V. СЕТЕВЫЕ ЗАДАЧИ

Математическое моделирование динамического последовательного заполнения сетей потоками связи^{*}

Я. Р. Гринберг, И. И. Курочкин

Институт системного анализа РАН

Настоящая работа является развитием работ авторов по «статическому» заполнению телекоммуникационных сетей различных типов последовательно каналами связи посредством различных алгоритмов. Представлены результаты по «динамическому» заполнению сетей, когда «время жизни» каналов связи конечно. Описана математическая модель и приведены результаты численного эксперимента по заполнению множества сетей стохастической топологии с помощью шести последовательных алгоритмов. Дан первичный анализ результатов и некоторые сравнительные характеристики алгоритмов.

Введение

Пусть есть некоторая телекоммуникационная сеть, которая соединяет множество абонентов посредством линий связи, существующих между узлами сети. Пару абонентов соединяет канал связи, представляющий собой последовательность линий связи между узлами сети. Каналов связи между каждой парой абонентов может быть множество, и выбор какого-либо из

^{*} Работа выполнена при поддержке программы фундаментальных исследований Президиума РАН П1, фонда РФФИ (грант РФФИ 09-07-00496) и Совета по грантам Президента Российской Федерации (грант НШ-5511.2008.9).

них по данному требованию (или заявке) на организацию связи может осуществляться различными способами.

Метод выбора, применяемый нами в этой и предшествующих работах, основан на теории потоков в сетях [10,11] и отличается от тех методов, которые обычно используются для анализа сетей массового обслуживания, в т. ч. и телекоммуникационных сетей.

Методы теории массового обслуживания [12,13] эксплуатируют следующую модель функционирования телекоммуникационной сети. В каждом узле сети должен быть задан поток входящих сообщений, поступающий по линиям связи, поток входящих сообщений извне, вероятностная модель коммутации этих сообщений в линии связи, инцидентные этому узлу, наконец. поток изымаемых из сети сообщений. Все величины — случайные, подчиняющиеся тому или иному закону распределения. Узлы и (или) линии связи имеют конечные пропускные способности, в результате чего в них образуются очереди на коммутацию и передачу сообщений. Сделав некоторые предположения относительно каналов связи, по которым циркулируют сообщения между парами абонентов, можно рассчитать среднее время задержки и, например, поставить задачу минимизации этой величины. В этой модели все распределения вероятностей, в т. ч. и вероятности коммутации сообщений в каждом узле, считаются заданными. А ведь именно эти величины зависимы от той или иной политики маршрутизации сообщений. Таким образом, оказывается, что в этой модели методы маршрутизации, их влияние на конечные характеристики системы учитываются весьма опосредовано, следовательно, не позволяют прямо исследовать эти зависимости.

В [14] предложено рассматривать телекоммуникационную сеть как стохастическую макросистему, состояния которой подчиняются либо Больцмановскому закону распределения — если загрузка сети мала, — либо закону Ферми—Дирака, если загрузка сравнима с предельной. Однако связь загрузки сети с методом маршрутизации эта модель не рассматривает.

Характерной особенностью нынешнего этапа развития телекоммуникационной отрасли является, на наш взгляд, то, что теоретические оптимизационные модели и реальная инженерная практика слабо связаны между собой. Более того, отрасль продолжает оставаться в стадии бурного экстенсивного развития, когда наращивание возможностей достигается почти исключительно за счет количества и быстродействия аппаратуры в коммутационных узлах и количества оптоволоконных кабелей в линиях связи. Увеличение возможностей сети в целом за счет «гибкой, интеллектуальной» маршрутизации, не является, на наш взгляд, главным направлением для инженеров, хотя возможности реализации элементов такой маршрутизации и заложены в некоторых протоколах маршрутизации, например в протоколе OSPF. Поскольку задача функционирования крупных коммутационных центров была и остается бизнес-задачей крупных провайдеров, она не стала предметом научного обсуждения, а относящаяся к ней информация не является общедоступной. Может быть, главным препятствием для научного анализа в этой сфере является труднодоступность, «непрозрачность» для членов научного сообщества реальных данных о функционировании глобальных сетей и, вследствие этого, невозможность анализа реальных проблем и формулировки для них оптимизационных задач. С другой стороны, в этом есть и преимущество для проведения научных исследований, которое состоит в возможности более свободно предлагать новые подходы в маршрутизации.

В наших работах [1–3] была рассмотрена задача последовательного заполнения телекоммуникационных сетей каналами связи между некоторым множеством пар абонентов таким образом, чтобы суммарный поток был как можно большим. В [1] приведены рассуждения, показывающие сомнительность существования универсального последовательного алгоритма, обеспечивающего строго максимальный суммарный поток. Поэтому в упомянутых работах было предложено семейство последовательных алгоритмов, решающих эту задачу и отличных от алгоритма нахождения кратчайшего пути, называемого простым алгоритмом. Семейство состоит из двух групп алгоритмов. В одной, алгоритм выбора пути зависит от анализа минимальных разрезов между парами абонентов в той сети, которая сложилась на данный момент, другая — только на анализе текущих значений пропускных способностей ребер сети.

