# Использование оптических регенераторов для увеличения информационной емкости современных волоконно-оптических линий связи<sup>1</sup>

Ю.И. Шокин, О.В. Штырина, С.К. Турицын, М.П. Федорук

Аннотация. Выполнено математическое моделирование многоканальных волоконно-оптических линий связи с периодической оптической 2R регенерацией информационных сигналов. Представлены результаты оптимизации конкретных конфигураций симметричных волоконных линий связи и показано, что дальность передачи в системах с периодической оптической регенерацией сигналов значительно превышает дальность передачи в аналогичных системах без оптических регенераторов.

### Введение

В настоящее время обсуждаются два пути дальнейшего резкого увеличения информационной емкости волоконно-оптических систем связи [1]:

 а) расширение спектральной области и увеличение общего числа частотных каналов;

б) увеличение скорости передачи информации индивидуального канала.

К числу наиболее перспективных способов увеличения пропускной способности одного частотного канала до скоростей передачи 40 Гбит/с и более относятся технологии дисперсионного управления (dispersion management) и оптической регенерации сигналов.

В системах с дисперсионным управлением используются периодически чередующиеся оптические волокна с противоположной по знаку хроматической дисперсией, что позволяет контролировать дисперсионное уширение импульса, повысить коэффициент отношения мощности сигнала к шуму и уменьшить влияние нелинейных эффектов на деградацию оптических импульсов (например, [2]).

Существуют различные типы оптической регенерации сигналов [3]:

- 1R-регенерация: восстановление амплитуды сигнала;

- 2R-регенерация: восстановление амплитуды и формы сигнала;

- 3R-регенерация: восстановление амплитуды, формы и временного положения сигнала.

В работе выполнено математическое моделирование дисперсионно-управляемых многоканальных волоконно-оптических линий связи со встроенными 2R оптическими регенераторами и скоростью передачи 40 Гбит/с в одном частотном канале. В качестве основного элемента таких устройств регенерации применяется так называемый насыщающийся поглотитель (saturable absorber) [4-7].

<sup>&</sup>lt;sup>1</sup> Данное исследование было поддержано грантом Президента Российской Федерации (№. НШ 9886.2006.9) и Интеграционным проектом СО РАН (№. 31).

## 1. Принципиальная схема и математическая модель оптического регенератора

Принцип работы насыщающегося поглотителя (SA) заключается в поглощении мощности входящего в него оптического сигнала, если она окажется ниже некоторой пороговой мощности насыщения  $P_{sat}$ . При мощностях, больших  $P_{sat}$ , коэффициент пропускания SA быстро возрастает и асимптотически приближается к единице. В таких условиях маломощное излучение усиленного спонтанного шума и фоновое дисперсионное излучение подавляются SA. Использование SA в сочетании с узкополосным оптическим фильтром (F) и сильно нелинейным волоконным световодом (HNF) позволяет подавить шумы в единичных битах.

in

Конкретная конфигурация оптического регенератора (OR) была выбрана после предварительного моделирования нескольких потенциально возможных схем. В настоящей работе рассмотрен оптический регенератор, элементы которого расположены по схеме на Рис.1.

Входной сигнал, запускаемый в оптический регенератор, сначала усиливается волоконным эрбиевым усилителем  $EDFA_{OR}$ . Затем импульс насыщается в SA. Функция потерь  $\alpha(t)$  в насыщающемся поглотителе (SA), зависящая от времени и мощности входного сигнала, описывается уравнением:

$$\frac{d\alpha(t)}{dt} = -\frac{\alpha(t) - \alpha_0}{\tau} - \frac{\alpha(t)P(z^*, t)}{\tau P_{sat}}, \qquad (1)$$

где  $P(z^*,t) = |A(z^*,t)|^2$  - распределение мощности сигнала,  $\alpha_0 = -3$  дБ - постоянные потери,  $z^* \equiv const$  - фиксированное расстояние,  $P_{sat}$ является пороговой мощностью насыщения,  $\tau$ соответствует времени спада импульса.

