Двухканальный подход к выделению опорного поля потоков дактилоскопических изображений

В. Ю. Гудков

В статье в рамках концепции многослойной иерархической обработки дактилоскопических изображений предлагается метод выделения опорного поля потоков. Опорное поле потоков служит основой для вычленения информативных областей изображения и опирается на классификацию потоков по критерию однородности.

1. Постановка задачи

Для дактилоскопического изображения (ДИ) строится пирамида в виде иерархических группировок слоев, содержащих ДИ и другие множества данных в виде матриц $\{\Delta_h^{(dk)}\}, \{\Lambda_h^{(dk)}\}, \{\Delta_h^{(k)}\}, \{\Lambda_h^{(k)}\}\ [1], где \ k \in \{0,1\}$ канал «тени» и «света»; $d \in D = 0..3$ — направления, по которым производились измерения потоков, отличающиеся на 45 градусов; $\{\Delta_h^{(dk)}\}\$ множества как матрицы потоков для направлений d в канале k и соответствующие этим потокам матрицы достоверностей $\{\Lambda_h^{(dk)}\}; \{\Delta_h^{(k)}\}\$ множество как матрица потоков победителей в канале k, собираемая из элементов $\{\Delta_h^{(dk)}\},$ и соответствующая этим потокам матрица достоверностей $\{\Lambda_h^{(k)}\}; h \in H = 0, ..., n$ — номер иерархии в пирамиде; n — номер наивысшей иерархии. В одной иерархии представлено 20 матриц.

Матрицы $\{\Delta_h^{(k)}\}$, $k \in \{0,1\}$ элементы которых отражают направления папиллярных линий, обычно однородны для областей с качественным изображением. Под однородностью понимается плавность изменения величин элементов $\delta_h^{(k)}(x, y) \in \Delta_h^{(k)}$ с достоверностью $\lambda_h^{(k)}(x, y) \in \Lambda_h^{(k)}$, соизмеримой в заданной окрестности для $(x, y) \in X_h \times Y_h$. Однако в действительности для криминальных ДИ однородность матриц $\{\Delta_h^{(k)}\}\$ нарушается. Такое часто наблюдается при отображении элементов матриц черточками на экране. Неприятные дефекты ДИ образуются из-за грязи, складок, ожогов... [2, 6].

Предлагается на основе матриц $\{\Delta_h^{(dk)}\}, \{\Lambda_h^{(dk)}\}, \{\Lambda_h^{(k)}\}, \{\Lambda_h^{(k)}\}\}$ синтезировать более однородную матрицу локальных направлений $\Delta_h^{(l)}$ и соответствующую ей матрицу локальных достоверностей $\Lambda_h^{(l)}$, матрицу кривизны $\Theta_h^{(l)}$, и классифицировать элементы $\delta_h^{(l)}(x, y) \in \Delta_h^{(l)}$, отвечающие заданному критерию однородности [3, 5].

2. Выделение опорного поля потоков

Матрицы потоков $\{\Delta_h\}$ и достоверностей $\{\Lambda_h\}$, вообще говоря, носят оценочный (предварительный) характер [1, 5]. Они служат основой для синтеза оптимального потокового поля. Рассмотрим метод выделения опорных зон и цепочечного присоединения опорных потоков, реализующий для h-й иерархии отображение

$$\Gamma: \{\{\Delta_h^{(k)}\}, \{\Lambda_h^{(k)}\}\} \to \{C_h^{(c)}, \Theta_h^{(l)}, \Delta_h^{(l)}, \Lambda_h^{(l)}, \Lambda_h^{(l+)}, \Lambda_h^{(l-)}\},$$

где $k \in \{0,1\}$, $\{\Delta_h^{(k)}\}$ и $\{\Lambda_h^{(k)}\}$ — семейства потоков и достоверностей, полученные на этапе измерения поля потоков [1]; $C_h^{(c)} = [c_h^{(c)}(x,y)]$ — матрица как слой меток классификации потоков, $\Theta_h^{(l)} = [\Theta_h^{(l)}(x,y)]$ — матрица как слой направлений кривизны потоков; $\Delta_h^{(l)} = [\delta_h^{(l)}(x,y)]$ и $\Lambda_h^{(l)} = [\lambda_h^{(l)}(x,y)]$ — матрица локального потока и соответствующая ему матрица достоверностей, $\Lambda_h^{(l+)} = [\lambda_h^{(l+)}(x,y)]$ и $\Lambda_h^{(l-)} = [\lambda_h^{(l-)}(x,y)]$ — матрица наилучшей и матрица наихудшей достоверностей дуг.