В этих работах использовался так называемый «статический» режим заполнения сетей, т. е. предполагалось, что каналы связи не исчезают, иными словами, имеют бесконечное «время жизни».

В настоящей работе мы исследовали процесс заполнения телекоммуникационных сетей в «динамическом» режиме, т. е. предполагали, что каналы связи имеют некоторое конечное «время жизни», по истечении которого они исчезают, освобождая ресурс сети.

Генерация сетей с заданными параметрами

Для проведения математического моделирования с помощью алгоритмов заполнения сети потоками, кроме общей информации о топологии реальных сетей, а также знания спецификаций физических сред передачи данных [7, 9], необходимо наличие множества искусственно сгенерированных сетей. Под искусственно сгенерированной сетью будем понимать определение матрицы смежности графа и пропускных способностей дуг.

Генерируемые сети должны подчиняться следующим ограничениям:

- веса дуг положительны;
- граф является связным;
- матрица пропускных способностей дуг графа симметрична, поскольку мы рассматриваем неориентированные графы.

1.1. Алгоритм генерации сети

Генерация сети происходит в несколько этапов:

- генерация ориентированного графа с заданным количеством нулевых дуг, и с заданным максимальным значением пропускных способностей дуг;
- если необходимо, то модификация сгенерированного графа в симметричный граф;
- создание множества полюсов и множества всех возможных комбинаций пар полюсов;
- проверка на достижимость между полюсами графа;
- нахождение меры неравномерности (см. раздел 3.2. «Оптимальный алгоритм» в нашей статье этого сборника), который включает в себя этап нахождения максимальных потоков между всеми корреспондирующими полюсами сети.

Если при генерации сети не пройден порог неравномерности, т. е. мера неравномерности меньше порога, то генерация сети осуществляется повторно.

Когда сеть сгенерирована, то необходимо сгенерировать упорядоченное множество (вектор) заявок:

- генерация множества заявок (источник, сток, величина потока);
- генерация времени жизни заявок.

Для данного случая величина потока всегда равняется единице. Выбор полюсов-источников и полюсов-стоков осуществляется с помощью равномерного случайного распределения. Таким образом, можно сказать, что для всех пар полюсов вероятности возникновения заявки равны. Со статистической точки зрения потоки, которые могут быть проведены через пары полюсов, равны.

1.2. Назначение времени жизни заявок

Динамическое заполнение телекоммуникационной сети предполагает, что заявки через определенное время освобождают ресурсы сети, т. е. имеют некоторое время жизни, по истечении которого пропускные способности дуг, принадлежащие потоку по данной заявке, увеличиваются на величину проведенного потока (в нашем случае на 1).

Как показали предварительные эксперименты, в зависимости от распределения времени жизни заявок заполнение сети может протекать в нескольких режимах:

 ненасыщенный режим — одновременное количество заявок в сети небольшое, отказы никогда не происходят, величина максимального потока не достигается, величина меры неравномерности мала в не зависимости от числа проведенных заявок;

- стационарный режим одновременное количество заявок в сети большое, иногда происходят отказы, величина максимального потока иногда достигается, но массовых отказов нет; величина меры неравномерности в зависимости от проведенных заявок — величина постоянная;
- насыщенный режим величина максимального потока достигается быстро, величина меры неравномерности достигает максимальных значений, отказы в обслуживании массовые;
- режим полного заполнения равноценен статическому заполнению сети заявками, когда время жизни достаточно велико по сравнению с временем моделирования, полный отказ происходит в 100 % случаев.

При разработке алгоритма генерации сетей для математического моделирования было учтено то обстоятельство, что более всего интересен стационарный режим. Этот режим был выбран, потому что режим полного заполнения и насыщенный режим равноценны статическому заполнению, которое уже было исследовано, а ненасыщенный режим не дает информации о поведении сети при достижении значений максимального потока и использовании большей части ресурсов.

Была выбрана следующая модель определения времени жизни заявок: оно распределено по нормальному закону со смещением:

 $lifeTime_i = Round | addValue + RandomNorm(1) * mulValue |$.

Для данной серии экспериментов были приняты следующие значения смещения и стандартного отклонения: *addValue* = 3000, *mulValue* = 750.

При генерации сетей выполнялись следующие условия:

- веса дуг положительны;
- граф является связным;
- матрица пропускных способностей дуг графа симметрична, поскольку мы рассматриваем неориентированные графы.

Схема алгоритма генерации сетей представлена на рис.1.

2. Краткое описание последовательных алгоритмов

Алгоритмы, использованные нами при исследовании динамического режима заполнения сетей, ничем не отличаются от тех, которые были использованы в нашей статье «Исследование результатов математического моделирования последовательного заполнения сетей с кластерной топологией» этого сборника; их краткое описание представлено в этой работе.

