Исследование результатов математического моделирования последовательного заполнения сетей с кластерной топологией *

Я. Р. Гринберг, И. И. Курочкин

Институт системного анализа РАН

В данной статье описывается численный эксперимент последовательного статического заполнения телекоммуникационных сетей с кластерной топологией потоками связи. Рассматривается и обосновывается топология телекоммуникационных сетей «связные кластеры». Приводятся параметры двух множеств сгенерированных сетей. Описываются особенности математического моделирования процесса заполнения. Приводятся результаты эксперимента по заполнению двух множеств сетей с помощью шести алгоритмов последовательного заполнения.

Введение

Пусть есть некоторая телекоммуникационная сеть, которая соединяет множество абонентов посредством каналов связи [10, 11]. Причем каждый канал соединяет пару абонентов. Прокладка каналов на сети может осуществляться различными способами и удовлетворять некоторым критериям поиска пути. Поскольку нужно соединить множество абонентов (полюсов), а порядок их соединения неизвестен, то попытку проложить канал между парой полюсов будем называть заявкой. А последовательный процесс удовлетворения заявок или прокладку каналов будем называть последовательным процессом заполнения сети или последовательным заполнением сети. Удовлетворение заявок на прокладку каналов по сети для соединения пар абонентов, причем так, чтобы было удовлетворено как можно большее количество заявок, является основной задачей, кото-

 $^{^*}$ Работа выполнена при поддержке РФФИ (№ 09–07–00496), Президиума РАН (программа фундаментальных исследований П1) и Совета по грантам Президента Российской Федерации (№ НШ–5511.2008.9).

рая стоит при заполнении сети. Так как время жизни заявки не оговорено и считается бесконечно долгим, то будем считать, что рассматривается статический вариант последовательного заполнения сети.

Ранее аналогичные численные эксперименты проводились для моделей телекоммуникационных сетей других типов, а именно, типа «стохастическая топология» [2] и типа «колесо» [3]. Было замечено, что результаты заполнения различных множеств сетей зависят не только от собственно типа топологии телекоммуникационной сети, но и от уровня пропускной способности ребер и «размера» сети, т. е. количества узлов и ребер. Поэтому в численном эксперименте, результаты которого представлены в этой статье, участвовали два множествами сетей с одинаковой топологией связные кластеры, отличающиеся различными параметрами пропускной способности ребер и количеством узлов.

Целями численного эксперимента были:

- выявление различия между результатами заполнения двух различных множеств сетей с одной топологией;
- выявление лучших алгоритмов заполнения для кластерной топологии;
- проверка эффективности весовой функции субоптимального дугового алгоритма.

1. Топология

Множество кластеров, объединенных в одну сеть, представляет собой топологию типа «связанные кластеры».

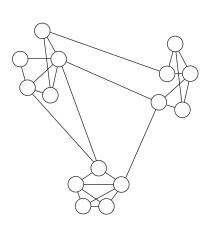


Рис. 1. Пример сети с топологией типа «связанные кластеры»

Кластер — это некоторый граф. Предполагается, что этот граф сильно связанный, но это не обязательно. Кластеры связаны между собой ребрами. Ребра, связывающие кластеры, соединяют узлы, принадлежащие этим кластерам. В кластере может быть любое количество узлов и ребер, а также любое количество ребер, связывающих данный кластер с другими. Узлов сети вне кластеров не существует. Пример сети с топологией типа «связанные кластеры» приведен на рис. 1.

Исходная сеть может быть разделена на кластеры по некоторому признаку [5,7,12], например, по силе связности, по территориальному (географическому) расположению узлов, по

пропускной способности ребер между узлами, экспертное разделение (группировка). Пропускная способность дуг внутри кластеров может отличаться от пропускной способности дуг между кластерами, но необязательно.

При выборе пар полюсов источник — сток дополнительных условий на полюса не налагалось. В случае, если пара полюсов источник — сток находится в одном кластере прокладка пути осуществляется только внутри кластера вне зависимости. В случае отсутствия пути внутри кластера и наличия «обходного» пути вне кластера считается, что полюса недостижимы.

1.1. Обоснование использования топологии связных кластеров

Топология связных кластеров довольно часто встречается при конструировании телекоммуникационных сетей. Так как не определена топология для каждого кластера и топология соединения кластеров, то можно сказать, что рассматриваемая топология связных кластеров является общей топологией или мета топологией для телекоммуникационных сетей.

Примерами топологии связных кластеров могут служить:

- сеть РАН (в упрощенном варианте);
- корпоративная ІР-сеть в нескольких зданиях (одно здание один кластер);
- многоуровневая локальная сеть с множеством серверов с различными ролями (сервера с определенными ролями выполняют роль центров кластеров);
- городская сеть;
- множество автономных систем (каждая автономная система кластер);
- региональная сеть (где в качестве кластеров рассматриваются сети городов).

Топология связных кластеров может масштабироваться. Так для решения одной задачи может рассматриваться вся сеть в целом, а для другой задачи может рассматриваться только отдельно взятый кластер, который в свою очередь может рассматриваться как сеть с несколькими кластерами. К примеру, для региональной сети кластерами являются сети городов. Сеть города в свою очередь подразделяется на множество корпоративных сетей (или автономных систем) [7,8,12].

Использование топологии связных кластеров позволяет применять декомпозицию для вычисления кратчайших путей, так как по теореме об оптимальном пути считается, что отрезок оптимального пути также является оптимальным путем. Из этого следует, что кратчайший (оптимальный) путь можно проложить от кластера-источника до кластера-стока, а потом уже прокладывать путь внутри транзитных кластеров и конечных кластеров.

