INTELLIGENCE SYSTEMS AND TECHNOLOGIES
A. S. Ten Comparison of ML and DL Methods in the Problem of Classifying TEC Waveforms
MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
APPLIED ASPECTS OF COMPUTER SCIENCE
MATHEMATICAL MODELLING
A. S. Ten Comparison of ML and DL Methods in the Problem of Classifying TEC Waveforms
Abstract. 

The results of developing an algorithm for the automated detection of covolcanic ionospheric disturbances are presented. The algorithm employs supervised machine learning models, such as Random Forest and gradient boosting (XGBoost), as well as unsupervised approaches including PCA, KNN, Isolation Forest, and neural networks like FCN and InceptionTime, trained to classify ionospheric total electron content time series derived from GNSS data. XGBoost, trained on wavelet-based features, achieved 68.75% detection accuracy on the test set with an average of 0.15 false positives. When trained on Fourier transform-based features, the same model reached a detection accuracy of up to 81.25%, with an average of 0.27 false positives. While wavelet-based features demonstrated greater versatility, Fourier-based features provided higher accuracy due to their specificity. Neural networks (FCN and InceptionTime) achieved up to 98% detection rates but exhibited a higher false positive rate of up to 0.22 per file. Unsupervised methods showed a high false positive rate (up to 0.61 on average) while detecting up to 99% of disturbances, making them valuable for preliminary data annotation. 

Keywords: 

ionosphere, covolcanic disturbances, machine learning, remote sensing, GNSS, wavelet.

DOI 10.14357/20718632250103

EDN KAVPJL

PP. 26-38.

References

1. Astafyeva E. Ionospheric Detection of Natural Hazards. Reviews of Geophysics. 2019;57(4):1265–88. 
2. Klobuchar JA. Ionospheric time-delay algorithm for singlefrequency GPS users. IEEE Transactions on Aerospace and Electronic Systems. 1987;AES-23:325–31.
3. Hofmann-Wellenhof B, Lichtenegger H, Wasle E. GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo & more (Japanese language). Translation of the first edition of the Springer Publishing Com. Deutschland: Springer Verlag; 2008. 
4. Efendi E, Arikan F. A fast algorithm for automatic detection of ionospheric disturbances: DROT. Advances in Space Research. 2017.;59(12):2923–33.
5. Trnkoczy A. Understanding and parameter setting of STA/LTA trigger algorithm. 2009. 
6. Kapil C, Seemala GK. Machine learning approach for detection of plasma depletions from TEC. Advances in Space Research. 2023;
7. Melgarejo-Morales A, Esteban Vazquez-Becerra G, Millan-Almaraz JR, Martinez-Felix CA, Shah M. Applying support vector machine (SVM) using GPS-TEC and Space Weather parameters to distinguish ionospheric disturbances possibly related to earthquakes. Advances in Space Research. 2023 г.;72(10):4420–34. 
8. Hammer C, Ohrnberger M, Fäh D. Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophysical Journal International. 2012;192(1):425–39. 
9. Brissaud Q, Astafyeva E. Near-real-time detection of coseismic ionospheric disturbances using machine learning. Geophysical Journal International. 2022 ;230(3):2117–30. 
10. Shestakov N, Orlyakovskiy A, Perevalova N, Titkov N, Chebrov D, Ohzono M, и др. Investigation of ionospheric response to june 2009 sarychev peak volcano eruption. Remote Sensing. 2021;13(4). 
11. Abbrescia M, Avanzini C, Baldini L, Ferroli RB, Batignani G, Battaglieri M, et al. Observation of Rayleigh-Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption with the POLA detectors at Ny-Ålesund. Scientific Reports. 2022;12(1):19978. 
12. Shults K, Astafyeva E, Adourian S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. Journal of Geophysical Research: Space Physics. 2016 г.;121(10):10,303-10,315.
13. Tsuji H, Hatanaka Y, Hiyama Y, Yamaguchi K, Furuya T, Kawamoto S, et al. Twenty-Year Successful Operation of GEONET. Bulletin of the Geospatial Information Authority of Japan. 2017 г.;65:19–44.
14. Kogan MG, Vasilenko NF, Frolov DI, Freymueller JT, Steblov GM, Prytkov AS, et al. Rapid postseismic relaxation after the great 2006–2007 Kuril earthquakes from GPS observations in 2007–2011. Journal of Geophysical Research: Solid Earth. 2013;118(7):3691–706.
15. Levin VE, Bakhtiarov VF, Titkov NN, Serovetnikov SS, Magus’kin MA, Lander AV. Contemporary crustal movements (CCMs) in Kamchatka. Izvestiya, Physics of the Solid Earth. 2014;50(6):732–51. 
16. Astafyeva E, Maletckii B, Mikesell TD, Munaibari E, Ravanelli M, Coisson P, и др. The 15 january 2022 hunga tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters. 2022;49(10):e2022GL098827.
17. França RP, Borges Monteiro AC, Arthur R, Iano Y. Chapter 3 - An overview of deep learning in big data, image, and signal processing in the modern digital age. В: Piuri V, Raj S, Genovese A, Srivastava R, редакторы. Trends in deep learning methodologies. Academic Press; 2021;63–87. (Hybrid computational intelligence for pattern analysis).
18. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.
19. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. В: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2016. (KDD ’16).
20. Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller PA. Deep learning for time series classification: a review. Data Mining and Knowledge Discovery. 2018;33:917–63.
21. Ismail Fawaz H, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, et al. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery. 2020.;34(6):1936–62.
22. Shyu ML, Chen S, Sarinnapakorn K, Chang L. A novel anomaly detection scheme based on principal component classifier. 2003.
23. Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. SIGMOD Rec. 2000;29(2):427–38.
24. Liu FT, Ting KM, Zhou ZH. Isolation-based anomaly detection. ACM Trans Knowl Discov Data. 2012;6(1).
25. Li D, Bissyande TF, Klein J, Traon YL. Time Series Classification with Discrete Wavelet Transformed Data. Int J Soft Eng Knowl Eng. 2016;26(09n10):1361–77.
26. Yan L, Liu Y, Liu Y. Application of Discrete Wavelet Transform in Shapelet-Based Classification. Mathematical Problems in Engineering. 2020;2020(1):6523872.
27. Kumar G S S, Sampathila N, Tanmay T. Wavelet based machine learning models for classification of human emotions using EEG signal. Measurement: Sensors. 2022;24:100554.
28. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6.
29. Ahsan MM, Mahmud MAP, Saha PK, Gupta KD, Siddique Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies. 2021;9(3).
30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research. 2011;12:2825–30.
31. Zhao Y, Nasrullah Z, Li Z. PyOD: a python toolbox for scalable outlier detection. 2019. https://arxiv.org/abs/1901.01588 
32. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019;1(5):206–15.
33. Ten A, Shestakov N, Sorokin A, Titkov N, Ohzono M, Takahashi H. Application of machine learning methods for detection of covolcanic ionospheric disturbances by GNSS observations data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2023;20:37–54. DOI:10.21046/2070-7401-2023-20-1-37-54 (in russ.)
34. Ten AS, Sorokin AA, Shestakov NV. Detecting covolcanic ionospheric disturbances using GNSS data and a machine learning algorithm. Advances in Space Research. doi: 10.1016/j.asr.2024.10.030
35. Sorokin AA, Makogonov SV, Korolev SP. The Information Infrastructure for Collective Scientific Work in the Far East of Russia. Scientific and Technical Information Processing. 2017;44(4):302–4.

2025 / 03
2025 / 02
2025 / 01
2024 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".