Рис. 1. Схема алгоритма генерации сетей

3. Параметры математического моделирования

Для заполнения были выбраны сети со стохастической топологией, с несколькими парами полюсов (парами источник — сток). Заполнение производилось единичными по интенсивности потоками.

При моделировании заполнения сети время жизни заявки учитывается и имеет нормальное распределение, таким образом, моделирование проводится в динамическом режиме, в котором можно оценить заполнение сети в стационарном режиме и провести математическое моделирование «на отказ».

Модель сети определяется с помощью следующих параметров:

- количество узлов;
- количество (часть от общего числа) нулевых дуг;
- максимальная пропускная способность дуг в сети;
- граф связности, в котором указываются пропускные способности дуг сети;
- вектор пар полюсов (пар источник сток);
- избыточный вектор заявок на проведение единичного потока (Заявка определяется как номер пары полюсов, между которыми следует провести единичный поток);
- вектор времени жизни заявок, по размеру равен размеру вектора заявок;
- идентификационный уникальный номер сети.

Математическое моделирование процесса заполнения сети происходит до наступления следующих событий:

- критерий первого отказа (проведение очередной заявки невозможно, одна из пар источник — сток несвязна; минимальный из множества минимальных разрезов между парами полюсов равен 0);
- критерий полного отказа (стоки не достижимы из источников для всех пар полюсов; все минимальные разрезы между всеми парами полюсов равны 0);
- критерий ненасыщения (при обработке количества заявок в 10 раз превышающего размер вектора заявок).

Для данной статьи было отобрано одно множество из 45 сетей. Это множество можно условно разделить на 9 групп по разреженности сети (проценту присутствия нулевых) дуг.

3.1. Общие входные параметры сетей:

- неориентированный граф;
- равномерный закон случайного распределения для генерации массива заявок;

- топология сети стохастическая топология;
- количество узлов сети 20;
- количество полюсов сети 6, количество пар полюсов 15 по принципу «каждый с каждым»;
- разреженность сети 10–90 %;
- минимальный порог меры неравномерности по величине минимальных разрезов в исходной сети 0,01;
- максимальное значение пропускной способности дуг в сети до 300;
- распределение значений пропускной способности дуг равномерное.
 Параметры сетей, участвовавших в эксперименте, приведены в табл. 1.

иметры сетен, у нетвовивших в эксперименте, приведены в тиол. т

Таблица 1

N≌	ID сети	Кол-во узлов	Кол-во пар полюсов	Кол-во заявок	Макс. Проп. Сп.	% нуле- вых дуг	Нач. МН по МР
1	733364,81665	20	15	4500	298	10	0,0181
2	733364,83306	20	15	4500	297	10	0,0345
3	733364,84929	20	15	4500	299	10	0,0507
4	733364,82488	20	15	4500	298	10	0,0263
5	733364,82086	20	15	4500	300	10	0,0223
6	733364,83803	20	15	4500	300	20	0,0394
7	733364,81224	20	15	4500	297	20	0,0136
8	733364,84894	20	15	4500	296	20	0,0503
9	733364,84277	20	15	4500	299	20	0,0442
10	733364,81570	20	15	4500	295	20	0,0171
11	733364,81507	20	15	4500	299	30	0,0164
12	733364,82156	20	15	4500	296	30	0,0229
13	733364,87023	20	15	4500	299	30	0,0716
14	733364,81939	20	15	4500	298	30	0,0208
15	733364,83893	20	15	4500	295	30	0,0403
16	733364,90879	20	15	4500	298	40	0,1101
17	733364,83610	20	15	4500	298	40	0,0374
18	733364,81313	20	15	4500	293	40	0,0145
19	733364,94835	20	15	4500	300	40	0,1497
20	733364,94717	20	15	4500	299	40	0,1485
21	733364,81272	20	15	4500	299	50	0,0140

Параметры исследуемых сетей

Окончание таблицы 1

Nº	ID сети	Кол-во узлов	Кол-во пар полюсов	Кол-во заявок	Макс. Проп. Сп.	% нуле- вых дуг	Нач. МН по МР
22	733364,84939	20	15	4500	299	50	0,0507
23	733364,88135	20	15	4500	299	50	0,0827
24	733364,81628	20	15	4500	296	50	0,0176
25	733364,82637	20	15	4500	299	50	0,0277
26	733364,83469	20	15	4500	281	60	0,0360
27	733364,95471	20	15	4500	297	60	0,1560
28	733364,87175	20	15	4500	300	60	0,0730
29	733364,82081	20	15	4500	300	60	0,0221
30	733365,03662	20	15	4500	300	60	0,2379
31	733364,93035	20	15	4500	299	70	0,1316
32	733364,84190	20	15	4500	299	70	0,0431
33	733364,88368	20	15	4500	293	70	0,0849
34	733364,87531	20	15	4500	299	70	0,0765
35	733364,85647	20	15	4500	267	70	0,0577
36	733365,15823	20	15	4500	290	80	0,3594
37	733364,83505	20	15	4500	298	80	0,0363
38	733365,03995	20	15	4500	299	80	0,2412
39	733365,06006	20	15	4500	293	80	0,2613
40	733365,04629	20	15	4500	295	80	0,2475
41	733366,49584	20	15	4500	232	90	1,6970
42	733365,01373	20	15	4500	296	90	0,2149
43	733365,36434	20	15	4500	282	90	0,5655
44	733365,40477	20	15	4500	281	90	0,6059
45	733365,30739	20	15	4500	292	90	0,5086