Рис. 2. Схема алгоритма генерации сетей

Использование этого метода позволяет исключить из рассмотрения узлы кластеров, которые не участвуют в прокладке пути. Применяемый метод декомпозиции позволит сократить вычислительную сложность задачи нахождения минимальных разрезов и определения кратчайших путей в сети.

2. Генерация сетей с заданными параметрами

Для проведения математического моделирования с помощью алгоритмов заполнения сети потоками, кроме общей информации о топологии реальных сетей, а также знания спецификаций физических сред передачи данных [7, 9] необходимо наличие множества искусственно сгенерированных сетей. Под искусственно сгенерированной сетью будем понимать определение ориентированного графа: определение топологии графа, определение пропускных способностей дуг.

С точки зрения реальных сетей можно ввести несколько ограничений на генерируемые сети (веса — это пропускные способности дуг):

- веса дуг положительны;
- граф является связным, т. е. любая пара полюсов является связной;
- в зависимости от характера сети можно потребовать, чтобы матрица весов графа была симметричной, кроме того, можно потребовать определения графа как неориентированного.

2.1. Алгоритм генерации сети

Генерация сети происходит в несколько этапов (рис. 2).

- Генерация ориентированного графа с заданным количеством нулевых дуг, и с заданным максимальным значением пропускных способностей дуг.
- Если необходимо, то модификация сгенерированного графа в симметричный граф.
- Создание множества полюсов и множества всех возможных комбинаций пар полюсов.
- Проверка на достижимость между полюсами графа.
- Нахождение меры неравномерности.
- Нахождение максимальных потоков между полюсами сети.
- Определение меры неравномерности.

Если при генерации сети не пройден порог неравномерности, то есть мера неравномерности меньше порога, то генерация сети осуществляется повторно.

3. Краткое описание последовательных алгоритмов

В эксперименте принимали участие следующие алгоритмы [1, 2]:

- простой алгоритм (П);
- равномерный по дугам алгоритм (Д);
- субоптимальный по дугам алгоритм (ДС);
- субоптимальный минимально-разрезный алгоритм (РС);
- аддитивный минимально-разрезный алгоритм (РА);
- гибридный минимально-разрезный алгоритм (РГ).

Расчет путей по всем этим алгоритмам производится как определение пути между двумя полюсами в сети, имеющего минимальную стоимость из всех возможных путей. Алгоритмы различаются разными способами определения этих весов для дуг сети. Ниже приведены краткие описания, как определялись так называемые «дополнительные веса» для каждого из алгоритмов.

Все алгоритмы, если не считать простого, являющегося для данного исследования эталонным, разбиваются на две группы. Первая группа алгоритмов состоит из равномерного по дугам и субоптимального по дугам алгоритма. Особенность группы в том, что метрика дуг определяется только по пропускной способности дуг. Во вторую группу входят аддитивный минимально-разрезный, субоптимальный минимально-разрезный и гибридный минимально-разрезный алгоритмы. Их отличает то, что при определении метрик в них, так или иначе, учитывается вхождение дуг в минимальные разрезы между парами полюсов.

3.1. Простой алгоритм

Веса для всех ненулевых дуг определяются как 1. Поиск осуществляется по методу нахождения кратчайшего пути (алгоритм Дейкстры).

Матрица дополнительных весов дуг W определяется по матрице смежности сети Net:

$$W = \text{sign}(|Net|)$$
.

3.2. Оптимальный алгоритм

Этот алгоритм не участвовал в эксперименте по причинам, которые будут объяснены позже. Тем не менее, все минимально — разрезные алгоритмы основаны на величинах, введенных для этого алгоритма. Поэтому приводим его здесь полностью.

Пусть имеется сеть G, состоящая из N узлов, $A_1, A_2, ..., A_N$ и K дуг, B_1 , $B_2, ..., B_K$, имеющих пропускные способности b_k , k=1, 2, ..., K. Узлы A_i , $i=1, 2, ..., N_1$, $N_1 \le N$ будем называть также полюсами. Упорядочим каким-либо образом все пары полюсов. Общее количество M различных пар полюсов в сети G равно $M=N_1(N_1-1)/2$.

Стоимости дуг при равномерном по всем парам полюсов потоке требований рассчитываются по формуле, полученной в [1]:

$$W_k = \frac{\overline{R^2}}{\overline{R}^2} r_k - \frac{1}{M\overline{R}} \sum_{m=1}^M R_m r_{mk},$$

где b_k — пропускная способность дуги в сети G; R_m — пропускная способность минимального разреза между m-ой парой полюсов, равная, по теореме о максимальном потоке и минимальном разрезе максимальному

потоку между этой парой полюсов; $\overline{R} = \frac{1}{M} \sum_{m=1}^{M} R_m$ — среднее значение

пропускных способностей минимальных разрезов между всеми парами

полюсов;
$$r_{mk} = \frac{u_{mk}}{L_m}$$
, $r_k = \frac{1}{M} \sum_{m=1}^M r_{mk}$, L_m — полное количество минималь-

ных разрезов между m-ой парой полюсов; числа u_{mk} , $m = \overline{1, M}$, $k = \overline{1, K}$ обозначают количество различных минимальных разрезов между m-ой парой полюсов, в которые входит дуга b_k .

Этот алгоритм является оптимальным, а именно: приведенные стоимости максимально неувеличивают следующую величину

$$\chi = \frac{1}{M} \sum_{m=1}^{M} \left(\frac{R_m}{\overline{R}} - 1 \right)^2 ,$$

которая является среднеквадратичным относительным отклонением минимальных разрезов между всеми парами полюсов и которую мы называем мерой неравномерности сети по минимальным разрезам (МНМР) или критерием χ .