Расчет указанных матриц производится в три этапа, которые итерационно повторяются. Это относительно длительный по времени анализ, ускорение которого возможно только за счет использования высоких иерархий (h=4 в реализации, сегменты 16×16). Для каждой итерации задается размер w апертуры: для первой итерации начальное значение $w = w_0$ (9×9 в реализации), для последующих итераций размер w линейно декрементируется до 3×3 . Величина w_0 для изображения F_0 на 500 ррі порождает апертуру размером 100×100 точек, что позволяет корректно выделить источник опорных потоков [4, 6].

Предварительно метки классификации потоков сбрасываются: $c_h^{(c)}(x, y) = 0$ для $\forall (x, y) \in X_h \times Y_h$.

Первый этап. Целью первого этапа является коррекция достоверности потоков и селекция потоков на основе анализа однородности потоков. Процедура сводится к последовательности вычислений в точках $\{(x, y) | c_h^{(c)}(x, y) \in \{0\}\}$ для направления $d \in D = 0..7$ (различающихся на 45 градусов) множеств $\{re_h^{dk}(x, y) | d \in D\}$ и $\{im_h^{dk}(x, y) | d \in D\}$ адаптивной апертуры по формулам

$$re_{h}^{dk}(x,y) = \sum_{(u,v,\beta)\in A_{h}(x,y,w)} \lambda_{h}^{(k\oplus1)}(u,v) \operatorname{pos}(\operatorname{coq}(\beta - \delta_{h}^{(k)}(x,y) - 45d)) \times \\ \times \operatorname{cos}(2\delta_{h}^{(k\oplus1)}(u,v)),$$
$$im_{h}^{dk}(x,y) = \sum_{(u,v,\beta)\in A_{h}(x,y,w)} \lambda_{h}^{(k\oplus1)}(u,v) \operatorname{pos}(\operatorname{coq}(\beta - \delta_{h}^{(k)}(x,y) - 45d)) \times \\ \times \operatorname{sin}(2\delta_{h}^{(k\oplus1)}(u,v)),$$

где d — порядковый номер сектора в апертуре размером w, ориентированной по потоку $\delta_h^{(k)}(x, y)$ в центре апертуры; $\lambda_h^{(k\oplus 1)}(u, v)$ и $\delta_h^{(k\oplus 1)}(u, v)$ достоверность и поток в точке (u, v) апертуры $A_h(x, y, w)$; символ \oplus исключающее или; β — направление из центра апертуры в точку (u, v); $k \in \{0,1\}$ — метка канала «тени» или «света». Функции соq(α) и роs(α) строятся по формулам:

$$coq(\alpha) = cos^{5}(\alpha), \qquad (1)$$

$$pos(a) = \begin{cases} +a, & \text{если } a \ge 0, \\ 0, & \text{если } a < 0, \end{cases}$$
(2)

а апертура

$$A_{h}(x, y, w) = \bigcup_{\alpha = \overline{0,359}} \{ (u, v, \beta) = (x + \operatorname{int}(t \cos(\alpha)), y + \operatorname{int}(t \sin(\alpha)), \beta) \mid t \in 1, \dots, w \},$$
(3)

где функция int обозначает округление до целого.

Фактически в указанные множества заносится разложение на действительную и мнимую части потоков, рассматриваемых как вектора с модулем λ и аргументом δ , в точках апертуры, ориентированной по потоку в центре апертуры, причем если центр апертуры берется для «света», то данные секторов — для «тени», и наоборот. Сектора апертуры ориентируются вектором центра, апертура в каждой точке (x, y) вращается, отслеживая поток. Потоки, участвующие в формировании $\{re_h^{dk}(x, y)\}$ и $\{im_h^{dk}(x, y)\}$, ограничиваются площадью апертуры, но не сектора, и взвешиваются функцией $w(\alpha)$ как композицией pos(coq(α)) (рис. 1), где α — угол поворота вектора, соединяющего центр апертуры с точкой (u, v), до вектора, соединяющего центр апертуры с центром текущего сектора d. Взвешивающая функция $w(\alpha)$ отсекает ориентированную полуплоскость. Так для сектора номер 0 на рис. 2 отсекаемая полуплоскость обозначена пунктиром.