3.2. Выходные данные

При заполнении сетей были рассчитаны следующие результирующие параметры:

- проведенный поток до первого отказа;
- проведенный поток до разрыва всех пар полюсов;
- orderBadSet множество отклоненных заявок;
- endNet остаточная сеть;
- orderCount общее количество удовлетворенных заявок;

- orderEndNumber номер последней удовлетворенной заявки;
- netID идентификатор сети;
- path множество проложенных путей в исходной последовательности;
- param структура с динамическими параметрами.

Для определения динамики заполнения сетей на каждом шаге для каждого алгоритма были рассчитаны следующие параметры:

- minArc минимальная величина пропускной способности дуг в сети;
- maxArc максимальная величина пропускной способности дуг в сети;
- mArc средняя величина пропускной способности дуг в сети;
- stdArc стандартное отклонение пропускной способности дуг в сети;
- numArc количество ненулевых дуг в сети;
- steadyNullArc мера неравномерности для дуг (среднеквадратичное отклонение);
- minCut минимальная величина по множеству минимальных разрезов;
- maxCut максимальная величина по множеству минимальных разрезов;
- mCut средняя величина по множеству минимальных разрезов;
- stdCut стандартное отклонение по множеству минимальных разрезов;
- numCut количество ненулевых минимальных разрезов (количество связных пар полюсов);
- steadyNullCut мера неравномерности по минимальным разрезам (среднеквадратичное отклонение).

4. Результаты математического моделирования

Электронную версию этого раздела с цветными рисунками можно посмотреть по ссылке [15].

4.1. Табличное представление результатов

В табл. 2, 3 приведены результаты численного эксперимента по заполнению множества сетей каналами связи с конечным «временем жизни» посредством различных последовательных алгоритмов.

Результаты	запопнения	сетей П	Іровел	енный	поток
гезультаты	заполнения	CETER. I	ровед	сппыи	10106

