Нечеткий логический вывод в системе принятия решений*

А. А. Ахрем, М. Р. Ашинянц. С. А. Петров

В статье решается задача нечеткого логического вывода для принятия решений в слабо формализуемых системах. Вводится нечеткая характеризация исходных данных; определяется множество правил нечеткого логического вывода; формируется алгоритм нечеткого логического вывода. Для определения подмножества из множества входных факторов, достаточного для обеспечения заданного качества целевой функции, строится нечеткий логико-алгебраический обратный вывод.

Введение

В условиях неполноты, неточности информации построение точной математической модели оказывается проблематичным. С другой стороны, создание модели сложных, плохо формализуемых объектов становится трудно выполнимым. В таких случаях наиболее эффективными являются нечеткие методы моделирования, которые в значительной степени основаны на знаниях экспертов, на основании которых могут быть получены позитивные результаты в итеративном процессе уточнения непротиворечивой модели. К числу сложных, слабо формализуемых объектов, функционирующих в значительной степени в условиях неопределенности, следует отнести и систему образования. Исследования НИИВО дают толкование реальных процессов, характеризующих целевые факторы, определяющие качество принимаемых управленческих решений.

Процессы демографического спада в Российской Федерации в период до 2015 года ведут к необходимости принятия ряда мер по сохранению потенциала системы образования. Очевидно, эта проблема имеет стратегическое общегосударственное значение, поскольку потенциал образования и, в частности высшего представляет собой, помимо чисто материально-технических факторов, совокупность профессиональных научных кадров, научных школ, образовательных систем и передовых методов

^{*} Работа выполнена при поддержке РФФИ (проекты № 04–01–00386, 07–01–00572) и программы Президиума РАН «Фундаментальные проблемы информатики и информационных технологий» (проект № 2.44).

обучения. Поэтому понижение образовательного потенциала, связанное с необходимостью сокращения по всем направлениям образования, приведет к невосполнимым потерям [1].

Статистический анализ ретроспективной базы, позволил обосновать количество значимых факторов, влияющих на целевые функции и, таким образом, сформировать в качестве рабочей базы для дальнейших исследований редуцированную базу.

Множество

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

факторов или наиболее релевантных причин, влияющих на качество образовательных характеристик примем в качестве универсума предпосылок. В качестве второго универсума рассмотрим множество заключений или проявлений качества образовательных характеристик

$$Y = \{y_1, y_2, y_3\},\$$

где y_1 — образовательный потенциал, y_2 — повышение качества образования, y_3 — современное материально-техническое обеспечение, в том числе новые технологии — информационные, научно-технические [2].

Гипотеза неопределенности, характеризующая рассматриваемое отношение предпосылки — заключения, подтверждается следующими представлениями: неясность или нечеткость границ рассматриваемых переменных, характеризующих систему принятия решений, отдельных ее состояний; неполнота представления системы в связи со слабой формализуемостью объекта; противоречивость отдельных компонентов; неопределенность наступления тех или иных событий, относительно которых сделаны конкретные предположения. Иными словами, разрабатываемая система принятия решений «погружена» в нечеткую среду, находящуюся под воздействием случайных флуктуаций внешних факторов.

В настоящей статье представлены следующие результаты решения задачи принятия решения на нечетком множестве факторов (входных), влияющих на целевую функцию:

- на основании анализа ретроспективного массива данных и учета экспертных знаний ввести нечеткую характеризацию исходных данных;
- построить нечеткую логическую модель системы принятия решений,
 т. е. построить множество правил нечеткого логического вывода;
- сформировать алгоритм нечеткого логического вывода;
- для определения подмножества из множества входных факторов, достаточного для обеспечения заданного качества целевой функции, построить нечеткий логико-алгебраический обратный вывод.

1. Построение модели нечеткого логического вывода

1.1. Введение нечеткости

Дальнейшее решение поставленной проблемы требует нечеткой характеризации всех переменных, участвующих в построении системы принятия решений. Известно, что нечеткие свойства представимы двумя понятиями и их свойствами: нечеткой переменной и лингвистической переменной.

Так, для фактора x_1 — рост масштабов доподготовки — для краткости — «рост м. д.», определяются следующие нечеткие характеристики: лингвистическая переменная $\beta=$ «рост м. д.» имеет область определения X=[0-2,5]; терм-множество значений лингвистической переменной $T=\{$ «неудовлетворительный», «удовлетворительный», «хороший» $\}$. Для каждого компонента терм-множества T, представляющего нечеткую переменную α_i (i=1,2,3), следует построить нечеткое множество A_i . Компонентами этого множества являются возможные значения нечеткой переменной α_i . Принадлежность этих значений множеству, определяемому семантикой терма α_i , задается функцией принадлежности. Таким образом функция принадлежности представляет собой отображение $\mu_{\overline{A}}(x) \to [0,1], x \in X$.

