Скоростная обработка изображения отпечатка пальца

В. Ю. Гудков¹, М. В. Боков²

¹ Миасский филиал Челябинского государственного университета,

Россия, 454021 Челябинск, ул. Братьев Кашириных, 129 ² *ЗАО «Сонда Технолоджи»*, Россия, 456318 Челябинская область, Миасс, Луначарского, 4

В статье предлагается способ распознавания частных признаков на изображении отпечатка пальца с жесткими ограничениями на время обработки. Частные признаки сохраняются в шаблоне изображения. По шаблонам выполняется идентификация изображений.

Введение

Исследования в области биометрии начались более 100 лет назад с разработки методов сравнения отпечатков пальцев. С развитием вычислительной техники появилась возможность учета лиц в электронных систе-

мах, обеспечивающих контроль преступности и терроризма. Функционирование электронных систем подобно деятельности эксперта-криминалиста и опирается на модель дактилоскопического изображения (ДИ) в виде частных признаков и отношений между ними [9]. Среди электронных систем наиболее известны системы криминального и гражданского назначения. Если для первых систем основным показателем эффективности работы служит величина ошибки идентификации подозреваемого лица, то для вторых, наравне с величиной ошибки аутентификации пользователя, не менее важна и производительность системы [7]. Это оказывает сильное влияние на выбор методов обработки ДИ, например в системах контроля и управления доступом к объекту.

Рис. 1. Изображение

На рис. 1 на узоре левой петли [9] выделены частные признаки в виде окончания и разветвления, распознавание которых простыми методами неэффективно [2]. Поэтому скоростная обработка ДИ реализуется в виде последовательности методов измерения, анализа и синтеза параметров изображения, настройка или обучение которых минимизирует влияние дефектов [2, 8]. Тем не менее, жесткие ограничения по времени сужают класс ДИ, пригодных для обработки, преимущественно до изображений среднего качества и выше.

1. Постановка задачи

Обычно для упрощения задачи распознавания частных признаков выполняются этапы предварительной обработки и повышения качества ДИ. Для этого оно представляется в прямоугольной области G мощностью $|G| = x_0 y_0$ в виде

$$F = \{ f(x, y) \in 0..2^{b} - 1 | (x, y) \in X \times Y \},\$$

где b — глубина изображения; $X = \{0, 1, \dots, x_0 - 1\}$ и $Y = \{0, 1, \dots, y_0 - 1\}$.

Обработка изображения структурно представляется в форме пирамиды \Re взаимосвязанных иерархий [1, 2, 6], для которых сегментация изображения производится для любого слоя произвольной иерархии. Например, *l*-й слой *k*-й иерархии $F_k^{(l)}$ разбивается на $x_h y_h$ квадратных сегментов $S_{hk}^{(l)}(x, y)$ с длиной стороны 2^{h-k} и вершинами $(x, y) \in X_h \times Y_h$, где k < h и h — номер иерархии; $X_h = \{0, 1, ..., x_h - 1\}$ и $Y_h = \{0, 1, ..., y_h - 1\}$.

Доступ к каждой точке сегмента $S_{hk}(x, y)$ записывается в координатах $(u, v) \in \overline{X}_{hk} \times \overline{Y}_{hk}$:

$$\begin{cases} \overline{X}_{hk} = \{u + x2^{h-k} \mid x \in X_h \land u \in 0..2^{h-k} - 1\}, \\ \overline{Y}_{hk} = \{v + y2^{h-k} \mid y \in Y_h \land v \in 0..2^{h-k} - 1\}. \end{cases}$$
(1)

Доступ к центральной точке сегмента $S_{hk}(x, y)$ записывается в координатах $(u, v) \in \hat{X}_{hk} \times \hat{Y}_{hk}$:

$$\begin{cases} \hat{X}_{hk} = \{2^{h-k-1} + x2^{h-k} \mid x \in X_h\}, \\ \hat{Y}_{hk} = \{2^{h-k-1} + y2^{h-k} \mid y \in Y_h\}. \end{cases}$$
(2)

Размер области определения *h*-й иерархии:

$$x_h = \left\lceil x_0 / 2^h \right\rceil$$
 и $y_h = \left\lceil y_0 / 2^h \right\rceil$,

где $\lceil a \rceil$ — наименьшее целое число, превышающее вещественную величину *a*.