Тогда передаточная функция  $T(t) = 1 - \alpha(t, P(z^*, t))$  и действие SA на сигнал описываются следующим образом:

$$P_{out}(z^*,t) = [I - a(t, P_{in}(z^*,t))] \cdot P_{in}(z^*,t) = T(t) \cdot P_{in}(z^*,t).$$
(2)



Рис. 1. Схема оптического регенератора

Здесь  $P_{in}(z^*,t), P_{out}(z^*,t)$  - мощности сигнала соответственно на входе и выходе из насыщающегося поглотителя.

Затем сигнал распространяется по сильно нелинейному световоду (HNF) с аномальной дисперсией. Поскольку импульс обладает значительной энергией, он сужается при прохождении по HNF за счет фазовой самомодуляции и его спектр, соответственно, уширяется. Далее устанавливается оптический фильтр (F), который обеспечивает потери тем большие, чем выше энергия входного импульса. В результате происходит саморегуляция энергии сигнала.

Ширина оптического фильтра F, который имеет гауссову форму в расчетах, составляла 100-120 ГГц. Характерная длина HNF составляла 3-6 км. На выходе из OR средняя мощность сигнала восстанавливалась до своего первоначального значения с помощью устройства, называемого аттенюатором.

# 2. Примеры оптимизации конфигураций волоконнооптических линий передачи со спектральным уплотнением каналов

Принципиальная схема волоконнооптической линии связи показана на Рис.2а. Периодическая секция такой линии состоит из двух одинаковых кусков трансмиссионного волокна (TF) с положительной (аномальной) дисперсией и находящегося между ними куска дисперсионно-компенсирующегося волокна (СГ) с отрицательной (нормальной) дисперсией. Длина периодической ячейки линии составляла 60 км, расстояние между оптическими регенераторами было 300 км. Типы волоконных световодов и их параметры, используемые в расчетах, приведены в Табл. 1.