Теоретические основания для построения функций принадлежности на самом деле нетривиальная задача. Однако, процедура построения имеет важное значение для глубокого понимания природы неопределенности, описываемой нечеткими логическими системами.

Функция принадлежности элемента x нечеткому множеству A интерпретируется как субъективная мера. Под субъективной мерой понимается определенная опросом экспертов степень соответствия элемента x понятию, формализованному нечетким множеством A. Вычисление степеней принадлежности $\mu_{\widetilde{A}}(x_i), \ x_i \in X$ проводится на основании алгоритма обработки матрицы парных сравнений $M = \|m_{ij}\|$. Элементы этой матрицы представляют собой оценки экспертов, насколько элемент x_i более значим для понятия, описываемого нечетким множеством A, чем элемент x_j . [3].

В соответствии с этим алгоритмом построенные функции принадлежности для лингвистической переменной («рост м. д.», T, X), где

$$T = \{$$
«неудовлетворительный», «удовлетворительный», «хороший» $\}$, $X = \{0, 0.25, 0.5, 0.75, \dots, 2.5\}$

— базовое множество, имеют вид, представленный на рис. 1.

Аналогичным образом строятся функции принадлежности для остальных элементов множества факторов. Заметим, что процедура построения

Рис. 1

функций принадлежности представляет собой этап фаззификации множества предпосылок, конкретизированные значения которых определяют значения следствий, выводимых в процедуре нечеткого логического вывода.

1.2. Формирование базы правил системы нечеткого логического вывода

Реализация нечеткого вывода основана на нечетких продукционных правилах. Поэтому рассмотрение формализма нечетких продукционных моделей приобретает самостоятельное значение. Нечеткие правила наиболее близки к логическим моделям, но, что очень важно, они адекватно отражают знания экспертов конкретной предметной области.

Обобщенная форма представления нечеткой продукции имеет вид:

$$i: A \Rightarrow B: F$$
.

где i — имя нечеткой продукции, $A\Rightarrow B$ — ядро продукции, в которой A — условная часть ядра (антецедент), B — заключение (консеквент); \Rightarrow — оператор логического следования); F — коэффициент достоверности продукции. Ядро продукции имеет обычную форму словесной интерпретации *если* A *то* B.

В нечеткой логике, вывод базируется на множестве возможных фактов, появление которых определяется функцией принадлежности. Так, обобщенное правило *modus ponens* (Fuzzy Modus Ponens — FMP) для нечетких систем имеет следующий вид:

$$\frac{A', A \supset B}{B'}$$
.

Множества A' и A необязательно совпадают. Если A' и A близки друг другу, то можно их сопоставить и получить вывод B'.

В общем случае взаимосвязь между антецедентной и консеквентной частями продукции представляет собой некоторое бинарное отношение на декартовом произведении универсумов соответствующих высказываний, т. е. отражает нечеткое причинное отношение посылки и заключения. Если предположить, что известна функция принадлежности посылки $\mu_{A'}(x)$ и некоторым образом определено бинарное нечеткое отношение на декартовом произведении универсумов

$$R=\{\langle x,y
angle, \mu_R(x,y)\}, \quad x\in X, \,\, y\in Y,$$

то функция принадлежности $\mu_{B'}(y)$ заключения B' представима в виде композиции [4]:

$$B' = A' \circ R = A' \circ A \to B. \tag{1}$$

Вывод B' определяется из свертки max-min нечеткого множества A' и отношения R:

$$\mu_{B'}(y) = \bigcup_{x \in X} \mu_{A'}(x) \wedge \mu_R(x,y) = \bigcup_{x \in X} (\mu_{A'}(x) \wedge \mu_A(x)) \wedge \mu_B(y).$$
 (2)

Операции нечеткой конъюнкции и нечеткой дизъюнкции нечетких множеств определим как получение минимума и максимума степеней принадлежности составного высказывания:

$$\mu_A(x) \wedge \mu_B(x) = \min\{\mu_A(x), \mu_B(x)\},$$
 (3)

$$\mu_A(x) \vee \mu_B(x) = \max\{\mu_A(x), \mu_B(x)\}.$$
 (4)

Выражение (2) можно интерпретировать как векторно-матричное логическое умножение, причем алгебраической сумме будет соответствовать взятие максимума в соответствии с (4), а умножению — взятие минимума (2).