Рис. 1. Весовая функция сектора

Рис. 2. Сектора ориентированной апертуры

Для различных каналов множества $\{re_h^{dk}(x, y)\}$ и $\{im_h^{dk}(x, y)\}$ в общем случае различны и рассчитываются в апертурах, ориентированных по-разному. Появляется возможность выбора — основная идея для выделения опорного поля потоков.

Полученные множества $\{re_h^{dk}(x, y)\}$ и $\{im_h^{dk}(x, y)\}$ используются для расчета векторов по секторам апертуры $A_h(x, y, w)$ и расчета для полученного множества векторов множеств аргументов $\{a_h^{dk}(x, y)\}$ и модулей $\{m_h^{dk}(x, y)\}$ по формулам

$$\{a_h^{dk}(x, y)\} = \{ \inf(\operatorname{atan}(re_h^{dk}(x, y), im_h^{dk}(x, y))/2) \}, \{m_h^{dk}(x, y)\} = \{ \inf(\operatorname{dist}(re_h^{dk}(x, y), im_h^{dk}(x, y))) \},$$

которые определяют усредненные вектора потоков для каждого сектора апертуры, а также отклонений $\{\gamma_h^{dk}(x, y)\}$ вектора центра от векторов для секторов апертуры по формуле

$$\{\gamma_h^{dk}(x,y)\} = \{scis(a_h^{dk}(x,y), \delta_h^{(k)}(x,y))\},$$
(4)

где $d \in D$ — номер сектора апертуры; $k \in \{0,1\}$ — метка канала; функции atan , dist и scis вычисляются по формулам:

atan
$$(x, y) = \frac{180}{\pi} \begin{cases} \arctan(y/x), & \text{если } x \ge 0 \land y \ge 0, \\ \pi - \arctan(y/|x|), & \text{если } x < 0 \land y \ge 0, \\ \pi + \arctan(|y|/|x|), & \text{если } x < 0 \land y < 0, \\ 2\pi - \arctan(|y|/x), & \text{если } x \ge 0 \land y < 0, \end{cases}$$
 (5)

dist
$$(x, y) = \sqrt{x^2 + y^2}$$
, (6)

$$\operatorname{scis}(\alpha,\beta) = \begin{cases} \alpha - \beta, & \operatorname{если} \ 0 \le |\alpha - \beta| < 90, \\ 180 \operatorname{sign}(\beta - \alpha) + \alpha - \beta, & \operatorname{если} 90 \le |\alpha - \beta| < 270, \\ 360 \operatorname{sign}(\beta - \alpha) + \alpha - \beta, & \operatorname{если} 270 \le |\alpha - \beta| < 360. \end{cases}$$
(7)

При вычислении модулей и аргументов наблюдается чувствительность к наиболее значимым результатам измерений и виду характеристики $w(\alpha)$: чем она уже, тем слабее эффект усреднения результатов измерений. Множество $\{\gamma_h^{dk}(x, y)\}$ определяет степень «правильности» дуги, образованных потоками центра и периферией апертуры. Для оценки дуги в точке (x, y) используется модель функционирования нейрона оп-типа [3, 4] с критерием качества

$$K_{h}^{k}(x, y) = \sum_{i \in I} k_{i} l_{i}^{k}(x, y)$$
(8)

на основе упорядоченного множества L^k с отношением нестрого полного порядка

$$L^{k}(x, y) = \{l^{k}(x, y)\} \underset{\theta \in W}{\subset} \{l^{\theta k}(x, y)\},$$

с элементами

$$l^{\theta k}(x, y) = \left(k_p \left| \gamma_h^{ak}(x, y) + \gamma_h^{bk}(x, y) \right| + k_n \left| \gamma_h^{ak}(x, y) - \gamma_h^{bk}(x, y) \right|\right),$$