| Потери на 1550 нм         0.18 дБ/км           Эффективная площадь моды         110 µ m²           РSCF         Дисперсия         20 пс/нм/км           Дисперсия         20 пс/нм/км           Дисперсионный наклон         0.06 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.3 дБ/км           Эффективная площадь моды         20 µ m²           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -0.13 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.21 дБ/км           Эффективная площадь моды         60 µ m²           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Виснерсия         -16 пс/нм²/км           Ффективная площадь моды         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.5 дБ/км           Эффективная площадь моды         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км                                                        |             |                          |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|------------------------------------------|
| Эффективная площадь моды         110 $\mu$ м²           РSCF         Дисперсия         20 пс/нм/км           Дисперсия         20 пс/нм/км           Дисперсионный наклон         0.06 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.3 дБ/км           Эффективная площадь моды         20 $\mu$ м²           Дисперсия         -42 пс/нм/км           Дисперсия         -0.13 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.21 дБ/км           Эффективная площадь моды         60 $\mu$ м²           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 $\mu$ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км                                                             | PSCF        | Потери на 1550 нм        | 0.18 дБ/км                               |
| РSCF         Дисперсия         20 пс/нм/км           Дисперсионный наклон         0.06 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.3 дБ/км           Эффективная площадь моды         20 µ м²           Дисперсия         -42 пс/нм/км           Эффективная площадь моды         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Висперсия         -16 пс/нм²/км           Дисперсия         -16 пс/нм²/км           Дисперсия         -16 пс/нм²/км           Эффективная площадь моды         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Д                                                                                            |             | Эффективная площадь моды | 110 $\mu$ м $^2$                         |
| ПОСТ         Дисперсионный наклон         0.06 пс/нм²/км           Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.3 дБ/км           Эффективная площадь моды         20 µ м²           Дисперсия         -42 пс/нм/км           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Т         Дисперсия         8 пс/нм/км           Дисперсия         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм/км           Дисперсия         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Вофективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км                                                                                                                |             | Дисперсия                | 20 пс/нм/км                              |
| Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           Потери на 1550 нм         0.3 дБ/км           Эффективная площадь моды         20 µ м <sup>2</sup> Дисперсия         -42 пс/нм/км           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м <sup>2</sup> Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсия         10 гогу м <sup>2</sup> /Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м <sup>2</sup> Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м <sup>2</sup> Нолинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.5 дБ/км           Эффективная                           |             | Дисперсионный наклон     | 0.06 пс/нм <sup>2</sup> /км              |
| преломления         0.3 дБ/км           Потери на 1550 нм         0.3 дБ/км           Эффективная площадь моды         20 µ м²           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -20 µ м²           Потери на 1550 нм         -0.13 пс/нм²/км           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Нимг         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм                                                                                                     |             | Нелинейный показатель    | 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт |
| Потери на 1550 нм         0.3 дБ/км           Эффективная площадь моды         20 µ м²           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсия         -27 по <sup>20</sup> м²/Вт           преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Цансперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м² </td <td>преломления</td> <td></td>                                      |             | преломления              |                                          |
| Эффективная площадь моды         20 µ м²           RDF         Дисперсия         -42 пс/нм/км           Дисперсия         -42 пс/нм/км           Дисперсионный наклон         -0.13 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия                                                                                                    | RDF         | Потери на 1550 нм        | 0.3 дБ/км                                |
| RDF         Дисперсия         -42 пс/нм/км           Дисперсионный наклон         -0.13 пс/нм <sup>2</sup> /км           Нелинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 $\mu$ м <sup>2</sup> Дисперсия         8 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 $\mu$ м <sup>2</sup> Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм <sup>2</sup> /км           Нелинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 $\mu$ м <sup>2</sup> НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км |             | Эффективная площадь моды | 20 $\mu$ м²                              |
| ПСР и         Дисперсионный наклон         -0.13 пс/нм²/км           Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Эффективная площадь моды         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Цисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км     <                                                                   |             | Дисперсия                | -42 пс/нм/км                             |
| Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м <sup>2</sup> Дисперсия         8 пс/нм/км           Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м <sup>2</sup> Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм/км           Дисперсия         0.16 пс/нм <sup>2</sup> /км           Нелинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м <sup>2</sup> НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м <sup>2</sup> НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км                                                                 |             | Дисперсионный наклон     | -0.13 пс/нм <sup>2</sup> /км             |
| преломления         Остери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         0.08 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.16 пс/нм²/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           Цисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км                                                                                       |             | Нелинейный показатель    | 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт |
| Потери на 1550 нм         0.21 дБ/км           Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсионный наклон         0.08 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           НNF         Потери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           НNF         Дисперсия         2 пс/нм/км           Дисп                                                                                                     |             | преломления              |                                          |
| Эффективная площадь моды         60 µ м²           Дисперсия         8 пс/нм/км           Дисперсия         8 пс/нм/км           Дисперсионный наклон         0.08 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.16 пс/нм²/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 лс/нм²/Вт           преломления         0.03 пс/нм²/Км                                                                                                                                                      | TL          | Потери на 1550 нм        | 0.21 дБ/км                               |
| Дисперсия         8 пс/нм/км           Дисперсионный наклон         0.08 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.16 пс/нм²/км           Дисперсионный наклон         -0.16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -150 гс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           Цисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           Цисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.03 пс/нм²/км                                                                                                                                                                              |             | Эффективная площадь моды | 60 $\mu$ м²                              |
| ПО         Дисперсионный наклон         0.08 пс/нм²/км           Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.16 пс/нм²/км           Дисперсионный наклон         -0.16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -150 нм           Ологери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                          |             | Дисперсия                | 8 пс/нм/км                               |
| Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         -0.16 пс/нм²/км           Потери на 1550 нм         0.5 дБ/км           эффективная площадь моды         6.5 µ м²           Потери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           НNF         Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Эффективная площадь моды         6.5 µ м²           Имг         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.03 пс/нм²/км                                                                                                                                                                                                                                                                                                      |             | Дисперсионный наклон     | 0.08 пс/нм <sup>2</sup> /км              |
| преломления         0.28 дБ/км           Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           НNF         Дисперсия         2 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Нелинейный показатель    | 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт |
| Потери на 1550 нм         0.28 дБ/км           Эффективная площадь моды         28 µ м²           Дисперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Имгерсия         10 посери ма 1550 нм           Дисперсия         2 пс/нм/км           Дисперсия         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.03 пс/нм²/км                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | преломления              |                                          |
| Эффективная площадь моды         28 µ м²           Висперсия         -16 пс/нм/км           Дисперсия         -16 пс/нм²/км           Дисперсионный наклон         -0.16 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Нелинейный показатель         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R <i>TL</i> | Потери на 1550 нм        | 0.28 дБ/км                               |
| RTL         Дисперсия         -16 пс/нм/км           Дисперсионный наклон         -0.16 пс/нм <sup>2</sup> /км           Нелинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт           преломления         0.5 дБ/км           Эффективная площадь моды         6.5 $\mu$ м <sup>2</sup> Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Нелинейный показатель         0.03 пс/нм <sup>2</sup> /км           Нелинейный показатель         2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Эффективная площадь моды | 28 $\mu$ м²                              |
| Дисперсионный наклон         -0.16 пс/нм²/км           Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Дисперсия         2 пс/нм/км           Нелинейный показатель         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Дисперсия                | -16 пс/нм/км                             |
| Нелинейный показатель<br>преломления         2.7 10 <sup>-20</sup> м²/Вт           Потери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсияный наклон         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Дисперсионный наклон     | -0.16 пс/нм <sup>2</sup> /км             |
| преломления Потери на 1550 нм О.5 дБ/км Эффективная площадь моды 6.5 $\mu$ м <sup>2</sup> Дисперсия 2 пс/нм/км Дисперсионный наклон 0.03 пс/нм <sup>2</sup> /км Нелинейный показатель 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт преломления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Нелинейный показатель    | 2.7 10 <sup>-20</sup> м²/Вт              |
| Потери на 1550 нм         0.5 дБ/км           Эффективная площадь моды         6.5 µ м²           Дисперсия         2 пс/нм/км           Дисперсионный наклон         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | преломления              |                                          |
| Эффективная площадь моды         6.5         µ м²           НNF         Дисперсия         2 пс/нм/км           Дисперсионный наклон         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HNF         | Потери на 1550 нм        | 0.5 дБ/км                                |
| НNF         Дисперсия         2 пс/нм/км           Дисперсионный наклон         0.03 пс/нм²/км           Нелинейный показатель         2.7 10 <sup>-20</sup> м²/Вт           преломления         2.7 10 <sup>-20</sup> м²/Вт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Эффективная площадь моды | 6.5 $\mu$ м $^2$                         |
| Дисперсионный наклон 0.03 пс/нм <sup>2</sup> /км<br>Нелинейный показатель 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт<br>преломления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Дисперсия                | 2 пс/нм/км                               |
| Нелинейный показатель 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт преломления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Дисперсионный наклон     | 0.03 пс/нм <sup>2</sup> /км              |
| преломления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Нелинейный показатель    | 2.7 10 <sup>-20</sup> м <sup>2</sup> /Вт |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | преломления              |                                          |

