INTELLIGENCE SYSTEMS AND TECHNOLOGIES
MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
M. R. Salikhov An Algorithm for Caricaturing Ephemeral Keys for Distributed Cryptographic Key Storage Systems
APPLIED ASPECTS OF COMPUTER SCIENCE
MATHEMATICAL MODELLING
M. R. Salikhov An Algorithm for Caricaturing Ephemeral Keys for Distributed Cryptographic Key Storage Systems
Abstract. 

The article describes a key management system in which the master key serves as the basis for generating ephemeral keys with a limited validity period. This master key is stored in a secure container, which significantly reduces the risk of losing it. The master key is used only after the successful assembly of one of the ephemeral keys from its component parts (shards). This approach ensures a high level of security and flexibility of the system, minimizing the likelihood of leakage of key information and making it more resistant to possible attacks. 

Keywords: 

cryptography, information security, distributed storage systems. 

DOI 10.14357/20718632250107

EDN RUXZDO

PP. 74-84.

References

1. S. M. Danish, K. Zhang and H.-A. Jacobsen, "BlockAM: An adaptive middleware for intelligent data storage selection for Internet of Things", Proc. IEEE Int. Conf. Decentralized Appl. Infrastructures (DAPPS), pp. 61-71, Aug. 2020.
2. P. S. Austria, Analysis of blockchain-based storage systems, 2020.
3. R. Kothari, B. Jakheliya and V. Sawant, "Implementation of a distributed P2P storage network", Proc. IEEE Int. Conf. Innov. Technol. (INOCON), Nov. 2020
4. M. U. Javed, M. Rehman, N. Javaid, A. Aldegheishem, N. Alrajeh and M. Tahir, "Blockchain-based secure data storage for distributed vehicular networks", Appl. Sci., vol. 10, no. 6, pp. 2011, Mar. 2020.
5. Challenges With Storing Content on Blockchains and DLTs, [online] Available: https://ipfs.io/.
6. R. Schumi, Y. Ranka, J. Bagrecha, K. Gandhi, B. Sarvaria and P. Chawan, "A survey on file storage & retrieval using blockchain technology", Int. Res. J. Eng. Technol., vol. 5, no. 10, pp. 763, 2008, [online] Available: https://www.irjet.net/
7. H. Lutfiyya, 15th International Conference on Network and Service Management; 1st International Workshop on Analytics for Service and Application Management (AnServApp 2019); International Workshop on High-Precision Networks Operations and Control Segment Routing and Service Function Chaining (HiP Net+SR/SFC 2019), Oct. 2019.
8. P.-H. Ko, Y.-L. Hsueh and C.-W. Hsueh, "A low-storage blockchain framework based on incentive pricing strategies", FinTech, vol. 1, no. 3, pp. 250-275, Sep. 2022. 
9. N. Z. Benisi, M. Aminian and B. Javadi, "Blockchainbased decentralized storage networks: A survey", J. Netw. Comput. Appl., vol. 162, Jul. 2020.
10. B. Produit, Using blockchain technology in distributed storage systems, 2018.
11. S. Vimal and S. K. Srivatsa, "A new cluster P2P file sharing system based on IPFS and blockchain technology", J. Ambient Intell. Humanized Comput., vol. 23, pp. 1-7, Sep. 2019.
12. G. Wang, Z. Shi, M. Nixon and S. Han, "ChainSplitter: Towards blockchain-based industrial IoT architecture for supporting hierarchical storage", Proc. IEEE Int. Conf. Blockchain (Blockchain), pp. 166-175, Jul. 2019.
13. Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, and Wenjing Lou. Secure deduplication with efficient and reliable convergent key management. IEEE transactions on parallel and distributed systems, 25(6):1615–1625, 2013.
14. David Schultz, Barbara Liskov, and Moses Liskov. Mpss: mobile proactive secret sharing. ACM Transactions on Information and System Security (TISSEC), 13(4):1– 32, 2010.
15. Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing or: How to cope with perpetual leakage. In Proc. of the CRYPTO, pages 339–352. Springer, 1995
16. Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels, and Dawn Song. Churp: dynamic-committee proactive secret sharing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 2369–2386, 2019.
17. En Zhang, Ming Li, Siu-Ming Yiu, Jiao Du, Jun-Zhe Zhu, and Gang-Gang Jin. Fair hierarchical secret sharing scheme based on smart contract. Information Sciences, 546:166–176, 2021.
18. Jiangtao Yuan, Jing Yang, Chenyu Wang, Xingxing Jia, Fang-Wei Fu, and Guoai Xu. A new efficient hierarchical multi-secret sharing scheme based on linear homogeneous recurrence relations. Information Sciences, 592:36–49, 2022.
19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy (SP), pages 157–174. IEEE, 2019.
20. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979. 
21. Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing or: How to cope with perpetual leakage. In annual international cryptology conference, pages 339–352. Springer, 1995.
22. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when you wake up: Proactive threshold wallets with offline devices. In 2021 IEEE Symposium on Security and Privacy (SP), pages 608–625. IEEE, 2021.
23. Jun Zhou, Zhenfu Cao, Xiaolei Dong, Naixue Xiong, and Athanasios V Vasilakos. 4s: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Information Sciences, 314:255–276, 2015.
24. Tamir Tassa. Hierarchical threshold secret sharing. Journal of cryptology, 20(2):237–264, 2007. 
25. Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco Palmieri, Aniello Castiglione, Jin Li, and Xinyi Huang. Hierarchical and shared access control. IEEE Transactions on Information Forensics and Security, 11(4):850–865, 2016.
26. Yvo Desmedt, Songbao Mo, and Arkadii M Slinko. Framing in secret sharing. IEEE Transactions on Information Forensics and Security, 16:2836–2842, 2021. 
27. H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF scheme,” in Advances in Cryptology – CRYPTO 2010. Springer Berlin Heidelberg, 2010, pp.631–648. [Online]. Available: https://doi.org/10.1007/978-3-642-14623-7 34 
28. R. Housley, “Algorithm identifiers for the HMAC-based extract- andexpand key derivation function (HKDF),” Tech. Rep., Jun 2019. [Online]. Available: https://doi.org/10.17487/rfc8619
29. H. Krawczyk and P. Eronen, “HMAC-based extract-and-expand key derivation function (HKDF),” Tech. Rep., May 2010. [Online]. Available: https://doi.org/10.17487/rfc5869
30. https://pycryptodome.readthedocs.io/en/latest/src/protocol/kdf.html#hkdf 
31. Salikhov M.R. Model of a distributed storage system for private keys of crypto wallets // Problems of information security. Computer systems - 2024. - № 2(59). - Pp. 117-129.

2025 / 03
2025 / 02
2025 / 01
2024 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".