|
Abstract.
Recently, quantum technologies have been experiencing a remarkable growth. The scientific community faces the problem of development of universal e-learning systems, taking into account most of the difficulties related to the entry of an untrained person into the field of quantum technologies, and allowing him to develop himself up to the professional level. It appears to us that originally Australian startup Q-CTRL, being a pioneer of quantum infrastructure software to make quantum technologies useful and previous year winner of the Digital Courseware Solution of the Year Award by EdTech Breakthrough for its quantum computing workforce development educational platform, has designed currently the most successful e-learning educational environment Black Opal. In this work we are willing to imaginatively explore and, if possible, develop formats of introduction of both the qubit conception and basic quantum operations on it in Black Opal. Operations X, Y, Z were taken as an example. The rationale of this paper was to present the Black Opal graphical representation of the set of operations X, Y, Z in the form, which is most accessible for readers who are completely unaware of the subject. On this way, we considered it relevant to offer a description of the corresponding operations in three formats at once: mathematical, graphical and textual. It is assumed that this form of material presentation will allow to quickly master the material to the largest possible audience, stimulating, eventually, the emergence of a cluster of professionals in the field of quantum technologies.
Keywords:
quantum computing, qubit, Black Opal system, quantum single-qubit operations.
DOI 10.14357/20718632250109
EDN XFMZUX
PP. 93-105.
References
1. Yanofsky N.S., Mannucci M.A. Quantum Computing for Computer Scientists. New York: Cambridge University Press; 2008. 402 p. 2. Bley J., Rexigel E., Arias A., Longen N., Krupp L., KieferEmmanouilidis M., Lukowicz P., Donhauser A., Küchemann S., Kuhn J., Widera A. Visualizing entanglement in multiqubit systems, Phys. Rev. Res. 2024;6(2):023077. doi:10.1103/PhysRevResearch.6.023077 3. Q-CTRL. Available from: https://q-ctrl.com/ [Accessed 21 November 2024]. 4. Migdal P., Jankiewicz K., Grabarz P., Decaroli Ch., Cochin Ph., Visualizing quantum mechanics in an interactive simulation – Virtual Lab by Quantum Flytrap, Opt. Eng. 2022;61(8):081808. doi:10.1117/1.OE.61.8.081808 5. Economou S.E., Rudolph T., Barnes E. Teaching quantum information science to high-school and early undergraduate students. arXiv preprint arXiv:2005.07874. 6. Bley J., Rexigel E., Arias A., Krupp L., Steinert S., Longen N., Lukowicz P., Küchemann S., Kuhn J., Kiefer-Emmanouilidis M., Widera A. Multi-qubit state visualizations to support problem solving − a pilot study. arXiv preprint arXiv:2406.16556. 7. Tao Z., Pan Y., Chen A., Wang L. ShorVis: A comprehensive case study of quantum computing visualization. In: Proceedings of 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017. 21-22 October 2017, Zhengzhou, China. IEEE Computer Society; 2017. P. 360-365. doi:10.1109/ICVRV.2017.00082. 8. de Wolf R. The potential impact of quantum computers on society. Ethics Inf. Technol. 2017;19(4):271-276. doi:10.1007/s10676-017-9439-z 9. Peterssen G. Quantum technology impact: The necessary workforce for developing quantum software. In: QuANtum SoftWare Engineering & pRogramming 2020: CEUR Workshop Proceedings, QANSWER 2020. Vol. 2561. 11-12 February 2020, Talavera de la Reina, Spain, 2020, P. 6-22. 10. Combarro E.F., Vallecorsa S., Rodríguez-Muñiz L.J., Aguilar-González Á., Ranilla J., Meglio A.D. A report on teaching a series of online lectures on quantum computing from CERN. J. Supercomput. 2021;77(12):14405-14435. doi:10.1007/s11227-021-03847-9 11. Quantum Quest. Available from: https://www.quantumquest.org/ [Accessed 21 November 2024]. 12. Wolf R.A. Quantum error correction for kids. arXiv preprint arXiv:2405.06795. 13. Carreño M.J., Sepúlveda J., Tecpan S., Hernández C., Herrera F. An instrument-free demonstration of quantum key distribution for high-school students. Phys. Educ. 2019;54(6):065006. doi:10.1088/1361-6552/ab377c 14. Kavokin A. Acronis and the Quantum Computer. Printopya; 2022. 152 p. 15. Quantum Girls. Available from: https://www.quantumgirls.org/ [Accessed 21 November 2024]. 16. Adams K., Lonshakova A., Blair D., Treagust D., Kaur T. Spin(ing) into the classroom: Quantum spin activities for Year 6-10 physics. arXiv preprint arXiv:2405.05528. 17. Greinert F., Müller R., Bitzenbauer Ph., Ubben M.S., Weber K.-A. Future quantum workforce: Competences, requirements, and forecasts. Phys. Rev. Phys. Educ. Res. 2023;19(1):010137. doi:10.1103/PhysRevPhysEducRes.19.010137 18. Borish V., Lewandowski H.J. Seeing quantum effects in experiments. Phys. Rev. Phys. Educ. Res. 2023;19(2):020144. doi:10.1103/PhysRevPhysEducRes.19.020144 19. 2024 EdTech Breakthrough Award Winners. Available from: https://edtechbreakthrough.com/edtech-2024-winners/ [Accessed 21 November 2024]. 20. Q-CTRL and the Quad Investors Network partner to build diverse quantum workforces in Australia and the US. Available from: https://q-ctrl.com/blog/q-ctrl-and-the-quad-investors-network-partner-to-build-diverse-quantum-workforces-in-australia-and-the-us [Accessed 21 November 2024]. 21. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. New York: Cambridge University Press; 2010. 702 p. 22. Johnston E.R., Harrigan N., Gimeno-Segovia, M. Programming Quantum Computers: Essential Algorithms and Code Samples. Beijing, Boston, Farnham, Sebastopol, Tokyo: O’Reilly Media; 2019. 336 p. 23. Kaye Ph., Laflamme R., Mosca M. An Introduction to Quantum Computing. New York: Oxford University Press; 2006. 274 p. 24. Ruan Sh., Yuan R., Guan Q., Lin Y., Mao Y., Jiang W., Wang Zh., Xu W., Wang Y. VENUS: A geometrical representation for quantum state visualization. Comput. Graph. Forum. 2023;42(3):247-258. doi:10.1111/cgf.14827 25. Chang L.-H.H., Roccaforte Sh., Xu Z., Cadden-Zimansky P. Geometric visualizations of single and entangled qubits featured. Am. J. Phys. 2024;92(7):528-537. doi:10.1119/5.0137901
|