Расчет дополнительной метрики по этому алгоритму приводит как к положительным, так и отрицательным весам дуг. Алгоритм Беллмана—Форда решает проблему нахождения минимального по стоимости пути в этом случае только при условии, что в процессе работы не возникает отрицательный цикл. В нашем случае для большинства сетей и шагов это условие не выполняется, поэтому применение этого и других известных алгоритмов невозможно. Именно поэтому оптимальный алгоритм в настоящем эксперименте не участвовал.

3.3. Аддитивный минимально-разрезный алгоритм

В [2] была высказана гипотеза, что оптимальный алгоритм можно даже улучшить, добавив к его весам положительную постоянную и сделав, таким образом, веса всех дуг положительными. Такой алгоритм мы назвали аддитивно разрезным алгоритмом, его дополнительная метрика определена следующим образом:

$$W_{k}' = W_{k} + W_{0} + \varepsilon, \, \varepsilon > 0,$$

где W_k определяется так же, как и для оптимального алгоритма, W_0 — максимальный по модулю элемент среди отрицательных величин W_k , взятый с обратным знаком (т. е. положительный). Эта модификация, хотя и кажется «безобидной», на самом деле существенно меняет критерий χ , а именно, введение постоянной для всех дуг сети положительной добавки к весам $W_0 + \varepsilon$ означает замену критерия χ на следующий

$$\chi' = \frac{1}{M} \sum_{m=1}^{M} \left(\frac{R_m}{\overline{R}} - 1 \right)^2 + (W_0 + \varepsilon) \sum b_k ,$$

и сам факт улучшения становится не таким очевидным.

3.4. Равномерный по дугам алгоритм

Этот алгоритм основан на том, что дуги сети разбиваются на классы по величине пропускной способности. Стоимости дугам назначаются таким образом, что стоимость любого пути, проходящего по дугам с меньшими пропускными способностями, будет меньше стоимости одной дуги следующего класса. Точные формулы приведены в [2].

Алгоритм не зависит от закона распределения заявок по парам полюсов.

3.5. Гибридный минимально-разрезный алгоритм

Пусть Q — количество различных по пропускной способности минимальных разрезов между всеми парами полюсов в сети. Образуем Q+1 классов дуг B_q , упорядоченных по возрастанию этих величин, которые обозначим как b_q . Все дуги сети разнесем по классам по следующему правилу. Пусть дуга сети входит в несколько минимальных разрезов и q — порядковый номер минимального из них по пропускной способности; тогда отнесем эту дугу к классу B_q . Если дуга не принадлежит ни к какому минимальному разрезу, то отнесем ее к классу B_{q+1} и присвоим ей эффективную пропускную способность b_{q+1} = b_q + ϵ , ϵ > 0. Далее веса дуг рассчитываются точно так же, как в равномерном по дугам алгоритме.

Вычислительная сложность этого алгоритма заполнения сети будет меньше вычислительной сложности аддитивного равномерного алгоритма по минимальным разрезам и оптимального алгоритма.

3.6. Субоптимальный минимально-разрезный алгоритм

В [1] был предложен последовательный алгоритм, в котором назначение весов дугам сети также основывалось на измерении пропускных способностей минимальных разрезов и вхождении данной дуги в эти разрезы. Именно, алгоритм определялся следующей метрикой для каждой дуги, которая входит в минимальные разрезы

$$W_m = N - 1 + (M - h_m + 1)^4$$

где h_m — порядковый номер величины минимального разреза R_m , которые ранжированы в порядке возрастания пропускной способности.

Вес всех остальных дуг, которые не входят ни в один из минимальных разрезов задается $W_m = 1$. Данная функция была выбрана по принципу: чем меньше пропускная способность разреза, куда входит данная дуга, тем «дороже» она стоит. Этот алгоритм мы назвали разрезным субоптимальным алгоритмом.

3.7. Субоптимальный дуговой алгоритм

Данный алгоритм получился путем совмещения двух других алгоритмов: равномерного по дугам и разрезного субоптимального алгоритма.

За основу был взят равномерный по дугам алгоритм и ранжирование дуг и разделение их на классы осуществляется как в этом алгоритме. Функция назначения весов дуг была взята из разрезного субоптимального алгоритма без изменений. Это было сделано для более полного и корректного сравнения результатов работы алгоритмов заполнения сети.

Дуги одного класса имеют одинаковые стоимости. Стоимости убывают по мере увеличения пропускной способности дуг, так что самые большие

стоимости у дуг первого класса, самые маленькие — у дуг последнего класса. Стоимости назначаются таким образом, что если в сети существует путь, не содержащий представителя какого-либо класса, то все пути, содержащие представителя этого или меньших классов, будут иметь большие стоимости.

Метрика для каждой дуги, определяется как

$$W_m = N - 1 + (M - h_m + 1)^4$$
,

бо́льшие? поставить ударение?

где h_m — порядковый номер класса дуг, которые ранжированы в порядке убывания пропускной способности, M — количество классов дуг.

Данная функция была выбрана по принципу: чем меньше пропускная способность дуги, тем «дороже» она стоит. Этот алгоритм был назван *субоптимальным дуговым алгоритмом*.

4. Параметры математического моделирования

Рассматриваются сети с топологией связные кластеры, с несколькими парами полюсов (парами источник — сток). Заполнение производится единичными потоками.

При моделировании заполнения сети время жизни заявки не учитывается и приравнивается к бесконечности, таким образом моделирование проводится в статическом режиме, в котором можно с минимальными вычислительными затратами оценить заполнение сети «на отказ».

Модель сети определяется с помощью следующих параметров:

- количество кластеров;
- количество вершин в каждом кластере;
- максимальное количество дуг между двумя кластерами;
- количество (часть от общего числа) нулевых дуг;
- максимальная пропускная способность дуг в сети;
- граф связности, в котором указываются пропускные способности дуг сети;
- вектор пар полюсов (пар источник сток);
- избыточный вектор заявок на проведение единичного потока (Заявка определяется как номер пары полюсов, между которыми следует провести единичный поток);
- идентификационный уникальный номер сети.