Перейдем к формированию правил конкретной предметной области, охватывающей некоторые аспекты образовательного процесса. Приведем обозначения лингвистических переменных: x_1 — расширение масштабов доподготовки; x_2 — увеличение контингента студентов из зарубежных стран, в особенности из государств-участников СНГ; x_3 — объединение вузов в комплексы университетского типа; x_4 — повышение квалификации и переподготовку работающих и высвобождаемых работников; x_5 — переподготовка контингента со средним специальным образованием; x_6 — привлечение в систему профессионального образования контингента работающей молодежи, ранее делавшей попытки поступить в образовательные учреждения; x_7 — баланс молодежи; x_8 — набор абитуриентов в вузы; y — рост образовательного потенциала.

Сделаем три дополнительных замечания к приведенным факторам.

- 1. Под образовательным потенциалом в узком, но определяющем смысле, будем понимать прежде всего профессорско-преподавательский состав, наиболее уязвимый и чрезвычайно трудно воспроизводимый.
- 2. Области определения лингвистических переменных приведем к единой относительной шкале на интервале [-5, +5]. Для обратного перехода к действительным значениям вычисляются масштабные коэффициенты.
- 3. Нормализуем все функции принадлежности. Для этого все значения функции принадлежности каждой переменной разделим на ее максимальное значение.

Приведение к относительной шкале множество значений лингвистических переменных ставит в соответствие множеству {NB, Z, PB}:

```
x_1{неудовлетворительно, удовлетворительно, хорошо} \equiv x_1{NB, Z, PB}; x_2{небольшое, среднее, достаточное} \equiv x_2{NB, Z, PB}; x_3{незначительное, среднее, хорошее} \equiv x_3{NB, Z, PB};
```

 $y\{$ отрицательный, средний, хороший $\} \equiv y\{$ NB, Z, PB $\}$,

где NB (Negative Big); значению удовлетворительно — Z (Zero); значению хорошо — PB (Positive Big).

Определяя элементы множества факторов $\{x_i\}$ как предпосылки в правилах, было бы естественно предположить в качестве выходной целевой переменной — потенциал системы образования у. Рассмотрим систему нечетких правил как некую систему управления, в которой y управляемая переменная, а множество входов $\{x_i\}$ рассматриваются как управляющие. Тогда задача логического вывода сводится к определению «управляющих» значений, которые могут способствовать принятию решений. По существу, такой подход означает вывод объясняющих причин, вызвавших конкретное состояние целевой переменной. При этом возможности нечеткого подхода к разрешению вывода на множестве нечетких правил остается в силе. С другой стороны, эта интерпретация приводит к необходимости изменить положение переменных в нечетких правилах: условная часть будет содержать нечеткие высказывания относительно переменной у и ее логического отношения с другими переменными, а в правой части правил некоторая комбинация переменных из множества $\{x_i\}$. Система ранжирована по значениям терма лингвистической переменной у.

Каждому из приведенных правил припишем некоторое значение F_i — экспертную оценку достоверности соответствующего правила. Этот

коэффициент определяет значимость правила или уверенность в степени истинности заключения, получаемого из i-го нечеткого правила.

```
Правило_1: если y NB то x_1 есть PB (F=0,6). Правило_2: если y NB то x_6 есть PB и x_1 есть PB (F=0,7). Правило_3: если y Z то x_1 есть PB (F=0,7). Правило_4: если y Z то x_2 есть Z и x_1 есть PB (F=0,9). Правило_5: если y есть PB то x_8 есть PB (F=1,0). Правило_6: если y PB то x_1 есть PB и x_8 есть PB (F=1,0). Правило_7: если y PB и x_7 есть PB то x_4 есть PB и x_6 есть PB (F=0,9). Правило_8: если x_1 есть NB то x_4 есть NB (F=0,8). Правило_10: если x_1 есть NB то x_7 есть NB (F=0,8). Правило_11: если x_3 есть PB то x_4 есть PB (F=0,7). Правило_12: если x_7 есть NB то x_6 есть PB (F=0,8). Правило_13: если x_7 есть NB то x_8 есть NB (F=0,8). Правило_13: если x_7 есть NB то x_8 есть NB (F=0,8).
```

2. Алгоритм нечеткого логического вывода

Механизм логического вывода включает четыре этапа: введение нечеткости (фаззификация), нечеткий вывод, композиция и приведение к четкости (дефаззификация) (рис. 2). Приведенная схема укладывается в алгоритм вывода Мамдани [5]. Из четырех этапов в предыдущем разделе реализованы два. Остается раскрыть этапы собственно вывода на основе конкретизации состояния системы и дефаззификации, т. е. вычисления «четких» значений для факторов, определяющих принимаемые решения.

