. 
Complex & Intelligent Systems. 2022;8(6):5287-5308. DOI: 
10.1007/s40747-022-00759-w. 

4. Gabdullin B.R., Senushkin D.S., Konushin A.S. Practical 
application of Multi Task Learning methods to the camera 
relocalization problem. Informacionnye processy. 

2024;24(2):163-172 (In Russ). DOI: 
10.53921/18195822_2024_24_2_163. 

5. Cocchi G., Lapucci M., Mansueto P. Pareto front approxi-
mation through a multi-objective augmented Lagrangian 
method. EURO Journal on Computational Optimization. 
2021;9:100008. DOI: 10.1016/j.ejco.2021.100008. 

6. Luengo D., Martino L., Bugallo M., Elvira V., Särkkä S. A 
survey of Monte Carlo methods for parameter estimation. 
EURASIP Journal on Advances in Signal Processing. 
2020;2020;1-62. DOI: 10.1186/s13634-020-00675-6. 

7. Hu X., Fang G., Yang J., Zhao L., Ge Y. Simplified models for 
uncertainty quantification of extreme events using Monte 
Carlo technique. Reliability Engineering & System Safety. 
2023;230:108935. DOI: 10.1016/j.ress.2022.108935. 

8. McFarland J., DeCarlo E. A Monte Carlo framework for 
probabilistic analysis and variance decomposition with dis-
tribution parameter uncertainty. Reliability Engineering & 
System Safety. 2020;197:106807. DOI: 
10.1016/j.ress.2020.106807. 



Алгоритм оценки сходимости тохастической Парето$оптимизации  

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2024 99 

9. Moraes C.C.F., Pinheiro P.R., Rolim I.G., Costa J. L.S., 
Junior M.S.E., Andrade, S.J.M.D. Using the multi-criteria 
model for optimization of operational routes of thermal 
power plants. Energies. 2021;14(12):3682. DOI: 
10.3390/en14123682. 

10. Xu Y., Zhang H., Huang L., Qu R., Nojima Y. A Pareto 
Front grid guided multi-objective evolutionary algorithm. 
Applied Soft Computing. 2023;136:110095. DOI: 
10.3390/en14123682. 

11. Pospelov K.N., Burlutskaya Z.V., Gintciak A.M., Tro-
shchenko K.D. Multiparametric Optimization of Complex 
System Management Scenarios Based on Simulation Mod-
els. International Journal of Technology. 2023;14(8):1748-
1758. DOI: 10.14716/ijtech.v14i8.6832. 

12. Null S.E., Olivares M.A., Cordera F., Lund J.R. Pareto op-
timality and compromise for environmental water manage-
ment. Water Resources Research. 
2021;57(10):e2020WR028296. DOI: 
10.1029/2020WR028296. 

13. Beketov S.M., Pospelov K.N., Redko S.G. A human capital 
simulation model in innovation projects. Control Sciences. 
2024;3:16-25. DOI 10.25728/cs.2024.3.2.  

14. Beketov S.M., Zubkova D.A., Redko S.G. Comparison of 
optimization methods in simulation models of complex or-
ganizational and technical systems. Modeling, Optimiza-
tion and Information Technology. 2024;12(3). (In Russ.). 
DOI: 10.26102/2310-6018/2024.46.3.027. 

15. Fedyaevskaya D.E., Burlutskaya Z.V., Gintciak A.M., 
Dixit S. Hierarchical cybernetic model of oil production en-
terprise with distributed decision-making centers Digital 
Transformation: What is the Company of Today? Cham: 
Springer Nature Switzerland. 2023;1:21-34. DOI: 
10.1007/978-3-031-46594-9_2. 

16. Feng W., Gong D., Yu Z. Multi-objective evolutionary op-
timization based on online perceiving Pareto front charac-
teristics. Information Sciences. 2021;581:912-931. DOI: 
10.1016/j.ins.2021.10.007. 

17. Kopyrin A.S., Vidishcheva E.V. Technologies of data pro-
cessing and cleaning, noise identification and removal at 
time series. Vestnik Akademii znanij. 2020;4(39):220-228 
(In Russ.). DOI: 10.24411/2304-6139-2020-10466. 

18. Nezami N., Anahideh H. Dynamic Exploration–Exploitation 
Pareto Approach for high-dimensional expensive black-box 
optimization. Computers & Operations Research. 
2024;166:106619. DOI: 10.1016/j.cor.2024.106619. 

19. Avetisyan T.V., L'vovich Y.E., Preobrazhenskiy A.P., 
Preobrazhensky Y.P. Investigation of the possibilities of 
optimizing the management processes of cyberphysical 
systems. Informatsionnye Tekhnologii i Vychslitel'nye Sis-
temy. 2023;2:96-105 (In Russ.). DOI: 
10.14357/20718632230210.  

20. Matveev V.V., Filatova T.A. Management methods of or-
ganizational systems under risk  and uncertainty for the pur-
pose of ensuring economic security. Nacional'naja bezopas-
nost' i strategicheskoe planirovanie. 2021;2:73-96 (In 
Russ.). DOI: 10.37468/2307-1400-2021-2-73-96. 

 
Beketov Salbek M. Laboratory of Digital modeling of Industrial systems, Peter the Great St. Petersburg Polytechnic University, 
29 Politehnicheskaja, St. Petersburg, 195251, Russian Federation.  Research interests: digital modeling, project management, data 
analytics, mathematical models of decision-making, management in organizational systems. E-mail: salbek.beketov@spbpu.com 

Gintciak Aleksei M. Candidate of technical sciences. Laboratory of Digital modeling of Industrial systems, Peter the Great  
St. Petersburg Polytechnic University, 29 Politehnicheskaja, St. Petersburg, 195251, Russian Federation.  Research interests: math-
ematical, simulation and digital modeling, artificial intelligence, optimization of production processes, optimization algorithms, 
multi-agent systems. Е-mail: aleksei.gintciak@spbpu.com 

Dergachev Maksim V. Peter the Great St. Petersburg Polytechnic University, 29 Politehnicheskaja, St. Petersburg, 195251, Rus-
sian Federation.  Research interests: IT project management, decision support systems, hybrid modeling, artificial intelligence, 
game theory. Е-mail: dergachev.mv@edu.spbstu.ru 


	91_99