Табл. 1. Типы волоконных световодов и их параметры



Рис. 2 Схема периодической ячейки линии передачи (а) и оптического регенератора в случае системы с четырьмя частотными каналами (b)

Распространение оптических импульсов вдоль волоконно-оптической линии связи описывается обобщенным нелинейным уравнением Шредингера (НУШ):

$$i\frac{\partial A}{\partial z} + i\gamma A - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} - i\frac{\beta_3}{6}\frac{\partial^3 A}{\partial t^3} + \sigma \left[ |A|^2 A + \frac{i}{\omega_0}\frac{\partial}{\partial t} (|A|^2 A) - T_R A \frac{\partial |A|^2}{\partial t} \right] = 0.$$
<sup>(3)</sup>

Здесь z — расстояние вдоль линии, t — время,  $|A|^2$  — мощность сигнала,  $\beta_2$  — параметр дисперсии групповой скорости,  $\beta_3$  — дисперсия третьего порядка, у — коэффициент затухания,  $\sigma$  — коэффициент керровской нелинейности, *T<sub>R</sub>* — время рамановского отклика. Величины  $\beta_2$ ,  $\beta_3$ ,  $\gamma$  и  $\sigma$  представлены функциями от z, что позволяет учесть изменения этих параметров при переходе от одного типа световода к другому. Коэффициент нелинейности  $\sigma$  определяется формулой  $\sigma = \frac{2\pi n_2}{\lambda_0 A_{eff}}$ , где *n*<sub>2</sub> — нелинейный показатель преломления,  $\lambda_0$ — несущая длина волны,  $\omega_0 = \frac{c_l}{\lambda_0}$  — круговая частота несущего сигнала,  $c_1$  — скорость света, *А*<sub>eff</sub> — эффективная площадь собственной моды световода. Для численного решения уравнения (3) ис-