N≌		Пр до	оведен о перво	ный по го отка	ток за		п	роведе во	нный п сех пар	оток до полюс	разры ов	ва	пр <i>4</i> с пј	% пр оведе to пер по с рость	евыш енног ового равне ім алі	ения о пото отказ ению горит	ока а мом	пр д с пј	% превышения проведенного потока до полного отказа по сравнению с простым алгоритмом				
	П	Д	дс	PA	PC	РΓ	П	Д	ДС	PA	PC	РΓ	Д	ДC	PA	PC	РΓ	Д	ДC	PA	PC	РΓ	
1	10449	10629	10629	10629	10629	10626	24468	24189	24366	24459	24182	24444	2	2	2	2	2	-1	0	0	-1	0	
2	8395	9771	9771	9771	9708	9771	21435	20402	20876	21163	20923	21421	16	16	16	16	16	-5	-3	-1	-2	0	
3	13779	14027	14027	14027	14027	14027	25388	20411	25606	24216	24645	25555	2	2	2	2	2	-20	1	-5	-3	1	
4	11251	11312	11312	11312	11312	11311	23341	19338	22826	22939	23626	23534	1	1	1	1	1	-17	-2	-2	1	1	
5	10145	10277	10277	10277	10277	10277	17031	15447	18302	17069	15081	16773	1	1	1	1	1	-9	7	0	-11	-2	
6	12881	12864	12881	12881	12619	12881	18287	16266	17804	18792	17921	19556	0	0	0	-2	0	-11	-3	3	-2	7	
7	14349	14021	14689	14689	14195	14689	19107	17532	18716	18860	18745	19463	-2	2	2	-1	2	-8	-2	-1	-2	2	
8	11069	11044	11069	11069	11069	11069	23108	18822	22987	23208	20251	23363	0	0	0	0	0	-19	-1	0	-12	1	
9	11039	11034	11039	11039	11034	11039	23393	22497	23282	23408	23245	23217	0	0	0	0	0	-4	0	0	-1	-1	
10	14044	10002	10030	100//	10000	100//	24894	17702	23525	22/58	10000	24/33	4	1	0	4	0	-10	-0	-9	-10	-1	
11	8460	8/75	8475	8/75	8/75	8/75	21200	20/32	20311	20010	20550	21506	0	0	0	0	0	-1	-1	4	-2	3 1	
12	81/10	8/37	8681	8681	8671	8681	21200	20432	218/6	21340	20000	2183/	4	7	7	6	7		0	0	-0	0	
14	9205	9205	9205	9205	9205	9205	17716	16131	17702	17658	17948	17573	-	0	0	0	0	-2	0	0	1	-1	
15	5530	6271	6381	6381	6333	6381	14039	12245	12685	14091	12822	14145	13	15	15	15	15	-13	-10	0	-9	1	
16	3702	3702	3702	3702	3702	3702	19940	19197	19786	19993	15645	19835	0	0	0	0	0	-4	-1	0	-22	-1	
17	7540	7681	7681	7681	7603	7681	21234	17452	21152	21801	18865	21772	2	2	2	1	2	-18	0	3	-11	3	
18	5897	5897	5897	5897	5897	5897	15070	12036	13608	13031	13413	14503	0	0	0	0	0	-20	-10	-14	-11	-4	
19	1839	2368	2368	2368	2368	2368	15127	12562	15829	15645	14795	15581	29	29	29	29	29	-17	5	3	-2	3	
20	2699	2699	2699	2699	2699	2697	19591	19406	19675	19681	19636	19490	0	0	0	0	0	-1	0	0	0	-1	
21	5869	5931	5931	5931	5931	5931	9148	9363	10705	10344	9869	10030	1	1	1	1	1	2	17	13	8	10	
22	3243	3243	3243	3243	3243	3243	10315	10081	11124	11162	10469	9884	0	0	0	0	0	-2	8	8	1	-4	
23	2289	2289	2289	2289	2289	2289	13693	13681	13779	14049	13902	13888	0	0	0	0	0	0	1	3	2	1	
24	5780	5801	5801	5801	5801	5801	15670	10223	12869	15266	10560	13739	0	0	0	0	0	-35	-18	-3	-33	-12	
25	3731	4769	4769	4769	4769	4769	9047	9501	9416	9444	9068	10710	28	28	28	28	28	5	4	4	0	18	
26	3104	3096	3158	3158	3158	3157	12521	11911	12195	11257	10631	12156	0	2	2	2	2	-5	-3	-10	-15	-3	
27	1268	1268	1268	1268	1268	1268	9306	7475	10464	12554	7099	9625	0	0	0	0	0	-20	12	35	-24	3	
28	1508	1537	1537	1537	1527	1537	7399	5765	6613	6365	6196	7397	2	2	2	1	2	-22	-11	-14	-16	0	
29	5758	5735	5778	5778	5778	5778	10282	11818	16024	16008	8986	12426	0	0	0	0	0	15	56	56	-13	21	
30	1058	1058	1058	1058	1058	1058	12516	12509	12651	12525	10203	12631	0	0	0	0	0	0	1	0	-18	1	
31	15/6	15/6	15/6	15/6	15/6	15/6	10758	8559	14198	12395	8526	12556	0	0	0	0	0	-20	32	15	-21	1/	
32	3947	3947	3947	3947	3947	3947	6495	6099	6751	9837	9301	9037	0	0	0	0	0	-17	-3	-0 7	-10	-/	
33	1/10	1/10	1425	1/125	1/125	1/25	2102	2762	4227	4501	2020	1341	0	0	0	0	0	-17	4	-1	-21	13	
35	1423	1423	1423	1423	1423	1423	3061	/1871	4237	4351	3705	4200	-3	0	0	0	0	23	33	44	-6	22	
36	338	338	338	338	338	338	7696	7899	7827	7589	7767	7626	-0	0	0	0	0	3	2	-1	-0	-1	
37	1284	1138	1201	1293	1284	1293	2772	2503	3394	3128	3419	3088	-11	-6	1	0	1	-10	22	13	23	11	
38	773	798	818	818	818	818	6508	7988	9997	9216	6802	7584	3	6	6	6	6	23	54	42	5	17	
39	679	654	679	679	679	679	6162	7156	7823	7805	6185	6381	-4	0	0	0	0	16	27	27	0	4	
40	362	362	362	362	362	362	1764	1172	1614	1385	2184	1709	0	0	0	0	0	-34	-9	-21	24	-3	
41	43	43	43	43	43	43	3575	3489	3560	3560	3566	3450	0	0	0	0	0	-2	0	0	0	-3	
42	242	242	242	242	242	242	1343	945	1045	1162	1433	1410	0	0	0	0	0	-30	-22	-13	7	5	
43	105	104	112	112	105	112	402	396	399	402	399	400	-1	7	7	0	7	-1	-1	0	-1	0	
44	57	57	57	57	57	57	966	488	554	575	965	597	0	0	0	0	0	-49	-43	-40	0	-38	
45	44	44	44	44	44	44	608	608	608	608	608	917	0	0	0	0	0	0	0	0	0	51	