При иерархической сегментации сегменты слоя F_k отображаются на вершины сегментов слоя F_h пирамиды \Re , где k < h. Соответственно вершины сегментов отображаются на сегменты, расположенные ближе к основанию пирамиды [2]. Размер сегмента заметно влияет на время и качество обработки. Далее положим $S_h(x, y) = S_{h0}(x, y)$ и вершины $S_h(x, y) \in F_h$.

Слои пирамиды можно представить множеством действительных чисел, а исходное изображение — множеством неотрицательных действительных чисел [1, 6]. Это снимает необходимость утомительного целочисленного представления сигнала и упрощает выражения, однако дискретизация изображения (слоев пирамиды \Re) в пространстве сохраняется.

Для компактной математической формализации методов классификационного анализа (КА) широко применяется аппарат апертур. Ключевую роль при этом играют прямолинейные щелевые $A_h(x, y, \alpha, w)$ и $A_h^-(x, y, \alpha, w)$, круговая $A_h(x, y, w)$ апертуры, представляемые множеством точек слоя данных *h*-й иерархии и связанными с ними углами в виде элементов упорядоченных троек (u, v, β) . Эти апертуры определяются по формулам

$$\begin{bmatrix} A_h(x, y, \alpha, w) = \{(u, v, \beta) = (x +] w \cos(\alpha) [, y +] w \sin(\alpha) [, \beta) | w \in Z_w \}, \\ A_h^-(x, y, \alpha, w) = \{(u, v, \beta) = (x +] w \cos(\alpha) [, y +] w \sin(\alpha) [, \beta) | w \in Z_w^- \}, \end{bmatrix}$$
(3)

$$A_h(x, y, w) = \bigcup_{\alpha \in \mathbb{Z}^*} A_h(x, y, \alpha, w), \qquad (4)$$

где $(x, y) \in X_h \times Y_h$ — центр апертуры; $(u, v) \in X_h \times Y_h$ — точка апертуры; w — размер апертуры; $Z_w = 1...w$; $Z_w^- = -w...-1 \cup 1...w$; α — угол направления апертуры;]a[— ближайшая целая часть вещественного числа a. Угол, определяющий направление из центра апертуры (x, y) в точку (u, v), находится в виде

$$\beta = \operatorname{arctg}\left(\frac{v-y}{u-x}\right) + \pi n$$
 при $n \in \{0,1\}$.

Рис. 2. Объемная поверхность фрагмента кожи пальца

Для задачи распознавания частных признаков этапы предварительной обработки и повышения качества ДИ должны удовлетворять требованию на ограничение по времени. При этом алгоритм должен обеспечивать приемлемое качество распознавания частных признаков, которое проверяется на тестовой базе ДИ. Список частных признаков формируется в виде:

$$L_m = \left\{ M_i = \left\{ x_i, y_i, \alpha_i \right\} \, | \, i \in 1..n_1 \right\}, \tag{5}$$

где M_i — частный признак и мощность $|L_m| = n_1$; *i* — индекс как номер частного признака; x_i, y_i, α_i — координаты и направление частного признака как угол. Тогда компромиссным решением противоречия качество — скорость может служить реализация пяти этапов обработки ДИ:

- построение матрицы потоков;
- построение матрицы плотности линий;
- сегментация;
- фильтрация;
- скелетизация и распознавание частных признаков.

2. Скоростная обработка

Большинство алгоритмов КА отпечатков пальцев нацелены на распознавание частных признаков [8], которые могут использоваться для вычисления дополнительных параметров ДИ. Предварительная обработка выполняется для исходного изображения $F_0^{(0)} = \{f_0^{(0)}(x, y)\}$ (см. рис. 1). Темные линии, наблюдаемые на изображении, соответствуют гребням на коже пальца, а просветы между линиями — впадинам между гребнями (рис. 2).

2.1. Построение матрицы потоков

Это базовый этап обработки, от которого зависит точность распознавания частных признаков. Он состоит из двух последовательно выполняемых процедур обработки ДИ.