где I — множество индексов, причем для любого $i \in I$ элемент $l_i(x, y)$ известен; k_i — коэффициенты для взвешивания элементов множества L^k , причем худшим элементам соответствуют большие коэффициенты (4, 2 и 1 в реализации); $W = \{\theta = (a,b) | a, b \in D\}$ — множество упорядоченных пар индексов секторов, определяемое в виде $W = \{(1,3), (0,4), (7,5)\}$ для расчета $\gamma_h^{dk}(x, y)$ по (4); k_p и k_n — коэффициенты для оценки отдельной упорядоченной пары отклонений с индексами из W (3 и 9 в реализации); $k \in \{0,1\}$ — метка канала. На рис. 3 показаны потоки в окрестности дуг без дефектов для секторов апертур, ориентированных по потоку центра. Для таких дуг критерий качества K_h^k (8) минимален.

Рис. 3. Дуги без дефектов и потоки в секторах апертур

Сумма отклонений $\gamma_h^{ak}(x, y)$ и $\gamma_h^{bk}(x, y)$ для дуги без дефектов в секторах апертуры дает малую величину и характеризует дисбаланс отклонений. Действительно, величина отклонений, например для пары (0,4), примерно одинаковая, а знаки их противоположные. Разность тех же отклонений дает значительную величину, зависящую от величины кривизны дуги. Поэтому коэффициент k_p устанавливает степень влияния на критерий качества величины деформации дуги, а коэффициент k_n — величины кривизны дуги. Соотношение k_p и k_n устанавливает приоритет при оценке однородности дуги.

В местах разрушения структуры папиллярных линий картина существенно меняется [2, 6]. Вектора потоков утрачивают свойство плавного и массово-однородного изменения и напоминают хаотично скачущие черточки. В апертурах разброс направления векторов возрастает, величина критерия качества увеличивается. Фактически классификационный аналих потоков исследует расхождение и пересечение трех воображаемых линий, образуемых локальными потоками и задаваемых тремя упорядоченными парами множества W (рис. 4).

Рис. 4. Дуги с дефектами и потоки в секторах апертур

Локальные оценки дуг $K_h^k(x, y)$ служат основой для выбора из каналов «тени» и «света» матрицы локальных потоков $\Delta_h^{(l)}$ и связанной с ней матрицы достоверностей $\Lambda_h^{(l)}$, матрицы направлений кривизны $\Theta_h^{(l)}$, матрицы наилучшей $\Lambda_h^{(l+)}$ и наихудшей $\Lambda_h^{(l-)}$ достоверностей дуг по формулам:

$$\Delta_{h}^{(l)} = [\delta_{h}^{(l)}(x, y)] = \left[\delta_{h}^{(\vartheta(x, y))}(x, y)\right],$$
(9)

$$\Lambda_h^{(l)} = [\lambda_h^{(l)}(x, y)] = \left[\lambda_h^{(\vartheta(x, y)}(x, y)\right], \tag{10}$$

$$\Theta_h^{(l)} = [\Theta_h^{(l)}(x, y)] = \left\lfloor (\delta_h^{(l)}(x, y) + \sup_R (90, 270)) \mod 360 \right\rfloor,$$
(11)

$$\Lambda_h^{(l+)} = [\lambda_h^{(l+)}(x, y)] = \left[\max_k q_h^k(x, y)\right],\tag{12}$$

$$\Lambda_{h}^{(l-)} = [\lambda_{h}^{(l-)}(x, y)] = \left[\min_{k} q_{h}^{k}(x, y)\right],$$
(13)

где $\vartheta(x, y) \in \{0, 1\}$ — метка канала-победителя в апертуре $A_h(x, y, w)$, доставляющая минимум критерию качества $\vartheta(x, y) = \arg\min_k K_h^k(x, y)$; R — критерий выбора для угла направления кривизны, перпендикулярного потоку, определяемый как отношение порядка по формуле

$$R = \begin{cases} 1, & \text{если} \quad \gamma_h^{0\vartheta(x,y)}(x,y) + \gamma_h^{4\vartheta(x,y)}(x,y) > 0, \\ 0, & \text{если} \quad \gamma_h^{0\vartheta(x,y)}(x,y) + \gamma_h^{4\vartheta(x,y)}(x,y) \le 0, \end{cases}$$