N⁰			Количеств	во отказов			Процент отказов на отрезке «первый отказ — полный отказ»						
	П	Д	дс	PA	PC	РΓ	П	Д	ДC	PA	PC	РΓ	
1	20532	20811	20634	20818	20541	20556	59	61	60	61	60	60	
2	23565	24598	24124	24077	23837	23579	64	70	68	68	68	67	
3	19612	4172	19394	20355	12182	19445	63	40	63	66	54	63	
4	18137	5719	14838	21374	14789	18935	60	42	56	63	56	61	
5	5368	3090	7669	2557	4990	4662	44	37	49	35	42	42	
6	3642	1777	3026	4096	4212	6013	40	34	38	44	42	47	
7	3736	1991	2001	2887	1972	25537	44	36	33	39	32	84	
8	21892	8295	22013	11354	21792	21637	65	52	65	55	64	64	
9	21607	22503	21718	21755	21592	21783	65	67	65	65	65	65	
10	20106	10895	13099	9793	9397	20267	66	60	62	57	57	69	
11	6488	3733	8556	5919	7280	7661	49	41	52	48	49	51	
12	23800	24568	24083	24450	23654	23494	65	67	66	67	65	64	
13	23184	23576	23154	23179	23109	23166	63	64	64	64	64	64	
14	8767	5658	8756	10296	8450	8201	51	45	51	54	50	49	
15	6629	3758	3746	3979	6372	30855	44	39	37	38	45	80	
16	25060	25803	25214	6920	25007	25165	61	62	61	37	61	61	
17	23766	10533	23848	12201	23199	23228	63	52	64	52	62	62	
18	18676	7131	11147	11258	9280	30497	67	54	59	60	57	78	
19	14140	7734	14483	12851	13819	14089	52	43	52	51	51	52	
20	25409	25594	25325	25364	25319	25510	60	61	60	60	60	60	
21	1012	1324	2437	1754	1792	1682	24	28	34	31	29	29	
22	2977	2905	3918	3749	3882	35116	30	30	33	34	33	84	
23	31307	31319	31221	31098	30951	31112	73	73	73	73	72	73	
24	22288	2856	7685	3447	16892	10875	69	39	52	42	64	58	
25	2772	3694	2998	2651	2929	5423	34	44	39	38	39	48	
26	14287	12494	11622	8503	8834	11931	60	59	56	53	52	57	
27	6992	3468	9240	2985	16124	7289	47	36	50	34	59	47	
28	5357	2564	3472	3208	3105	37603	48	38	41	41	39	87	
29	2894	5880	16770	1671	17572	6249	39	49	62	34	63	48	
30	32484	32491	31869	18601	30465	32369	74	74	73	67	73	74	
31	11488	5590	30802	5088	18652	32444	56	44	71	42	63	75	
32	6655	3145	4600	4011	4138	35363	51	40	43	43	41	86	
33	3310	1943	2891	1596	2114	4130	40	34	36	31	32	41	
34	1062	1524	1891	1885	2373	2056	38	39	40	43	43	42	
35	1376	2657	1698	1124	1757	2549	35	43	37	33	38	43	
36	37304	37101	37173	37233	37411	37374	84	83	83	83	84	84	
37	1551	1107	1860	2262	1772	1630	51	45	46	51	49	48	
38	7864	13661	22342	8993	18623	11128	58	66	71	60	69	62	
39	14306	17920	21850	14541	21874	14984	72	73	75	73	75	72	
40	1312	601	1025	2071	764	1202	48	43	45	53	43	47	
41	21311	20790	21307	21320	21307	20958	86	86	86	86	86	86	
42	2702	1638	1785	2878	2191	2973	71	70	69	71	70	72	
43	1148	1156	1159	1151	1148	1136	79	80	80	80	80	80	
44	2132	842	1054	2113	1062	1168	70	66	68	70	67	68	
45	2853	2853	2853	2853	2853	4519	83	83	83	83	83	84	

Результаты заполнения сетей. Отказы

4.2. Графическое представление результатов заполнения сетей по группам

На рис. 2–10 представлены результаты заполнения всех сорока пяти сетей, разбитые на группы по пять сетей по признаку «разреженность», т. е. доле нулевых дуг. Группы расположены по увеличению «разреженности». По оси абсцисс отложено количество удовлетворенных заявок, по оси ординат — мера неравномерности сети.

Рис. 2. Динамика меры неравномерности. Группа 1

Рис. 3. Динамика меры неравномерности. Группа 2

Рис. 4. Динамика меры неравномерности. Группа 3

Рис. 5. Динамика меры неравномерности. Группа 4

Рис. 6. Динамика меры неравномерности. Группа 5

Рис. 7. Динамика меры неравномерности. Группа 6

Рис. 8. Динамика меры неравномерности. Группа 7

Рис. 9. Динамика меры неравномерности. Группа 8

Рис. 10. Динамика меры неравномерности. Группа 9

Можно заметить, что по мере увеличения разреженности сетей стационарный режим имеет относительно меньшую продолжительность, а отличия в заполнении сетей разными алгоритмами становятся меньше. В сетях с малым количеством нулевых дуг, как правило, можно выделить длительный начальный период заполнения сети, наличие четко выделенного стационарного режима.

4.3. Этапы и режимы заполнения сетей

На рис. 11–18 подробно представлены и показаны этапы и режимы заполнения сетей. Показана динамика заполнения сетей в середине процесса, из которой видны отличия в заполнении разными алгоритмами. Показаны начальный и заключительный этапы заполнения сетей. Для сети № 1 видно отсутствие насыщенного режима. Для сети № 12 видно полное отсутствие стационарного режима для всех алгоритмов заполнения. По оси абсцисс отложено количество удовлетворенных заявок, по оси ординат — мера неравномерности сети.