Для численного решения уравнения (3) использовался метод расщепления по физическим процессам. Запишем это уравнение в операторной форме:

$$\frac{\partial A}{\partial z} = \left(\widetilde{D} + \widetilde{N}\right) A, \ (4)$$

где  $\tilde{D}$  обозначает оператор линейной части, учитывающий дисперсионные эффекты и затухание, а  $\tilde{N}$  — нелинейный оператор:

$$\widetilde{D} = -\gamma - i\frac{\beta_2}{2}\frac{\partial^2}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3}{\partial t^3},$$
(5)

$$\widetilde{N} = i\sigma \left[ \left| A \right|^2 + \frac{i}{\omega_0} \frac{1}{A} \frac{\partial}{\partial t} \left( \left| A \right|^2 A \right) - T_R \frac{\partial \left| A \right|^2}{\partial t} \right].$$
(6)

Решение НУШ формально можно записать в виде:

$$A(z+h,t) =$$

$$= \exp\left[\int_{z}^{z+\frac{h}{2}} \widetilde{N}(s)ds\right] \exp[h\widetilde{D}] \exp\left[\int_{z+\frac{h}{2}}^{z+h} \widetilde{N}(s)ds\right] A(z,t).$$
(7)

Оператор  $\exp[h\widetilde{D}]$  вычисляется в Фурье пространстве:

$$\exp[h\widetilde{D}]B(z,t) = \left\{F^{-1}\exp[h\widetilde{D}(i\omega)]F\right\}B(z,t), (8)$$

где F — оператор Фурье-преобразования. Можно показать, что схема имеет второй порядок точности по шагу h [8].

Ниже представлены только основные результаты расчетов по оптимизации волоконнооптических линий связи с пропускной способностью  $K \times 40$  Гбит/с, где K — число частотных каналов. Расстояние между соседними частотными каналами составляло 1.6 нм (200 ГГц) и в типичных расчетах рассматривалось от 4 до 8 каналов.

Основной характеристикой любой коммуникационной системы является величина коэффициента ошибки (Bit-Error Rate), которая определяет количество ошибочных битов к общему числу переданных битов [9]. Стандартным значением коэффициента ошибки является величина  $BER \le 10^{-9}$ , что соответствует одному ошибочно зарегистрированному биту на  $10^9$ переданных битов. Величины  $P_1$  и  $P_0$  определим как вероятности ошибки в регистрации "1" и "0" [9], соответственно:

$$P_1 = \int_{-\infty}^{I_d} p_1(x) dx, \quad P_0 = \int_{I_d}^{\infty} p_0(x) dx,$$

где *I<sub>d</sub>* — уровень разрешимости, который определяется из условия минимальности коэффици-

ента ошибки  $BER = \frac{P_1 + P_0}{2}$ .

Предположим, что плотности вероятностей нулей и единиц  $p_i$  (*i*=0,1) распределены по нормальному закону:

$$p_i(x) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

где  $\mu_i$  — средние значения,  $\sigma_i$  — дисперсии. Далее введем величину *Q*-фактора, которая связана с *BER* следующим образом:

$$BER = \frac{1}{2} erfc \left(\frac{Q}{\sqrt{2}}\right) \approx \frac{\exp\left(-\frac{Q^2}{4}\right)}{\sqrt{2\pi}Q}, \qquad (9)$$

где  $Q = \frac{\mu_1 - \mu_0}{\sigma_1 + \sigma_0}$ . Отметим, что коэффициенту

ошибки  $BER \le 10^{-9}$  соответствует значение  $Q \ge 6$ .

Оптический усилитель, помимо усиления входного оптического сигнала, добавляет к сигналу шумы усиленной спонтанной эмиссии (Amplified Spontaneous Emission). Наличие ASE вызывает уменьшение отношения сигнал/шум системы, увеличивает коэффициент ошибки и приводит к ухудшению передаточных характеристик волоконной линии связи.

Мощность оптического сигнала имеет некое оптимальное значение, поскольку при малой мощности шумы усиленной спонтанной эмиссии эрбиевых усилителей увеличивают коэффициент ошибки в передаче данных. Использование более мощных импульсов увеличивает отношение сигнал/шум, однако усиливается роль нелинейных эффектов, которые тоже ведут к деградации информационного сигнала. Поэтому имеется оптимальное значение пиковой мощности входных импульсов с фиксированной шириной, которое обеспечивает наилучший баланс между эффектами шума и нелинейности с точки зрения величины Q-фактора.