Математическое моделирование процесса заполнения сети происходит до наступления следующих критериев:

 критерий первого отказа (проведение очередной заявки невозможно, одна из пар источник — сток несвязна; минимальный из множества минимальных разрезов между парами полюсов равен 0); • критерий полного отказа (стоки не достижимы из источников, для всех пар полюсов; все минимальные разрезы между парами полюсов равны 0).

Для данной статьи были отобраны два множества: первое — 40 сетей, второе — 34 сети.

4.1. Общие входные параметры сетей:

- неориентированный граф;
- равномерный закон случайного распределения для генерации массива заявок;
- топология сети: связные кластеры;

Пронумеровали заголовки

- количество узлов сети: 20 и 35;
- количество кластеров: 4 и 5;
- количество дуг в одном кластере: 5 и 7;
- количество полюсов сети: 6 и 7, что эквивалентно 15 и 21 парам полюсов. Так как берутся все комбинации полюсов, то есть $\frac{N(N-1)}{2}$,

где N — количество полюсов;

- доля нулевых дуг: от 40 % до 90 %;
- минимальный порог меры неравномерности по величине минимальных разрезов в исходной сети: 0,01;
- максимальное значение пропускной способности дуг в сети: от 19 до 600:
- различия статистического различия пропускной способности дуг внутри кластеров и между кластерами нет;
- распределение значений пропускной способности дуг равномерное.

Параметры сетей, участвовавших в эксперименте, приведены в табл. 1 и 2.

4.2. Выходные данные

При заполнении сетей были рассчитаны следующие результирующие параметры:

- проведенный поток до 1-го отказа;
- проведенный поток до разрыва всех пар полюсов;
- orderBadSet множество отклоненных заявок;
- endNet остаточная сеть;
- orderCount общее количество удовлетворенных заявок;
- orderEndNumber Номер последней удовлетворенной заявки;

 Таблица 1

 Параметры исследуемых сетей. Множество 1

Nº	ID сети	Кол-во узлов	Кол-во пар по- люсов	Кол-во заявок	Макс. Проп. Сп.	% нуле- вых дуг	Нач. МН по МР
1	732954,75011	20	15	300	20	90	0,023
2	732954,79333	20	15	300	20	90	0,067
3	732954,93755	20	15	300	20	90	0,211
4	732955,02058	20	15	300	20	90	0,293
5	732955,11955	20	15	300	20	90	0,392
6	732955,64980	20	15	300	19	90	0,923
7	732955,84355	20	15	300	20	90	1,117
8	732956,12939	20	15	300	19	90	1,401
9	732954,77515	20	15	300	20	80	0,048
10	732954,77635	20	15	300	20	80	0,050
11	732954,95219	20	15	300	19	80	0,225
12	732954,97791	20	15	300	20	80	0,251
13	732955,09295	20	15	300	19	80	0,366
14	732955,85376	20	15	300	19	80	1,127
15	732956,14300	20	15	300	19	80	1,415
16	732956,16930	20	15	300	20	80	1,442
17	732954,78597	20	15	300	19	70	0,059
18	732954,79357	20	15	300	18	70	0,067
19	732954,79581	20	15	300	19	70	0,069
20	732954,93856	20	15	300	19	70	0,212
21	732954,97567	20	15	300	20	70	0,249
22	732955,03274	20	15	300	19	70	0,305
23	732954,74200	20	15	300	20	60	0,015
24	732954,74590	20	15	300	20	60	0,019
25	732954,75398	20	15	300	20	60	0,027
26	732954,77721	20	15	300	20	60	0,050
27	732954,78471	20	15	300	20	60	0,058
28	732954,78883	20	15	300	20	60	0,062
29	732954,94072	20	15	300	20	60	0,213
30	732954,96044	20	15	300	20	60	0,233
31	732955,00821	20	15	300	20	60	0,282
32	732954,74327	20	15	300	20	50	0,017
33	732954,74649	20	15	300	20	50	0,020
34	732954,75320	20	15	300	20	50	0,027
35	732954,77754	20	15	300	20	50	0,051
36	732954,78735	20	15	300	20	50	0,061
37	732954,79623	20	15	300	20	50	0,069
38	732954,97122	20	15	300	20	50	0,244
39	732954,98758	20	15	300	20	50	0,260
40	732955.00122	20	15	300	20	50	0.274

- netID идентификатор сети;
- path множество проложенных путей в исходной последовательности;
- param структура с динамическими параметрами.

Для определения динамики заполнения сетей на каждом шаге для каждого алгоритма были рассчитаны следующие параметры:

- minArc минимальная величина пропускной способности дуг в сети;
- maxArc максимальная величина пропускной способности дуг в сети;
- mArc средняя величина пропускной способности дуг в сети;
- stdArc стандартное отклонение пропускной способности дуг в сети;
- numArc количество ненулевых дуг в сети;
- steadyNullArc мера неравномерности для дуг (среднеквадратичное отклонение);
- minCut минимальная величина по множеству минимальных разрезов;
- maxCut максимальная величина по множеству минимальных разрезов;
- mCut средняя величина по множеству минимальных разрезов;
- stdCut стандартное отклонение по множеству минимальных разрезов;
- numCut количество ненулевых минимальных разрезов (количество связных пар полюсов);
- steadyNullCut мера неравномерности по минимальным разрезам (среднеквадратичное отклонение).

5. Результаты моделирования

Электронную версию этого раздела с цветными рисунками можно посмотреть по ссылке [13].

Результаты моделирования процесса заполнения телекоммуникационных сетей с топологией типа «связанные кластеры» приведены в табл. 3–6 и на рис. 3–10.