причем *R* определяет выбор

$$\operatorname{sel}_{R}(a,b) = \begin{cases} a, & \text{если } R & \text{истинно,} \\ b, & \text{если } R & \text{ложно;} \end{cases}$$
(14)

 $q_{h}^{k}(x, y)$ — достоверность дуги в апертуре $A_{h}(x, y, w)$, взвешиваемая функцией окна по формуле

$$q_h^k(x, y) = \sqrt{\cos(\varphi)} \min_{d \in D} \{m_h^{dk}(x, y)\}$$
(15)

с функциональным параметром ф как углом

$$\varphi = \begin{cases} 90K_{h}^{k} / k_{m}, & \text{если } K_{h}^{k} < k_{m}, \\ 90, & \text{если } K_{h}^{k} \ge k_{m}, \end{cases}$$

для которого коэффициент k_m ограничивает допустимую наихудшую оценку дуги (2558 в реализации); $k \in \{0,1\}$ — метка канала «тени» и «света».

Второй этап. На втором этапе для позиций $(x, y) \in X_h \times Y_h$, не отмеченных меткой классификации потоков $c_h^{(c)}(x, y) \in \{0\}$, уточняется направление кривизны $\theta_h^{(l)}(x, y) \in \Theta_h^{(l)}$. Дело в том, что кривизна является основой для дальнейшего анализа потоков, однако матрица локальных направлений $\Delta_h^{(l)}$ не совпадает полностью ни с одной из $\Delta_h^{(k)}$, $k \in \{0,1\}$. Формально для указанных позиций (x, y) происходит замещение направления кривизны по подобной (11) формуле

$$\theta_h^{(l)}(x, y) = (\delta_h^{(l)}(x, y) + \underset{R}{\text{sel}}(90, 270)) \mod 360,$$

где для выбора по (14) отношение порядка R задается

$$R = \begin{cases} 1, & \text{если } \gamma_h^{0l}(x, y) + \gamma_h^{4l}(x, y) > 0, \\ 0, & \text{если } \gamma_h^{0l}(x, y) + \gamma_h^{4l}(x, y) \le 0, \end{cases}$$

причем отклонение потоков подобное (4) в секторах апертуры определяется по (7)

$$\{\gamma_h^{dl}(x, y)\} = \{scis(a_h^{dl}(x, y), \delta_h^{(l)}(x, y))\},\$$

 $d \in D = 0..7$. Аргументы векторов в секторах апертуры для $\forall d \in D$ рассчитываются аналогично

$$a_h^{dl}(x, y) = int(atan(re_h^{dl}(x, y), im_h^{dl}(x, y))/2),$$

где с учетом (1,2)

$$re_{h}^{dl}(x, y) = \sum_{(u,v,\beta)\in A_{h}(x,y,w)} \lambda_{h}^{(l)}(u,v) \text{pos}(\text{coq}(\beta - \delta_{h}^{(l)}(x, y) - 45d)) \cos(2\delta_{h}^{(l)}(u, v)),$$
$$im_{h}^{dl}(x, y) = \sum_{(u,v,\beta)\in A_{h}(x,y,w)} \lambda_{h}^{(l)}(u,v) \text{pos}(\text{coq}(\beta - \delta_{h}^{(l)}(x, y) - 45d)) \sin(2\delta_{h}^{(l)}(u, v)),$$

 $\lambda_h^{(l)}(x, y) \in \Lambda_h^{(l)}$, а апертура $A_h(x, y, w)$ (3) ориентирована по локальному потоку $\delta_h^{(l)}(x, y) \in \Delta_h^{(l)}$ центра.

Фактически второй этап повторяет первый этап в части построения поля кривизны. Отличие заключается в том, что данные в секторах апертур собираются из матрицы локальных потоков $\Delta_h^{(l)}$ и матрицы локальных достоверностей $\Lambda_h^{(l)}$. Поскольку эти матрицы строятся как оптимизационные для полей «тени» и «света», поле кривизны получается более однородным.