Измерение матрицы потоков заключается в разбиении изображения на неперекрывающиеся сегменты по (1) и вычислении для вершины каждого сегмента $S_h(x, y)$ иерархии h = 3 (8×8) угла $0 \le \delta_h^{(0)}(x, y) < 180$ как элемента матрицы потоков $\Lambda_h^{(0)}$ по формуле

$$\Lambda_h^{(0)} = \left\{ \delta_h^{(0)}(x, y) \right\} = \left\{ \frac{\pi}{2} + \frac{1}{2} \operatorname{arctg}\left(\frac{2J_{12}(x, y)}{J_{22}(x, y) - J_{11}(x, y)} \right) \right\}, \tag{6}$$

где

$$J_{12}(x, y) = \sum_{(u,v)\in S_h(x,y)} \nabla_x \nabla_y ,$$

$$J_{11}(x, y) = \sum_{(u,v)\in S_h(x,y)} \nabla_x \nabla_x ,$$

$$J_{22}(x, y) = \sum_{(u,v)\in S_h(x,y)} \nabla_y \nabla_y .$$

Здесь компоненты градиента в отсчетах $(u,v) \in \overline{X}_{hk} \times \overline{Y}_{hk}$ по (1) сегмента $S_h(x,y)$ вычисляются в виде

$$\begin{split} \nabla_x &= \mathbf{H}_x * f_0^{(0)}(u, v) \,, \\ \nabla_y &= \mathbf{H}_y * f_0^{(0)}(u, v) \,, \end{split}$$

где ядра двумерной свертки как оптимизированные по величине ошибки угла ориентации операторы Собеля [6] находятся в виде

$$\mathbf{H}_{x} = \begin{bmatrix} -3 & 0 & 3 \\ -10 & 0 & 10 \\ -3 & 0 & 3 \end{bmatrix}, \quad \mathbf{H}_{y} = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ 3 & 10 & 3 \end{bmatrix}$$

Фактически элементы из Λ_h вычисляются сглаживанием в сегментах $\{S_h(x, y)\}$ компонент поточечного структурного тензорного оператора [6], записываемого в виде

$$J = \begin{bmatrix} J_{11} + J_{22} \\ J_{22} - J_{11} \\ 2J_{12} \end{bmatrix}.$$
 (7)

Анализ и коррекция матрицы потоков. В иерархии h = 3 на основе (7) для $(x, y) \in X_h \times Y_h$ рассчитывается когерентность потоков по формуле

$$\mathbf{M}_{h}^{(0)} = \left[\mu_{h}^{(0)}(x, y)\right] = \left[\frac{\sqrt{\left(J_{22}(x, y) - J_{11}(x, y)\right)^{2} + 4J_{12}^{2}(x, y)}}{J_{11}(x, y) + J_{22}(x, y)}\right].$$
 (8)

Когерентность для идеальных линий равна единице, а для изотропной структуры — нулю [6]. С учетом (8) элементы из $\Lambda_h^{(0)}$ корректируются по формуле:

$$\Lambda_{h}^{(1)} = \left\{ \delta_{h}^{(1)}(x, y) \right\} = \left\{ \frac{1}{2} \operatorname{arctg}\left(\frac{im_{h}^{(0)}(x, y)}{re_{h}^{(0)}(x, y)} \right) \right\},$$
(9)

где

$$re_{h}^{(0)}(x,y) = \sum_{(u,v)\in A_{h}(x,y,1)} \mu_{h}^{(0)}(u,v) \cos(2\delta_{h}^{(0)}(u,v)),$$
$$im_{h}^{(0)}(x,y) = \sum_{(u,v)\in A_{h}(x,y,1)} \mu_{h}^{(0)}(u,v) \sin(2\delta_{h}^{(0)}(u,v));$$

 $\mu_h^{(0)}(u,v)$ и $\delta_h^{(0)}(u,v)$ — измеренные когерентность и поток по (8) и (6) в отсчете (u,v) апертуры $A_h(x,y,1)$ по (4). На рис. 3 показан результат коррекции матрицы потоков.

2.2. Построение матрицы периодов линий

Это базовый этап обработки, влияющий на точность распознавания частных признаков. Он выполняется на той же иерархии h = 3 и состоит из двух последовательно выполняемых процедур обработки ДИ.

Рис. 3. Матрицы измеренных и скорректированных потоков

Измерение матрицы локальных периодов линий. Метод измерения опирается на применение автокорреляционной функции.