5.1. Первое множество сетей

В табл. 3 приведены результаты заполнения первого множества сетей. Процент превышения рассчитывался для пяти алгоритмов относительно простого алгоритма

 Таблица 2

 Параметры исследуемых сетей. Множество 2

Nº	ID сети	Кол-во узлов	Кол-во пар по- люсов	Кол-во заявок	Макс. Проп. Сп.	% ну- левых дуг	Нач. МН по МР
1	733672,4486	35	21	4200	596	40	0,275
2	733672,2472	35	21	4200	561	40	0,074
3	733672,9263	35	21	4200	599	40	0,753
4	733672,4516	35	21	4200	572	40	0,278
5	733672,3422	35	21	4200	560	40	0,169
6	733672,2860	35	21	4200	570	40	0,112
7	733672,2106	35	21	4200	586	50	0,037
8	733672,3075	35	21	4200	577	50	0,134
9	733672,1927	35	21	4200	582	50	0,019
10	733672,2185	35	21	4200	591	50	0,044
11	733672,4267	35	21	4200	582	60	0,252
12	733672,2387	35	21	4200	581	60	0,064
13	733672,3197	35	21	4200	592	60	0,145
14	733672,5647	35	21	4200	582	60	0,390
15	733672,4025	35	21	4200	592	60	0,228
16	733672,1953	35	21	4200	556	60	0,021
17	733672,2756	35	21	4200	597	60	0,101
18	733672,3864	35	21	4200	548	60	0,212
19	733672,2588	35	21	4200	548	60	0,084
20	733672,3477	35	21	4200	573	70	0,173
21	733672,5700	35	21	4200	570	70	0,395
22	733672,4116	35	21	4200	496	70	0,237
23	733672,4667	35	21	4200	598	70	0,292
24	733672,3447	35	21	4200	562	70	0,170
25	733672,2845	35	21	4200	579	70	0,109
26	733672,2232	35	21	4200	599	80	0,048
27	733672,2304	35	21	4200	593	80	0,055
28	733672,3823	35	21	4200	597	80	0,207
29	733672,2174	35	21	4200	594	80	0,042
30	733672,3842	35	21	4200	569	80	0,209
31	733672,3650	35	21	4200	574	90	0,189
32	733672,2551	35	21	4200	585	90	0,079
33	733672,2135	35	21	4200	594	90	0,038
34	733672,4317	35	21	4200	584	90	0,256

Таблица 3 Результаты заполнения сетей. Множество 1. Проведенный поток

Nº	П		денні рвого			0				пото ар по			% превышения проведенного пото- ка до первого отказа по сравнению с про- стым алгоритмо					% превышения проведенного пото- ка до полного отказа по сравнению с про- стым алгоритмом				
	П	Д	ДС	PA	PC	РΓ	П	Д	ДС	PA	PC	РΓ	Д	ДС	PA	PC	РΓ	Д	ДС	PA	PC	РΓ
1	41	23	41	41	34	41	52	45	52	54	50	54	-44	0	0	-17	0	-13	0	4	-4	4
2	15	15	15	15	15	15	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
3	18	18	18	18	18	18	45	45	45	45	45	45	0	0	0	0	0	0	0	0	0	0
4	10	10	10	10	10	10	29	29	31	31	31	31	0	0	0	0	0	0	7	7	7	7
5	14	14	14	14	14	14	52	51	53	55	49	54	0	0	0	0	0	-2	2	6	-6	4
6	2	2	2	2	2	2	17	17	17	17	17	17	0	0	0	0	0	0	0	0	0	0
7	9	9	9	9	9	9	47	39	53	55	45	47	0	0	0	0	0	-17	13	17	-4	0
8	4	4	4	4	4	4	44	44	44	44	44	44	0	0	0	0	0	0	0	0	0	0
9	72	72	72	72	72	72	94	85	101	104	92	103	0	0	0	0	0	-10	7	11	-2	10
10	37	46	53	55	41	53	65	67	65	72	67	71	24	43	49	11	43	3	0	11	3	9
11	19	19	19	19	19	19	66	54	63	67	66	68	0	0	0	0	0	-18	-5	2	0	3
12	42	42	42	42	42	42	91	87	91	95	91	92	0	0	0	0	0	-4	0	4	0	1
13	21	21	21	21	21	21	44	42	46	46	44	44	0	0	0	0	0	-5	5	5	0	0
14	3	3	3	3	3	3	57	59	60	62	57	59	0	0	0	0	0	4	5	9	0	4
15	3	3	3	3	3	3	37	37	37	37	37	37	0	0	0	0	0	0	0	0	0	0
16	3	3	3	3	3	3	67	69	67	73	67	67	0	0	0	0	0	3	0	9	0	0
17	70	80	80	80	80	80	128	131	136	143	128	134	14	14	14	14	14	2	6	12	0	5
18	38	35	38	38	38 77	38	106	100	102	110	109	110	-8	0	0	0	0	-6 -1	-4 -2	-1	-3	-2
19	77	72	77	77		77	119	118 122	117	118	116	117	-6	0	Ľ.	0	0		-2 -4	<u> </u>	-	
20	59	59	59	59	59	59	126	_	121	132	124	126	0	0	0	0	_	-3 -7	-4 0	5	-2	0
21	66	66	66	66 50	66	66 50	165	153	165	174	169	170	0	0	0	0	0	-1 -4		5 1	2 -1	2
23	50 182	50 177	50 177	182	50 182	182	162 246	156 232	166 242	164 248	160 234	166 249	-3	-3	0	0	0	-4 -6	-2	1	-1 -5	1
23	229	214	221	229	229	229	316	283	293	326	298	315	-3 -7	-3 -3	0	0	0	-6 -10	-2 -7	3	-5 -6	0
25	142	116	142	142	142	142	191	184	191	194	187	191	- <i>1</i> -18	-S 0	0	0	0	-10 -4	-7	2	-o -2	0
26	215	197	211	215	215	215	303	274	291	312	299	306	-10 -8	-2	0	0	0	-4 -10	-4	3	-z -1	1
27	145	145	145	145	145	145	225	215	225	233	218	225	0	0	0	0	0	-10 -4	0	4	-3	0
28	198	198	198	198	198	198	291	266	277	295	292	293	0	0	0	0	0	-9	-5	1	-5	1
29	96	96	96	96	96	96	206	196	207	210	202	206	0	0	0	0	0	-5	0	2	-2	0
30	92	92	92	92	92	92	165	156	163	177	146	171	0	0	0	0	0	-5	-1	7	-12	4
31	34	34	34	34	34	34	184	167	180	192	182	186	0	0	0	0	0	-9	-2	4	-1	1
32	231	216	228	231	231	231	288	264	274	288	279	288	-6	-1	0	0	0	-8	-5	0	-3	0
33	243	228	243	243	243	243	311	279	294	318	297	313	-6	0	0	0	0	-10	-5	2	-5	1
34	187	187	176	187	187	187	247	241	242	259	243	257	0	-6	0	0	0	-2	-2	5	-2	4
35	221	221	221	221	221	221	292	277	287	305	289	298	0	0	0	0	0	-5	-2	4	-1	2
36	193	193	190	193	193	193	262	255	271	278	251	264	0	-2	0	0	0	-3	3	6	-4	1
37	144	144	144	144	144	144	268	242	255	266	266	268	0	0	0	0	0	-10	-5	-1	-1	0
38	90	90	90	90	90	90	223	214	217	225	218	224	0	0	0	0	0	-4	-3	1	-2	0
39	72	72	72	72	72	72	235	228	238	247	228	240	0	0	0	0	0	-3	1	5	-3	2
40	78	78	78	78	78	78	253	245	248	263	243	253	0	0	0	0	0	-3	-2	4	-4	0