Третий этап. На третьем этапе в матрице локальных потоков $\Delta_h^{(l)}$ той же иерархии h = 4 формируются опорные потоки как слой меток классификации потоков $C_h^{(c)} = \left[c_h^{(c)}(x, y) \right].$

Базовая концепция классификационного анализа опорных потоков опирается на метод ближнего прогноза предполагаемого потока из матрицы $\Delta_h^{(l)}$ для позиций $\{(x, y) | (x, y) \in X_h \times Y_h \land c_h^{(c)}(x, y) \in \{0\}\}$ с задаваемой исходной невязкой $\gamma_h^e(x, y) = \infty$ и величины предполагаемого потока $\alpha_h(x, y) = \delta_h^{(l)}(x, y)$, реализуемого формулой

$$\alpha_h(x, y) = int(atan(re_h(x, y), im_h(x, y))/2),$$
 (16)

где $\alpha_h(x, y)$ — предполагаемый расчетный поток; $re_h(x, y)$ и $im_h(x, y)$ — действительная и мнимая части локального потока, собираемого в апертуре по формулам

$$\begin{split} re_{h}(x,y) &= \sum_{(u,v,\beta) \in A_{h}(x,y,1) \land c(u,v) \in \{1\}} \left| \text{coq}(\phi) \right| \text{cos}(2\delta_{h}^{(l)}(u,v)),\\ im_{h}(x,y) &= \sum_{(u,v,\beta) \in A_{h}(x,y,1) \land c(u,v) \in \{1\}} \left| \text{coq}(\phi) \right| \text{sin}(2\delta_{h}^{(l)}(u,v)), \end{split}$$

причем для апертуры $A_h(x, y, 1)$ по (3) задается форма поверхности как функция coq(ϕ) (1); $\phi = turn(\beta, \alpha_h(x, y))$ — величина минимального угла поворота, ориентирующего поверхность и определяемая

turn(α, β) =
$$\begin{cases} \alpha - \beta, & \text{если } |\alpha - \beta| \le 180, \\ 360 \operatorname{sign}(\beta - \alpha) + \alpha - \beta, & \text{если } |\alpha - \beta| > 180. \end{cases}$$

Дополнительно по (1) вычисляется коэффициент замыкания предполагаемого потока как функция состояния окрестности

$$\chi_h(x, y) = \left(1 + \sum_{\beta_1 \in \varphi} \left| \operatorname{coq}(\beta_1) \right| \right) \left(1 + \sum_{\beta_2 \in \varphi} \left| \operatorname{coq}(\beta_2) \right| \right),$$
(17)

где углы { $\beta_1 | \beta_1 < 180$ } и { $\beta_2 | \beta_2 \ge 180$ } есть направления из центра апертуры до точек { $(u,v) | c(u,v) \in \{1\}$ }, и по (7) невязка

$$\gamma_h(x, y) = \left| \operatorname{scis}(\alpha_h(x, y), \delta_h^{(l)}(x, y)) \right|.$$
(18)

Если $\gamma_h(x, y) < \gamma_h^e(x, y)$, то обновляется навязка $\gamma_h^e(x, y) = \gamma_h(x, y)$ и локальный поток $\delta_h^{(l)}(x, y) = \alpha_h(x, y)$, а расчет повторяется, иначе конец. Прогноз предполагаемого потока отражает гипотезу однородности опорного поля потоков, а процедура прогноза адаптивна. Алгоритм расчета угла $\alpha_h(x, y)$ (16–18) представлен на рис. 5.

Если в апертуре $\forall c_h^{(c)}(u,v) \in \{0\}$, то прогноз неуспешен, а финальное значение предполагаемого потока $\delta_h^{(l)}(x,y)$ совпадает с начальным значением. В случае успешного расчета предполагаемый поток определяется

опорными потоками. Итерации, если они возникают, уточняют величину предполагаемого потока для мест существенной кривизны или неоднородности потоков по критерию $\gamma_h^e(x, y)$ невязки. На рис. 6 для дефектного потока (слева), окруженного опорными потоками (они показаны), величина невязки больше, чем для расчетного потока (справа), а величина коэффициента замыкания $\chi_h(x, y)$ соответственно меньше.