Определение 1. Под периодом линий понимается величина t = w/n, обратно пропорциональная среднему количеству *n* линий, умещающихся в окрестности размером *w* на прямой, проведенной перпендикулярно линиям [8].

Зададим отрезок $C(x, y) = A_0^-(x, y, \alpha, w) \cup (x, y)$, сгенерированный щелевой апертурой по (3), и перенумеруем отсчеты $(u, v) \in C(x, y)$ в виде $k \mapsto (u_k, v_k)$, где $k \in \{0, 1, ..., N\}$; N = 2w+1. В отрезке C(x, y) с центром $k \in \{w\}$ в отсчете $(x, y) \in X \times Y$ собираются упорядоченные по k величины $f_0^{(0)}(k)$ яркости изображения. Ориентация щелевой апертуры определяется углом α , выбираемым перпендикулярно потоку, по формуле

$$\alpha = \frac{\pi}{2} + \delta_h^{(1)}(x, y)$$
 при $(x, y) \in X_h \times Y_h$,

а ее длина определяется окрестностью размером w для отсчета $(x, y) \in X \times Y$ (w = 19 в реализации).

Для отрезка C(x, y), центрированного в отсчете $(x, y) \in \hat{X}_{h0} \times \hat{Y}_{h0}$ по (2) на сегменте $S_h(x, y)$, введем автокорреляционную функцию в виде

Рис. 4. Центрированный отрезок

Рис. 5. Автокорреляционная функция

$$r(i) = \frac{1}{w+1} \sum_{k=0}^{w} (f_0^{(0)}(k) - \overline{f(0)}) (f_0^{(0)}(k+i) - \overline{f(i)})$$
(10)

и ее разность

$$\Delta r(i) = r(i+1) - r(i) ,$$

где

$$\overline{f(i)} = \frac{1}{w+1} \sum_{k=0}^{w} f(k+i);$$

w+1 — количество отсчетов для расчета автокорреляционной функции, определенной на множестве индексов $i \in \{0, 1, ..., w\}$. Тогда элементы матрицы локального периода линий $T_h^{(0)} = \left[t_h^{(0)}(x, y) \right]$ вычисляются по формуле

$$t_{h}^{(0)}(x,y) = \arg\min_{j} \left\{ \left(\Delta r(0), ..., \Delta r(j) \right) | \Delta r(j-1) > 0 \land \Delta r(j) \le 0 \right\}.$$
 (11)

Фактически для каждого сегмента иерархии h = 3 выделяется его центр, через который проводится отрезок перпендикулярно потоку. На рис. 4 величины яркости изображения собираются в отсчетах забеленного отрезка. Для них по (11) оценивается локальный период линий на основе автокорреляционной функции по (10), график которой показан на рис. 5. Выбор иерархии h = 3 сокращает количество оценок в 64 раза.

Отметим, что формула (11) определяет такой локальный период линий, который соответствует экстремуму отсчетов для положительных величин автокорреляционной функции во второй положительной полуволне. На рис. 5 период линий рассчитывается равным 9. Выбор экстремума «центрирует» маску фильтра, применяемого для фильтрации ДИ. Однако предположение о том, что оценка периода линий $t_h^{(0)}(x, y)$ может быть смещена, оставляет пространство для маневрирования параметрами фильтрации. На ровном фоне изображения элементы матрицы $T_h^{(0)}$ равны нулю.

Анализ и коррекция матрицы периодов линий. Известно, что для ДИ с разрешением 500 dpi $4 \le t_h^{(0)}(x, y) \le 17$ [8]. Это позволяет удалить ошибки распознавания локального периода линий, задавая $t_h^{(0)}(x, y) = 0$.