Сделаем предположения о текущем состоянии системы. Пусть текущее значение y равно 0,5 на относительной шкале. Этому значению y соответствуют значения $\mu_y^{\rm PB}(0,5)=0,6$ и $\mu_y^{\rm Z}(0,5)=0,9$ на функциях принадлежности, помеченных Z и PB. Поскольку $\mu_y^{\rm Z}(0,5)>\mu_y^{\rm PB}(0,5)$, то

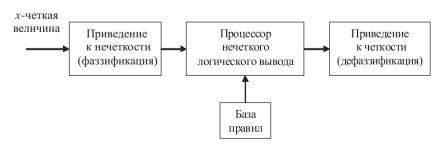
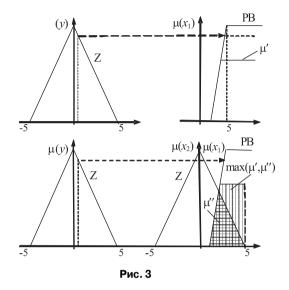


Рис. 2



активными являются правила 3 и 4, из которых следуют значения PB и Z термов лингвистических переменных x_1 и x_2 , соответственно.

Поскольку правило 3 имеет коэффициент достоверности 0,7, то его активизация приводит к нечеткому множеству по x_1 , ограничение которого сверху определяется произведением $F_3=0,7$ на степень принадлежности 0,9, получим функцию принадлежности μ' , ограниченную сверху значением 0,63.

Правило 4 имеет составное заключение. Поскольку логическая связка представлена оператором И, то функция принадлежности высказывания в заключении есть

$$\mu'' = \min\{\mu(x_1), \mu(x_2)\}.$$

Функцию принадлежности заключения активизированного правила необходимо умножить на коэффициент уверенности этого правила 0,9 получим функцию принадлежности μ''

Правила 3 и 4 аккумулируют функцию принадлежности, которая представляет собой композицию функций принадлежности заключений этих правил — μ' , μ'' . Композиция определяется операцией тахдизъюнкции от μ' , μ'' , функция принадлежности которой изображена на рис. 3 (вертикальная штриховка).

Четкому значению y=0.5 следует поставить в соответствие четкие значения x_1 и x_2 . Для этого проведем дефаззификацию лингвистических переменных с помощью метода определения центра масс некоторой

области, ограниченной функцией принадлежности:

$$x_{\text{II.M.}} = \frac{\sum_{i=1}^{n} x_i \mu(x_i)}{\sum_{i=1}^{n} \mu(x_i)}.$$
 (5)

Для функции принадлежности (вертикальная штриховка) это четкое значение равно 3,65 по относительной шкале. Перевод к абсолютным значениям дает $x_1 \approx 910$ и $x_2 \approx 36,5$ (в соответствующих единицах для этих переменных). Продолжая рассуждения относительно других правил, можно получить числовые значения остальных факторов, обеспечивающих в совокупности достаточный уровень целевой функции.

Таким образом, можно сделать вывод: для поддержания среднего уровня потенциала необходимо (но не достаточно) обеспечить уровень доподготовки $x_1 \approx 910$ тыс.чел/год, и привлечение студентов из СНГ $x_2 \approx 36,5$ тыс/год.

3. Нечеткий логико-алгебраический обратный вывод

Как и прежде, множество факторов X примем за предпосылки, множество Y — за следствия. Считая множество X причиной проявления следствий Y, мы таким образом вводим причинно-следственные отношения. Тогда задача будет сводиться к «восстановлению» состояния вектора причин, вызвавших текущее состояние вектора следствий. Пусть $X = \{x_1, x_2, \ldots, x_6\}, Y = \{y_1, y_2, y_3\}$. Поскольку все y_i значимы, то степени истинности компонент вектора представим нечетким множеством $B = \{0,5|y_1,0,9|y_2,0,7|y_3\}$. Причинная взаимосвязь между множеством предпосылок и множеством следствий представляется в виде бинарного нечеткого отношения $P = \{\mu(x_i,y_i)|\langle x_i,y_i\rangle\}$. Это отношение задается в виде матрицы M_P , наполнение которой определяется экспертом, поскольку именно эксперт может оценить степень нечеткого влияния каждого фактора (предпосылки) на элементы вектора следствий: Конкретизация экспертных знаний определена матрицей

$$M_{\widetilde{P}} = egin{bmatrix} 0,3 & 0,7 & 0,6 \ 0,4 & 1,0 & 0,6 \ 0,9 & 0,8 & 0,3 \ 0,3 & 0,5 & 0,9 \ 0,4 & 0,8 & 0,5 \ 0,6 & 0,2 & 0,4 \end{bmatrix}.$$