Рис. 11. Динамика заполнения сети № 1 до полного отказа. Стационарный режим

Рис. 12. Динамика заполнения сети № 12 до полного отказа

Рис. 13. Динамика заполнения сети № 1 до 1-го отказа

Рис. 14. Динамика заполнения сети № 12 до 1-го отказа

Рис. 15. Динамика заполнения сети № 1 до 1-го отказа. Начальный участок

Рис. 16. Динамика заполнения сети № 12 до 1-го отказа. Начальный участок

Рис. 17. Динамика заполнения сети № 1 до полного отказа. Увеличение

Рис. 18. Динамика заполнения сети № 12 до полного отказа. Увеличение

Рис. 19. Динамика заполнения сети № 19 до полного отказа

4.4. Особенности стационарного режима

Один из самых интересный моментов — наблюдение различий при заполнении сети разными алгоритмами. На рис. 19–25 показаны 4 такие сети. По оси абсцисс отложено количество удовлетворенных заявок, по оси ординат — мера неравномерности сети.

Рис. 20. Динамика заполнения сети № 19 до полного отказа. Увеличение

Рис. 21. Динамика заполнения сети № 29 до полного отказа

Рис. 22. Динамика заполнения сети № 29 до полного отказа. Увеличение

Рис. 23. Динамика заполнения сети № 37 до полного отказа

Рис. 24. Динамика заполнения сети № 37 до полного отказа. Увеличение

Рис. 25. Динамика заполнения сети № 24 до полного отказа

Можно видеть, что длительность стационарного режима может различаться в разы для разных алгоритмов. Например, в сети № 37 для простого алгоритма нет стационарного режима, а для гибридного и дугового субоптимального стационарный режим составляет существенную часть процесса заполнения.

Для сети № 24 пять алгоритмов последовательного заполнения имеют временный «стационарный режим» при значениях 7300–9000, тогда как простой алгоритм этого режима не имеет, хотя по критерию полного отказа этот алгоритм оказался лучшим.

4.5. Отказы

Использование результатов по проведенным заявкам до двух критериев останова не может осуществляться без данных об отказах. На рис. 26–28 приведены данные по количеству отказов для всех пар полюсов для трех сетей. По оси абсцисс отложены пары полюсов, а по оси ординат — количество отказов для конкретной пары полюсов.

Рис. 26. Количество отказов по парам полюсов для сети № 1

Рис. 27. Количество отказов по парам полюсов для сети № 12

Рис. 28. Количество отказов по парам полюсов для сети № 24

Данные по отказам

	Процент отказов на отрезке первый отказ — полный отказ										
П	Д	ДС	PC	PA	РΓ	П	Д	ДС	PC	PA	РΓ
572860	453462	592350	571378	462269	747543	57	53	57	54	57	63

Таблица 5

Процент превышения общего количества отказов												
П	Д	ДС	PC	PA	РΓ							
0	-20,8	3,4	-0,3	-19,3	30,5							

Процент превышения общего количества отказов

Используя данные по отказам можно сказать, что субоптимальный минимально-разрезный алгоритм не так хорош, как при одной оценке общего проведенного потока, так как число отказов в несколько раз больше, чем при использовании гибридного и дугового субоптимального алгоритма.

В табл. 4–5 приведены обобщенные данные по отказам раздельно по каждому алгоритму для всех сетей.

Все отказы располагаются после выполнения критерия (1) (до первого отказа) и до выполнения критерия (2) (до полного отказа). Лучшими алгоритмами по количеству отказов являются субоптимальные алгоритмы дугового и минимально-разрезных подходов.

4.6. Сравнительный анализ алгоритмов по общему проведенному потоку

По проценту превышения лучшими алгоритмами являются гибридный алгоритм и субоптимальные алгоритмы минимально-разрезного и дугового подхода.

Не смотря на то обстоятельство, что общий проведенный поток не может показать большинство преимуществ алгоритмов при динамическом последовательном заполнении, приведение суммарных результатов по всем сетям позволяет выявить алгоритмы, которые одинаково хорошо работают в статическом и в динамическом режиме.

Так как при генерации сетей была поставлена задача создания сетей, которые бы при заполнении были бы на границе между «стационарным» и насыщенным режимом, то наличие временного стационарного режима может говорить о некотором стабильном режиме работы сети под нагрузкой.