Суть процедуры сводится к расчету матрицы периодов линий $T_h^{(1)} = = [t_h^{(1)}(x, y)]$, которая в начальной итерации номером j = 0 инициализируется: $T_h^{(1)} = T_h^{(0)}$. Далее номер j итерации инкрементируется. В первой итерации для $t_h^{(1)}(x, y) \notin \{0\}$ период линий сглаживается по формуле:

$$t_{h,j}^{(1)}(x,y) = \frac{1}{n} \sum_{R} t_{h,j-1}^{(1)}(u,v) , \qquad (12)$$

где условие суммирования элементов $R = t_{h,j-1}^{(1)}(u,v) > 0$; отсчеты апертуры $(u,v) \in A_h(x,y,1)$ — по (4); $n = \sum_R 1$ — количество ненулевых элементов в апертуре. В последующих итерациях для каждого отсчета с кодом пропуска $t_h^{(1)}(x,y) \in \{0\}$ и для смежных с ним ненулевых элементов количеством n, если n > 3, период линий прогнозируется по (12). Количество итераций ограничивают величиной 2–3. Если это ограничение снять, а величину n уменьшить, то большая часть элементов из $T_h^{(1)}$ определится.

Таким образом, ошибки измерений предварительно удаляются, периоды линий сглаживаются и в финале прогнозируются. Результат коррекции матрицы локальных периодов линий показан на рис. 6. Нулевые значения периодов показаны черным цветом, большие светлее.

2.3. Сегментация

Сегментация необходима для отделения информативных областей ДИ от неинформативных. Она выполняется на той же иерархии h = 3 и заключается в расчете матрицы меток $C_h^{(0)} = \left[c_h^{(0)}(x, y)\right]$ по формуле

Рис. 6. Измеренные периоды линий (слева) и скорректированные (справа)

$$c_h^{(0)}(x,y) = \begin{cases} 1, & \text{если } r\left(t_h^{(1)}(x,y)\right) \cdot \mu_h^{(0)}(x,y) > \kappa_1, \\ 0, & \text{иначе,} \end{cases}$$
(13)

где $t_h^{(1)}(x, y)$ — период линий по (12); r(.) — величина автокорреляционной функции по (10); $\mu_h^{(0)}(x, y)$ — когерентность потоков по (8); κ_1 — обучаемый коэффициент.

Фактически при выделении информативных областей опираются на два признака: корреляционную функцию и когерентность потоков. Эти признаки сами по себе комплексные, а их сочетание позволяет повысить точность сегментации. Для ускорения сегментации величины автокорреляционной функции по (10) для каждого сегмента можно сохранить и повторно не вычислять.

При сегментации могут образовываться островки «разнородных» областей. Их можно классифицировать операциями морфологической обработки изображения [1, 6], повышающими точность сегментации. Однако в силу действующего ограничения по времени это нежелательно.

2.4. Фильтрация

Фильтрация предназначена для выделения линий в информативной области ДИ. Она обрабатывает слой исходного изображения как матрицу $F_0^{(0)} = \left[f_0^{(0)}(x, y) \right]$. Величины параметров фильтра считываются из матрицы потоков $\Delta_h^{(1)}$ по (9) и матрицы периодов линий $T_h^{(1)}$ по (12) на иерархии h = 3. Структура фильтра опирается на фильтр Габора [8]. Для повышения производительности фильтрация расщепляется на два этапа, выполняемых последовательно: сглаживание вдоль линий и дифференцирование.

Сглаживание изображения. Сглаживающий фильтр, устраняющий микроразрывы и микрозалипания линий, применяется для каждого сегмента изображения $S_h(x, y)$ с меткой $c_h^{(0)}(x, y) \in \{1\}$. Величины отсчетов по (1) в каждом сегменте $S_h(x, y)$ сглаживаются по формуле

$$F_0^{(1)} = \left[f_0^{(1)}(x, y) = \mathbf{H}_1 * \Xi_0^{(\alpha)}(x, y) \right],$$
(14)

где **H**₁ — ядро одномерной свертки; набор $\Xi_0^{(\alpha)}(x, y) = \left\{ \xi_0^{(\alpha)}(u, v) \right\}$ состоит из элементов, выбираемых из $F_0^{(0)}$ прямолинейной щелевой апертурой по (3) в виде

$$\left\{\xi_0^{(\alpha)}(u,v)\right\} = \left\{f_0^{(0)}(u,v) \,|\, (u,v) \in A_0^-(x,y,\alpha,w) \cup (x,y)\right\};$$

 $\alpha = \delta_h^{(1)}(x, y) \in \Delta_h^{(1)}$ — направление апертуры, одинаковое для всех отсчетов сегмента $S_h(x, y)$; $w = \kappa_1 t_h^{(1)}(x, y)$ — размер апертуры, определяемый периодом линий и коэффициентом κ_1 .