Рис. 5. Прогноз потока по матрице локальных потоков

Рис. 6. Коррекция разреженных дефектов по критерию невязки

Рост величины коэффициента замыкания для рис. 6 определяется градиентным множеством $\{coq(\beta_i) | i \in \{0,1\}\}$ из (17), элементы которого масштабируют опорные потоки в секторах апертуры. Множество $\{coq(\phi)\}$ спроектировано для автомата, который как диполь в магнитном поле ориентируется преимущественно на значения опорных потоков в секторах (0,4), и способствует замыканию вдоль потоков, а не поперек. Величина $\chi_h(x, y)$ позволяет оценить величину замыкания предполагаемого потока на опорные потоки. Некоторые из возможных конфигураций такого замыкания показаны на рис. 7 точками (чтобы исключить дополнительную информацию о направлении потоков).

Рис. 7. Конфигурации опорных потоков для расчета коэффициента замыкания

Для рассматриваемых позиций (x, y) выбирается три коэффициента: коэффициент насыщения k_{\max} такой, что при $\chi_h(x, y) \ge k_{\max}$ прогноз достоверен даже в окрестности интегральных признаков узора; минимальнодопустимый коэффициент замыкания k_{\min} ; порог допустимой достоверности

$$\overline{k} = k \max_{(x,y)} \{ \lambda_h^{(l-)}(x,y) \, | \, c_h^{(c)}(x,y) \in \{0\} \} \,, \tag{19}$$

где величина k настраивается (k = 0, 21 в реализации). Если $\forall c_h^{(c)}(x, y) \in \{0\}$, то для формирования источника опорного поля потоков меткой $c_h(x, y) = 1$ достаточно выполнения условия $\lambda_h^{(l-)} > \overline{k}$. На последующих итерациях

$$c_{h}(x, y) = \begin{cases} 1, & \text{если } \chi_{h}(x, y) > k_{\min} & \text{и } \lambda_{h}^{(l-)}(x, y) > \overline{k}, \\ 0. \end{cases}$$
(20)

В других случаях классификация неуспешна.

Если локальный поток $\delta_h^{(l)}(x, y)$ удалось перевести в класс опорных потоков $c_h(x, y) \in \{1\}$ или $\chi_h(x, y) \ge k_{\max}$, что обычно выполняется для локально дефектных областей изображения, то вызывается процедура регуляризации потока в соответствии с гипотезой $\alpha_h(x, y)$, описываемая далее.

Заметим, что на очередной итерации порог допустимой достоверности \overline{k} обновляется, так как распределение меток $C_h^{(c)}$ изменяется. Фактически в слоях F_h сначала помечаются наиболее плавные и протяженные области изображения, которые постепенно разливаются к общим признакам узора и к дефектным зонам.

Величина коэффициента k_{\min} определяется видом $\{coq(\phi)\}$, $\phi = turn(\beta, \alpha_h(x, y))$, так как на эти функции опирается коэффициент замыкания $\chi_h(x, y)$ (17). Исследования показывают, что k_{\min} не только управляет присоединением меток $c_h(x, y)$ к опорным потокам, но и устанавливает приоритетные направления развития фронта опорного потока в зависимости от сложившейся картины поля меток и структуры изображения. Варианты, когда сегмент может или не может быть присоединен (перечеркнуто) к опорным потокам, показанных черточками, представлены на рис. 8.

Третий этап повторяется до тех пор, пока удается присоединить хотя бы один элемент к опорным потокам.

Итерации этапов 1–3 повторяются с уменьшением размера w апертуры (3). Таким образом, на каждом последующем шаге итераций для позиций $\{(x, y) | (x, y) \in X_h \times Y_h \land c_h^{(c)}(x, y) \in \{0\}\}$ уточняются формулы (9)–(13), а к опорному множеству потоков цепочечно присоединяются еще непоме-

ченные потоки, соответствующие худшей оценке дуг. При этом с уменьшением апертуры оценки дуг для тех же позиций могут быть улучшены, а возможность присоединения потока к опорному множеству, соответственно, увеличена.