Исходной математической моделью, служащей для описания шумов усиленной спонтанной эмиссии, служит модель «белого шума». В случае эрбиевых волоконных усилителей спектральная плотность «белого шума» вычисляется по формуле:

$$S_{sp} = (G-1)n_{sp}h\nu,$$
(10)

где h — постоянная Планка, v — несущая частота сигнала, G — коэффициент усиления сигнала в усилителе,  $n_{sp}$  — коэффициент спонтанной эмиссии, который связан с коэффициентом

шума усилителя *NF* (amplifier noise figure) следующим соотношением:

$$NF = 2n_{sp}(G-1)/G.$$
 (11)

Для систем со спектральным уплотнением после демультиплексирования в каждом частотном канале использовался индивидуальный оптический регенератор, как это показано на Рис.2. Оптимизация была выполнена для двух конфигураций симметричных волоконнооптических линий связи:

a) PSCF + RDF + PSCF + EDFA,

$$(f) TL + RTL + TL + EDFA$$

с длиной периодической ячейки 60 км :и расстоянием между оптическими регенераторами 300 км.

Определим дистанцию передачи данных как расстояние, для которого величина Q-фактора  $Q \ge 6$ . Для вычисления дистанции передачи данных в расчетах использовалось от 5 до 11 псевдослучайных последовательностей по  $(2^7-1)$  битов в каждой, и дальность передачи в каждом из каналов определялась как медианное среднее по дистанциям, вычисленным в каждой последовательности [10]. Далее дистанция передачи выбиралась как наименьшее расстояние по всем возможным каналам.

Результаты массивных численных расчетов показаны на Рис.3-Рис.6. В представленных ниже расчетах рассматривались 4 частотных канала.

На Рис.3 показаны результаты оптимизации линии PSCF + RDF + PSCF + EDFA в плоскости параметров «средняя дисперсия линии входная пиковая мощность». Видно, что соответствующим выбором параметров оптического регенератора, входной пиковой мощности импульсов и средней дисперсии линии можно достичь дистанции передачи данных свыше 10000 км. Соответствующая система без оптических регенераторов демонстрирует дистанцию распространения около 2000 км.

Аналогичные результаты оптимизации линии TL + RTL + TL + EDFA представлены на Рис.4. Здесь при оптимальных параметрах системы удалось достичь дистанции распространения более 8000 км.



Рис. З Линии уровня дистанции передачи в зависимости от средней дисперсии  $\langle D \rangle$  и входной пиковой мощности Р<sub>0</sub> для симметричной дисперсионной конфигурации PSCF+RDF+PSCF+EDFA



Рис. 4 Линии уровня дистанции передачи в зависимости от средней дисперсии  $\langle D \rangle$  и входной пиковой мощности Р<sub>0</sub> для симметричной дисперсионной конфигурации TL+RTL+TL+EDFA



Рис. 5 Зависимость дистанции передачи данных *L* от мощности насыщения *P*<sub>sat</sub>



Рис. 6 Зависимость дистанции передачи данных L от параметра  $lpha_0$ 

На Рис.5 и Рис.6 представлены зависимости дистанции передачи для линии PSCF + RDF + PSCF + EDFA от параметров насыщающегося поглотителя  $P_{sat}$  и  $\alpha_0$ .

Сначала рассмотрим, как на характеристики системы влияет изменение мощности насыщения  $P_{sat}$ . На Рис.5 показана дистанция распространения (Q>6) в зависимости от мощности

насыщения. Штриховой линией показаны результаты, в которых все оптимальные параметры взяты для мощности насыщения  $P_{sat} = 7$  дБм, а сплошной линией приведены результаты полной оптимизации при заданной фиксированной мощности насыщения. Видно, что в пределах достаточно широкого изменения мощности насыщения 3–7 дБм дистанция распространения равна 10000 км.