Перенумеруем упорядоченные отсчеты набора $\Xi_0^{(\alpha)}(x, y) = \left\{ \xi_0^{(\alpha)}(u, v) \right\}$, сгенерированного щелевой апертурой по (3), в виде $k \mapsto (u_k, v_k)$, где $k \in \{0, 1, ..., N\}$; N = 2w + 1. Тогда ядро свертки **H**₁ рассчитывается в виде:

$$\mathbf{H}_1 = \exp\left(-\frac{\left(w-k\right)^2}{2\sigma^2}\right),\,$$

где σ — параметр как среднеквадратичное отклонение, определяющий крутизну Гауссиана [8] (2–4 в реализации); $k \in \{w\}$ — отсчет центра окна, здесь равный размеру апертуры w.

Сглаживающий фильтр по сути является выделенным первым сомножителем разделимого фильтра Габора [8] с количеством отсчетов, уменьшенным в $\pi w/2$ раз.

Дифференцирование изображения. Для каждого сегмента изображения $S_h(x, y)$ с меткой $c_h^{(0)}(x, y) \in \{1\}$ применяется дифференциальный фильтр в виде

$$F_0^{(2)} = \begin{bmatrix} f_0^{(2)}(x, y) = \begin{cases} 1, & \text{если } \mathbf{H}_2 * \Xi_0^{(\beta)}(x, y) \ge 0, \\ 0, & \text{иначе,} \end{cases}$$
(15)

где **H**₂ — ядро одномерной свертки; набор $\Xi_0^{(\beta)}(x, y) = \left\{ \xi_0^{(\beta)}(u, v) \right\}$ состоит из элементов, выбираемых из $F_0^{(1)}$ прямолинейной щелевой апертурой по (3) в виде

$$\{\xi_0^{(\beta)}(u,v)\} = \{f_0^{(1)}(u,v) \mid (u,v) \in A_0^-(x,y,\beta,w) \cup (x,y)\};\$$

 $\beta = \pi/2 + \delta_h^{(1)}(x, y)$ — направление апертуры, одинаковое для всех отсчетов по (1) сегмента $S_h(x, y)$ и ортогональное потоку; $w = \kappa_2 t_h^{(1)}(x, y)$ — размер апертуры, определяемый периодом линий и коэффициентом κ_2 .

Перенумеруем упорядоченные отсчеты набора $\Xi_0^{(\beta)}(x, y) = \{\xi_0^{(\beta)}(u, v)\},\$ сгенерированного щелевой апертурой, в виде $k \mapsto (u_k, v_k)$, где $k \in \{0, 1, ..., N\}$; N = 2w + 1. Тогда ядро свертки **H**₂ рассчитывается в виде

$$\mathbf{H}_{2} = \exp\left(-\frac{1}{2}\left(\frac{w-k}{\kappa_{2} t_{h}^{(1)}(x, y)}\right)^{2}\right) \cdot \cos\left(\frac{2\pi}{t_{h}^{(1)}(x, y)}(w-k)\right),$$

где $t_h^{(1)}(x, y)$ — период линий на сегменте $S_h(x, y)$; w — отсчет центра окна, здесь равный размеру апертуры; κ_2 — настраиваемый коэффициент, определяющий скорость затухания гармонической составляющей (2–4 в реализации).

По сути дифференциальный фильтр является одномерным аналогом фильтра Габора [8], получаемый сечением, с количеством отсчетов, уменьшенным в $\pi w/2$ раз. При скоростной обработке ДИ на сегменте $S_h(x, y)$ сглаживающий и дифференциальный фильтры применяются один раз последовательно. Дифференциальный фильтр детектирует фазу отклика свертки и определяет линии узора в виде бинарного изображения. Результат фильтрации представлен на рис. 7.

2.5. Скелетизация и распознавание частных признаков

На этом этапе линии бинарного ДИ (см. рис. 7) утончаются до скелета. Введем некоторые определения.

Определение 2. Скелетом линии называется простая цепь $\langle u, v \rangle$ с вершинами u и v в 8-смежности, проходящая вблизи геометри-

ческого центра линии, причем для каждой

вершины $p_1 \in \langle u, v \rangle$ существует ровно две смежные с ней вершины p_2 и p_3 , при этом вершины p_2 и p_3 несмежные.