Задача состоит в том, чтобы определить возможные значения степеней принадлежности вектора предпосылок. Иными словами, необходимо найти такое нечеткое множество $A = \{\mu(x_1)|x_1, \mu(x_2)|x_2, \ldots, \mu(x_6)|x_6\}$, которое соответствовало бы нечеткому множеству B, которое представим в виде вектора b = (0.5, 0.9, 0.7). Нечеткое множество A представим в виде вектора $a = (a_1, a_2, \ldots, a_6)$, имея в виду под a_i соответствующее значение степени принадлежности $\mu(x_i)$.

В соответствии с (1) и (2) компоненты вектора a должны удовлетворять условию

$$a\otimes M_P=b, (6)$$

где \otimes — операция max—min-композиции (2).

В развернутом виде (6) сводится к трем нечетким уравнениям:

$$(a_1 \land 0,3) \lor (a_2 \land 0,4) \lor (a_3 \land 0,9) \lor (a_4 \land 0,3) \lor (a_5 \land 0,4) \lor (a_6 \land 0,6) = 0,5,$$
(*)

$$(a_1 \land 0,7) \lor (a_2 \land 1,0) \lor (a_3 \land 0,8) \lor (a_4 \land 0,5) \lor (a_5 \land 0,8) \lor (a_6 \land 0,2) = 0,9,$$

$$(**)$$

$$(a_1 \land 0.6) \lor (a_2 \land 0.6) \lor (a_3 \land 0.3) \lor (a_4 \land 0.9) \lor (a_5 \land 0.7) \lor (a_6 \land 0.4) = 0.7.$$

Здесь под логической связкой \wedge понимается операция min, под знаком \vee — операция max.

Заметим, что в уравнении (**) только вторая компонента левой части влияет на результат правой части. Отсюда следует $a_2=0,9$. Из (***) следует $a_4\vee a_5=0,7$, а это приводит к необходимости рассмотрения двух случаев: $a_4=0,7,\ a_5=0,7$. Полученные значения не противоречат уравнению (*), из которого следует $a_3\vee a_6=0,5$. Это дает возможность предположить, что $a_3\leqslant 0,5,\ a_6=0,5$ или $a_3=0,5,\ a_6\leqslant 0,5$. Из того же уравнения сразу можно получить $a_1\leqslant 0,3$. Таким образом, при тех экспертных предположениях, которые были сделаны в самом начале этой задачи, мы получили следующее решение:

$$A = \{0,3|x_1,0,9|x_2,0,5|x_3,0,7|x_4,0,7|x_5,0,5|x_6\}.$$

Отсюда следует, наиболее значимыми факторами при принятии управленческих решений следует принять факторы x_2, x_4, x_5 .

По существу, приведенные решения представляют собой различные подходы к применению обратного метода логического вывода. Прямой вывод имеет иную форму рассуждений на том же множестве правил, поэтому и процессор логического вывода должен быть сформирован иначе.

Программный комплекс, построенный на основании приведенных алгоритмов, написан на языке C++.

Заключение

Внедрение программного комплекса в практику исследований подразделений НИИВО позволяет формировать правдоподобные заключения, на основании которых выдвигаются концепции управления отраслью.

Литература

- 1. *Киселев А. В., Сазонов Б. А.* Образовательный потенциал России: состояние и развитие. М.: МГУП, 2004.
- 2. *Савельев А. Я.*, *Зуев В. М. и др.* Прогнозирование развития и мониторинг состояния высшего и среднего профессионального образования. М.: НИИВО, 1999.
- 3. *Аверкин А. Н.*, *Батыршин И. З. и др.* Нечеткие множества в моделях управления искусственного интеллекта / Под ред. Д. А. Поспелова. М.: Наука, 1986.
- 4. *Ашинянц Р.А.* Логические методы в искусственном интеллекте. М.: МГАПИ, 2001. 224 с.
- 5. *Ярушкина Н. Г.* Основы теории нечетких и гибридных систем. М.: Финансы и статистика, 2004. 320 с.