На рис. 3–6 представлена динамика заполнения потоками связи двух выбранных сетей — сети № 10 и сети № 17 — по всем алгоритмам. На всех этих графиках по оси ординат отложена величина критерия неравномерности по минимальным разрезам, по оси абсцисс — номера заявок.

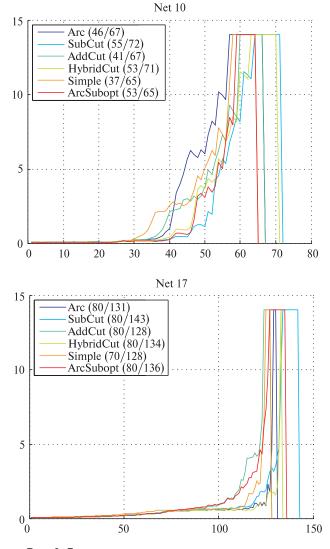
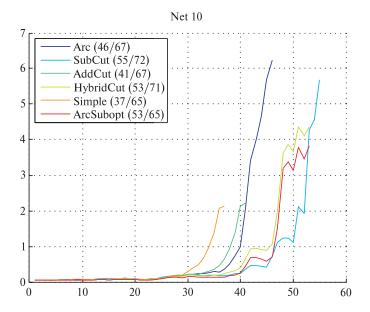



Рис. 3. Динамика заполнения сети до полного отказа

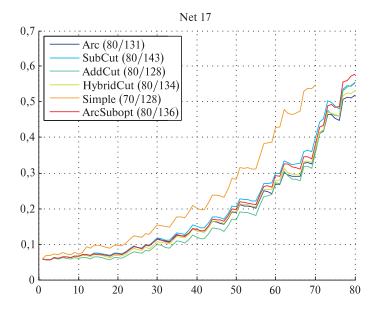
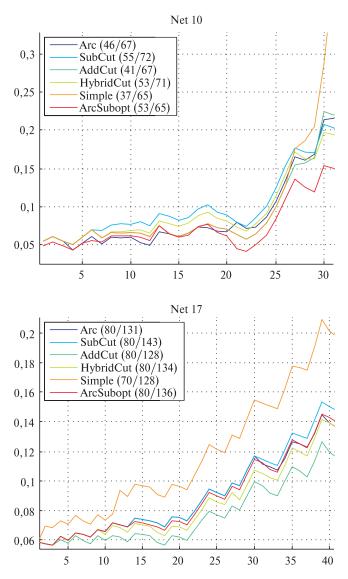



Рис. 4. Динамика заполнения сети до первого отказа

Рис. 5. Динамика заполнения сети до первого отказа. Начальный участок

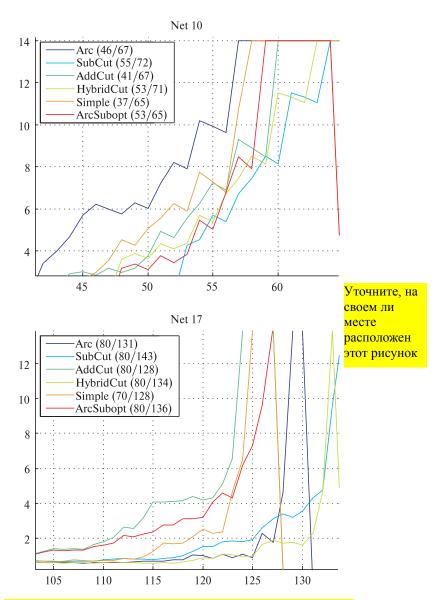


Рис. 6. Динамика заполнения сети до полного отказа. Увеличение

Таблица 4

Процент превышения общего проведенного потока.
Множество 1

		ведені ервого				Проведенный поток до разрыва всех пар полюсов (2)								
П	Д	ДС	PC	PA	РΓ	П	Д	ДС	PC	PA	РΓ			
0	-2,9	-0,2	0,8	0,2	0,8	0	-5,7	-1,5	3,5	-2,3	1,4			

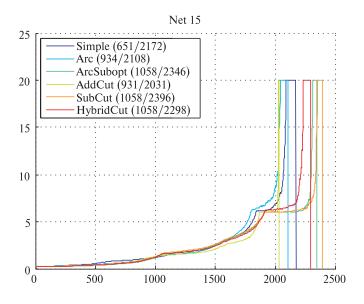
В табл. 4 приведены суммарные данные по всем сетям первого множества о доле превышения или уменьшения общего потока относительно простого алгоритма для всех остальных алгоритмов.