Наконец рассмотрим, как изменение величины  $\alpha_0$  повлияет на характеристики системы. На Рис.6 показано изменение дистанции распространения с увеличением потерь в насыщающемся поглотителе (с увеличением модуля  $\alpha_0$ ). Штриховой линией показаны результаты, в которых все оптимальные параметры взяты для  $\alpha_0 = -3$  дБ, а сплошной линией - результаты полной оптимизации при заданной фиксированной величине  $\alpha_0$ . Очевидно, что увеличение этих потерь приводит к увеличению коэффициента усиления волоконного эрбиевого усилителя, расположенного в оптическом регенераторе, и, как следствие, к деградации оптического сигнала из-за нелинейных эффектов.

#### Заключение

В работе представлены результаты численного моделирования волоконно-оптических линий связи со встроенными оптическими регеоснове нераторами на насыщающегося поглотителя В режиме передачи данных 40 Гбит/сек в одном частотном канале. Выполнена оптимизация симметричных волоконнооптических линий связи со спектральным уп-PSCF + RDF +лотнением. Для линии '+ PSCF + EDFA достигнуты дистанции передачи более 10000 КМ. Для линии TL + RTL + TL + EDFA достигнуты дистанции распространения более 8000 км. Соответствующие системы без оптических регенераторов демонстрируют дистанцию распространения около 2000 км.

#### Литература

- 1. Дианов Е.М. От тера-эры к пета-эре // Вестник РАН 2000 Т.70 №11.- С.1010-1015.
- Massive WDM and TDM soliton transmission systems. A ROSC Symposium (Akira Hasegawa (Ed.)), Dordrerecht: Kluwer Academic Publishers, 2000.

- Leclerc O., Lavigne B., Balmefrezol E. et.al. All-optical signal regeneration : from first principles to a 40 Gbit/s system demonstration // C.R. Physique. – V.4. – 20003. – P.163-173.
- Audouin O., Pallise E., Desurvire E., Maunand E. Use of fast in-line saturable absorbers in wavelength-divisionmultiplexed soliton systems // IEEE Photon. Techn. Lett.– 1998.– V.10.– P.828-829.
- Rouvillain D., Brindel P., Seguineau F.et al. Optical 2R regenerator based on passive saturable absorber for 40 Gbit/s WDM long-haul transmission // Electron. Lett.– 2002.– V.38.– P.1113-1114.
- 6. Govan D.S., Smith N.J., Knox W.M., Doran N.J. Stable propagation of solitons with increased energy through the

combined action of dispersion management and periodic saturable absorption // JOSA B.- 1997.- V.14.- P.2960-2966.

- Matsumoto M., Leclerc O. Analysis of 2R optical regenerator utilising self-phase modulation in highly nonlinear fibre // Electron. Lett. – 2002. – V.38. – P.576-577.
- 8. Agrawal G.P. Nonlinear Fiber Optics. New York: Academic Press, 2001.
- Agrawal G.P. Fiber-Optic Communication Systems. Second edition. New York: John Wiley & Sons, Inc., 1997.
- 10. Shapiro E.G., Fedoruk M.P., Turitsyn S.K. Numerical estimate of BER in optical systems with strong patterning effects // Electron. Lett. 2001. V.37.– №.19.

Шокин Юрий Иванович. Родился в 1943 году. Окончил Новосибирский государственный университет в 1966 году. Доктор физико-математических наук (1980), академик РАН (1994). Автор 280 научных работ, в том числе 18 монографий. Специалист в области прикладной математики и информатики, математического моделирования. Директор Института вычислительных технологий СО РАН (ИВТ СО РАН).

Штырина Ольга Владимировна. Родилась в 1980 году. Окончила Новосибирский государственный университет в 2003 году. Кандидат физико-математических наук (2006г.). Автор 11 научных работ. Специалист в области математического моделирования. Научный сотрудник ИВТ СО РАН.

**Турицын Сергей Константинович.** Родился в 1960 году. Окончил Новосибирский государственный университет в 1982 году. Кандидат физико-математических наук (1986г.). Автор 175 научных работ и 8 параграфов в книгах. Специалист в области теоретической физики. Профессор Астоновского университета (г. Бирмингем), Великобритания.

Федорук Михаил Петрович. Родился в 1956 году. Окончил Новосибирский государственный университет в 1982 году. Доктор физико-математических наук (1999г.). Автор 115 научных работ, в том числе 3-х монографий. Специалист в области математического моделирования нелинейных процессов в физике. Заместитель директора по научной работе ИВТ СО РАН.