Определение 3. Окончанием называется такая вершина p_1 скелета, что для вершины p_1 существует ровно одна смежная с ней вершина p_2 .

Определение 4. Разветвлением называется такая вершина p_1 скелета, что для вершины p_1 существует ровно три смежные с ней вершины p_2 , p_3 и p_4 , при этом любые две вершины из множества $\{p_2, p_3, p_4\}$ попарно несмежные.

Скелетизация опирается на раскрашивание точек линий $f_0^{(2)}(x, y) \in \{0\}$ по правилам $P(\xi(x, y))$, определяемым в специальной табличной форме на основе идентификатора окрестности точки в виде

$$\xi(x,y) = \sum_{i \in I} f(i) \cdot 2^i ,$$

где f(i) принимает значение 1 для линии и 0 в противном случае; $i \in I = \{0,1,...,7\}$ — номер сектора апертуры 3×3 по (4). Величина $\xi(x, y) \in \{0,1, ..., 255\}$ и определяет ячейку в табличной форме. Согласно [3] итерационное

Рис. 7. Бинарное изображение

Рис. 8. Скелет изображения

Рис. 9. Частные признаки

применение правил из $P(\xi(x, y))$ позволяет вычислить скелет линий, показанный на рис. 8. С вершин скелета как графа [4] считываются окончания и разветвления, располагающиеся в информативной области ДИ на расстоянии от границы области не меньшем периода линий, и помещаются в список (5). Структурная постобработка скелета [8] как непроизводительная операция не применяется. Частные признаки с их направлениями показаны на рис. 9, причем окончания закрашены черным цветом, а разветвления — серым.

Заключение

В работе предложена группа взаимосвязанных методов, обеспечивающая приемлемое качество распознавания частных признаков при жестких ограничениях на время обработки ДИ. К ним относятся: измерение и коррекция матриц потоков, измерение и коррекция матриц периодов линий, сегментация, фильтрация, скелетизация и считывание с вершин скелета частных признаков. Построение матриц потоков основано на тензорном анализе простых окрестностей, а матриц периодов линий — на автокорреляционной функции. Общее время обработки на Intel Pentium D CPU 3,4 ГГц составляет 80 мс. Обработка опирается на операции свертки, что с учетом временных характеристик позволяет перенести ее на целевые платы TMS или процессоры DSP [5] и использовать встроенные в них операции свертки. Последнее позволяет реализовать простые портативные биометрические системы, работающие в реальном режиме времени.

Литература

- Гонсалес Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс; Пер. с англ.; Под ред. П. А. Чочиа. М.: Техносфера, 2006. 1072 с.
- Гудков В. Ю. Методы первой обработки дактилоскопических изображений: монография / В. Ю. Гудков. Миасс: Геотур, 2008. 127 с.
- 3. Гудков В. Ю. Новая технология формирования скелетов дактилоскопических изображений / В. Ю. Гудков, А. А. Коляда, А. В. Чернявский; Под ред. акад. БАН А. Ф. Чернявского и д. т. н. В. В. Ревинского // Методы, алгоритмы и программное обеспечение гибких информационных технологий для автоматизированных идентификационных систем: сб. науч. ст. Минск: БГУ, 1999. С. 71–82.
- Новиков Ф. А. Дискретная математика для программистов: Учебник / Ф. А. Новиков. СПб.: Питер, 2001. 304 с.
- 5. Сергиенко А. Б. Цифровая обработка сигналов / А. Б. Сергиенко. СПб.: Питер, 2002. 608 с.
- Яне Б. Цифровая обработка изображений / Б. Яне; Пер. с англ. А. М. Измайловой. М.: Техносфера, 2007. 584 с.
- Bolle R. M. Guide to biometrics / R. M. Bolle, J. Y. Connel, S. Pankanti, N. K. Ratha. N. Y.: Springer-Verlag, 2004. 368 p.
- Maltoni D. Handbook of fingerprint recognition / D. Maltoni, D. Maio, A. K. Jain. N. Y.: Springer-Verlag, 2003. 348 p.
- 9. The science of fingerprint: classification and uses. Washington: U. S. Government Printing Office, 1984. 211 p.