Для множества сетей № 1 характерно, что общий проведенный поток до первого отказа по пяти последовательным алгоритмам слабо отличается от простого алгоритма. То есть мало сетей с отличием проведенного потока. Причина этого явления — малая пропускная способность дуг и, как следствие, малые значения проведенного потока до первого отказа.

Несмотря на то, что доли превышения проведенных потоков по различным алгоритмам малы можно выделить два лучших алгоритма — это алгоритмы минимально-разрезного подхода: субоптимальный и гибридный алгоритмы.

Использование нового алгоритма субоптимального дугового для множества № 1 не оправдало себя, так как процент превышения общего проведенного потока меньше 0 для обоих критериев. Из приведенных данных видно, тем не менее, что качество работы этого алгоритма существенно лучше дугового алгоритма.

5.2. Второе множество сетей


В табл. 5 приведены данные, аналогичные табл. 3 для второго множества сетей.

На рис. 7–10 представлена динамика заполнения двух выбранных сетей — сети № 15 и сети № 19 — по всем алгоритмам. На всех этих графиках по оси ординат отложена величина критерия неравномерности по минимальным разрезам, по оси абсцисс — номера заявок.

 Таблица 5

 Результаты заполнения сетей. Множество 2. Проведенный поток

Nº	Проведенный поток до первого отказа								ный по ех пар			оыва	% превышения проведенного потока до первого отказа по сравнению с простым алгоритмом					% превышения проведенного потока до полного отказа по сравнению с простым алгоритмом				
	П	Д	дс	PA	PC	РΓ	П	Д	дс	PA	PC	РΓ	Д	дс	PA	PC	РΓ	Д	дс	PA	PC	РΓ
1	1125	1115	1149	1149	1149	1149	2579	2426	2718	2416	2794	2636	-1	2	2	2	2	-6	5	-6	8	2
2	1348	1419	1419	1380	1419	1419	2381	2074	2493	2345	2362	2441	5	5	2	5	5	-13	5	-2	-1	3
3	309	342	342	309	342	342	2981	2464	2914	2950	3126	3069	11	11	0	11	11	-17	-2	-1	5	3
4	921	1087	1101	1100	1101	1101	2514	2292	2582	2518	2616	2620	18	20	19	20	20	-9	3	0	4	4
5	1026	1227	1227	1026	1227	1227	2347	1968	2332	2312	2523	2465	20	20	0	20	20	-16	-1	-1	7	5
6	665	949	949	725	949	949	1960	1866	1985	1939	2075	1969	43	43	9	43	43	-5	1	-1	6	0
7	1863	1852	1915	1879	1915	1915	2486	2366	2599	2523	2694	2522	-1	3	1	3	3	-5	5	1	8	1
8	769	823	823	823	823	823	1708	1553	1829	1708	1763	1765	7	7	7	7	7	-9	7	0	3	3
9	1840	2147	2179	1867	2222	2222	2631	2367	2722	2595	2709	2716	17	18	1	21	21	-10	3	-1	3	3
10	1714	1873	1879	1566	1879	1879	2374	2206	2432	2341	2509	2498	9	10	-9	10	10	-7	2	-1	6	5
11	883	947	947	883	947	947	1666	1510	1746	1596	1762	1598	7	7	0	7	7	-9	5	-4	6	-4
12	794	885	885	856	885	885	1258	1262	1348	1262	1392	1343	11	11	8	11	11	0	7	0	11	7
13	1095	1038	1095	1105	1105	1105	2080	1713	1929	2089	2136	2060	-5	0	1	1	1	-18	-7	0	3	-1
14	422	427	461	422	461	461	1613	1401	1582	1630	1657	1633	1	9	0	9	9	-13	-2	1	3	1
15	651	934	1058	931	1058	1058	2172	2108	2346	2031	2396	2298	43	63	43	63	63	-3	8	6	10	6
16	1716	1582	1716	1716	1716	1716	2029	1868	2121	2023	2214	2186	-8	0	0	0	0	-8	5	0	9	8
17	951	1108	1108	1060	1108	1108	1753	1650	1820	1728	1828	1796	17	17	11	17	17	-6	4	-1	4	2
18	660	746	746	660	746	746	1561	1490	1590	1557	1660	1562	13	13	0	13	13	-5	2	0	6	0
19	929	905	1129	905	1129	1129	1468	1393	1597	1445	1639	1564	-3	22	-3	22	22	-5	9	-2	12	7
20	444	475	488	458	488	488	870	813	977	884	992	903	7	10	3	10	10	-7	12	2	14	4
21	669	681	681	681	681	681	1900	1738	1943	1948	2065	2003	2	2	2	2	2	-9	2	3	9	5
22	395	398	398	398	398	398	1627	1429	1614	1582	1659	1674	1	1	1	1	1	-12	-1	-3	2	3
23	631	651	651	631	651	651	1282	1235	1354	1194	1336	1282	3	3	0	3	3	-4	6	-7	4	0
24	916	960	965	965	965	965	1585	1419	1672	1578	1744	1715	5	5	5	5	5	-10	5	0	10	8
25	727	1029	1029	882	1029	1029	1656	1606	1766	1591	1722	1690	42	42	21	42	42	-3	7	-4	4	2
26	806	717	955	801	955	949	1092	922	1224	1132	1239	1162	-11	18	-1	18	18	-16	12	4	13	6
27	1048	1152	1152	1152	1152	1152	1584	1399	1596	1548	1666	1685	10	10	10	10	10	-12	1	-2	5	6
28	680	708	708	708	708	708	1706	1580	1796	1686	1803	1698	4	4	4	4	4	-7	5	-1	6	0
29	3382	3463	3620	3492	3620	3615	4063	3626	4237	4071	4347	4239	2	7	3	7	7	-11	4	0	7	4
30	435	524	524	471	524	524	1605	1309	1618	1538	1665	1691	20	20	8	20	20	-18	1	-4	4	5
31	916	1142	1142	1142	1142	1142	2849	2250	2640	2730	2783	2866	25	25	25	25	25	-21	-7	-4	-2	1
32	423	448	481	421	471	474	1035	959	1027	1037	1032	1029	6	14	0	11	12	-7	-1	0	0	-1
33	760	833	913	814	913	913	1415	1362	1410	1401	1452	1429	10	20	7	20	20	-4	0	-1	3	1
34	313	322	322	322	322	322	991	893	1062	975	1020	1018	3	3	3	3	3	-10	7	-2	3	3