Рис. 8. Варианты состояния апертуры при присоединении опорного потока

3. Регуляризация потока по гипотезе

Для точки $(x, y) \in X_h \times Y_h$ регуляризация потока выполняет отображение

$$\Gamma: \{\{\Delta_h^{(dk)}\}, \{\Lambda_h^{(dk)}\}\} \to \{\Delta_h^{(k)}, \Lambda_h^{(k)}\}$$

для каналов $k \in \{0,1\}$ «тени» и «света» и направлений $d \in D = 0..3$ измерения потоков, различающихся на 45 градусов. Формально процедура сводится к выбору потоков и достоверностей из матриц $\{\Delta_h^{(dk)}\}, \{\Lambda_h^{(dk)}\}$ [1] иерархии $h \in H = 2, ..., n$ по формулам

$$\begin{split} \delta_h^{(k)}(x,y) &= \delta_h^{(\vartheta_h^k(x,y)k)}(x,y) \,, \\ \lambda_h^{(k)}(x,y) &= \lambda_h^{(\vartheta_h^k(x,y)k)}(x,y) \,, \end{split}$$

где направление-победитель

$$\vartheta_h^k(x, y) = \arg \max_{d \in D} \lambda_h^{(dk)}(x, y) f(\vartheta_h^{(dk)}(x, y) - \beta)$$

выбирается как направление d, доставляющее максимум достоверности $\lambda_h^{(dk)}(x, y)$, масштабированной функцией f с аргументом разности величины потока $\delta_h^{(dk)}(x, y)$ и угла β ; угол β — фактор регуляризации. Функция f определяется как обратный функционал вида

$$f = J^{-1}(i),$$

где $i \in 0, ..., 6$ — номер функции, задаваемый в процессе настройки алгоритма, а функционал J используется как критерий качества регуляризации вида

$$J: \{\cos(\alpha) | \cos^{i}(\alpha)|\} \rightarrow \{i\}.$$

Регуляризация потока по углу β подразумевает для каждого канала выполнение трех операций: определение наиболее правдоподобного направления $\vartheta_h^k(x, y) \in D$, где D = 0, ..., 3 — множество гипотез, для которых производились измерения потоков [1]; замещение потока-

победителя $\delta_h^{(k)}(x, y)$ в канале; замещение соответствующей достоверности $\lambda_h^{(k)}(x, y)$ в канале.

Регуляризация потока по гипотезе тем ценна, что она подготавливает в каналах победителей не по вертикали для направлений $d \in D$, вычисляемых при измерении потоков на этапе перколяции [1], а по горизонтали на основе привносимого извне угла β , играющего роль гипотезы [6].

4. Заключение

В статье предложен способ выделения опорных потоков ДИ, основанный на анализе адаптивных апертур для матриц потоков и соответствующих им достоверностей из двух независимых каналов. Способ включает выбор из двух каналов наиболее качественных потоков, формирование из выбранных потоков и соответствующих им достоверностей поля локальных потоков, вычленение из множества локальных потоков источника как затравки опорных потоков, цепочечное присоединение локальных потоков к опорным потокам таким образом, что автоматически восстанавливаются дефектные потоки. При этом выбор из двух каналов приближается к методу взаимной корреляции элементов, принадлежащих разным каналам. Использование двух каналов позволяет синтезировать более однородное поле опорных потоков, существенно улучшающее качество обработки и интерпретации ДИ.

Литература

- Гудков В. Ю. Двухканальный подход к определению поля потоков дактилоскопических изображений // Интеллектуальные информационные технологии. Концепции и инструментарий. Сборник статей ИСА РАН / Под. ред. член-корр. РАН, проф. В. Л. Арлазарова и д. т. н., проф. Н. Е. Емельянова. М.: УРСС, 2005.
- Корноухов В. Е., Анциферов В. К., Морозов Г. П. и др. Дактилоскопическая экспертиза: современное состояние и перспективы развития / Под ред. Г. Л. Грановского. Красноярск: Изд-во Краснояр. ун-та, 1990. 416 с.
- Кондратьев В. В., Утробин В. А. Основы теории активного восприятия изображений. Н. Новгород: НГТУ, 1997. 249 с.
- Марр Д. Информационный подход к представлению и обработке зрительных образов у человека. М.: Радио и связь, 1987. 402 с.
- 5. Прэтт У. Цифровая обработка изображений: В 2 т. М.: Мир, 1982. Т. 2. 480 с.
- Davide Maltoni, Dario Maio, Anil K. Jain. Handbook of Fingerprint Recognition. New York: Springer-Verlag, 2003. 348 p.