Проведенный поток до 1-ого отказа (1)							Проведенный поток до разрыва всех пар полюсов (2)							
П	Д	ДС	PC	PA	ΡГ	П	Д	ДС	PC	PA	РΓ			
0	2,1	2,9	3,0	2,3	3,0	0	-8,5	2,1	2,0	-6,1	1,8			

Процент превышения общего проведенного потока

Выводы

- Главный вывод создана методология анализа телекоммуникационных сетей (и не только, а вообще, потоковых сетей), позволяющая исследовать характеристики сети в целом, в частности, ее суммарную пропускную способность, в зависимости от применения той или иной политики маршрутизации.
- Методология реализована в виде математической модели, имитирующей процесс последовательного заполнения телекоммуникационной сети каналами связи посредством различных алгоритмов маршрутизации.
- 3. Алгоритмы маршрутизации являются оригинальными и по сути эвристическими. Все они направлены на максимальное увеличение суммарного общего потока по сети и разделены на две группы — минимально-разрезные, в которых учитывается принадлежность ребер сети к минимальным разрезам между корреспондирующими парами полюсов, и дуговые, в которых учитывается только текущая пропускная способность ребер сети.
- Проведен обширный численный эксперимент по заполнению сетей в динамическом режиме, из которого можно сделать следующие общие выводы.
 - Для оценки эффективности работы алгоритма в динамическом режиме не достаточно одного критерия относительного превышения проведенного потока по сравнению с простым алгоритмом. Необходима совместная оценка по нескольким параметрам, в том числе следует учесть также и количество отказов для каждого из алгоритмов; в этой статье в полной мере это сделать не удалось.
 - Наличие и протяженность стационарного режима является важной характеристикой сетей при динамическом заполнения; существенно здесь также и то, что свойство стационарности проявляется в сетях, которые в начальный период времени были «пустыми»; это свойство, качественно выявленное на основе экспериментальных данных,

и его зависимость от параметров задачи также требуют пристального изучения в дальнейших исследованиях.

- Для некоторых сетей выбор того или иного алгоритма заполнения оказывается очень существенным. К примеру, для сети № 19 длительный стационарный режим реализуется только для гибридного, разрезного субоптимального и дугового субоптимального алгоритмов, тогда как для простого и аддитивного алгоритмов этот режим вообще отсутствует, а для дугового имеет почти вдвое меньшую продолжительность. Для сети № 29 существенно лучшим, чем остальные, оказался минимально-разрезный субоптимальный алгоритм, несколько хуже дуговой субоптимальный и гибридный, другие алгоритмы даже не обеспечили стационарного режима.
- В среднем по всем сетям и по нескольким критериям алгоритмы можно ранжировать следующим образом: гибридный алгоритм, субоптимальный дуговой алгоритм, субоптимальный минимальноразрезный алгоритм, аддитивный минимально-разрезный алгоритм, простой алгоритм, дуговой алгоритм.

Литература

- Афанасьев А. П., Гринберг Я. Р., Курочкин И. И.; Равномерное заполнение телекоммуникационной сети каналами связи. (С.118–123) // Прикладные проблемы управления макросистемами (Апатиты, 5–9 апреля 2004 года). Сб. докл. Т. 8. Труды ИСА РАН. М.: URSS, 2004. 288 с.
- Афанасьев А. П., Гринберг Я. Р., Курочкин И. И.; «Равномерные» алгоритмы последовательного заполнения потоковой сети потоками продуктов. (С. 118– 140) // Проблемы вычислений в распределенной среде. Модели обработки и представления данных. Динамические системы. Т. 14. Труды ИСА РАН. М.: КомКнига/URSS, 2005. 224 с.
- 3. Гринберг Я. Р., Курочкин И. И.; Анализ результатов численного эксперимента по последовательному заполнению сетей со стохастической топологией. (С. 99–128) // Проблемы вычислений в распределенной среде: распределенные приложения, коммуникационные системы, математические модели и оптимизация. Т. 25. Труды ИСА РАН. М.: КомКнига/URSS, 2006. 224 с.
- Герасимов А. И. Аналитические методы исследования и оптимизации вычислительных систем и сетей на основе сетевых моделей массового обслуживания. М.: Радио и связь, 2001.
- 5. Крылов В. В., Самохвалова С. С. Теория телетрафика и ее приложения. СПб.: БХВ-Петербург, 2005.
- 6. Ефимова М. Р., Петрова Е. В., Румянцев В. Н. Общая теория статистики. Учебник. Второе издание, исправленное и дополненное. М.: Инфра-М, 2006.

- Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы. СПб.: Питер, 2000. 672 с.
- Остерлох Х. Маршрутизация в ІР-сетях. Принципы, протоколы, настройка. СПб.: ДиаСофтЮП, 2002. 512 с.
- Шмалько А. В. Цифровые сети связи: основы планирования и построения. М.: Эко-Трендз, 2001.
- 10. Ху Т. Целочисленное программирование и потоки в сетях. М.: Мир, 1973.
- 11. Форд Л. Р., Фалкерсон Д. Р. Потоки в сетях. М.: Мир, 1962.
- Вишневский В. М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003.
- Кульгин М. В. Коммутация и маршрутизация IP/IPX трафика. М.: КомпьютерПресс, 1998. 320 с.
- Попков Ю. С. Макроскопические модели динамических стохастических сетей и GRID-технологии // Автоматика и телемеханика. 2003. № 12. С. 143163^{II}.
- 15. http://dcs.isa.ru/wiki/ media/staff/dynamic-stoh-add.pdf