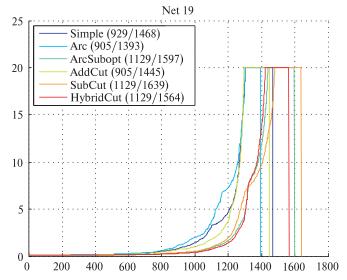


Рис. 7. Динамика заполнения сети до полного отказа

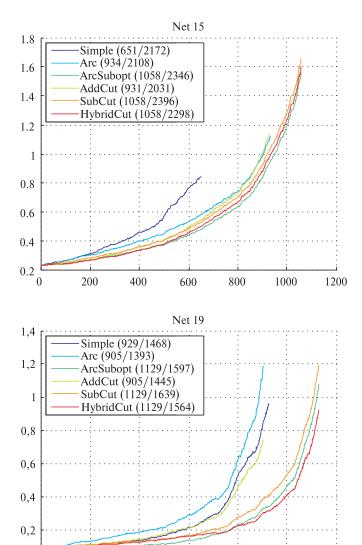
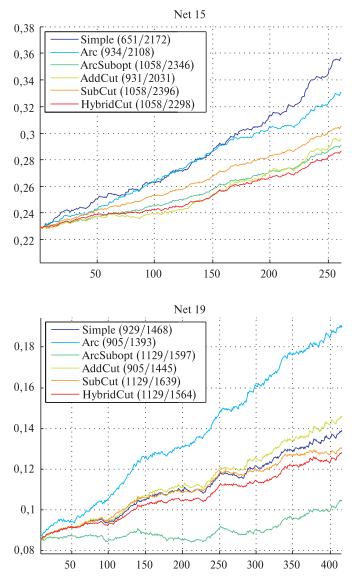



Рис. 8. Динамика заполнения сети до первого отказа

Рис. 9. Динамика заполнения сети до первого отказа. Начальный участок

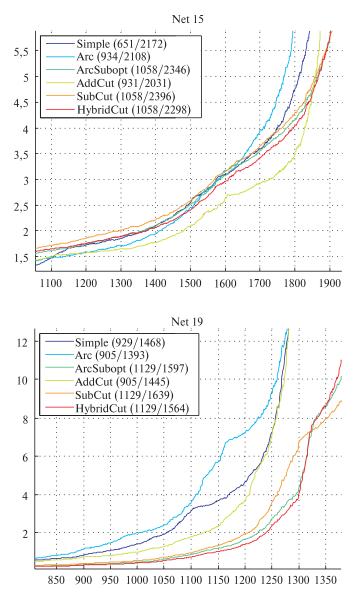


Рис. 10. Динамика заполнения сети до полного отказа. Увеличение

Таблица 6
Процент превышения общего проведенного потока. Множество 2

		оведен первог				Проведенный поток до разрыва всех пар полюсов (2)								
П	Д	ДС	PA	PC	РΓ	П	Д	ДС	PA	PC	РΓ			
0	8,3	12,2	4,6	12,3	12,3	0	-9,7	2,8	-1,4	5,5	3,1			

В табл. 6 приведены суммарные данные по всем сетям второго множества о доле превышения или уменьшения общего потока относительно простого алгоритма для всех остальных алгоритмов.

Для множества сетей № 2 результаты существенно лучше по сравнению с множеством № 1. Увеличение пропускной способности дуг на порядок позволило раскрыть особенности алгоритмов последовательного заполнения. Гораздо больше сетей имеют положительный процент превышения потока для пяти алгоритмов заполнения.

Как и для первого множества два лучших алгоритма — это алгоритмы субоптимальный минимально-разрезный и гибридный. Стоит отметить хорошие результаты по новому дуговому субоптимальному алгоритму.

6. Общие выводы по результатам

Различия по результатам заполнения двух множеств дают основание предположить, что использование алгоритмов минимально-разрезного и дугового подхода будет более эффективным для сетей с большой пропускной способностью дуг и для достаточного большого количества пар полюсов (начиная с \sim 15 пар).

Численный эксперимент по двум множествам сетей позволил выявить два лучших алгоритма. Как и для стохастической топологии [3] ими стали:

- субоптимальный минимально-разрезный алгоритм (РС);
- гибридный минимально-разрезный алгоритм (РГ);
- использование нового дугового субоптимального алгоритма возможно для сетей с большими пропускными способностями дуг. Для кластерной топологии не рекомендуются к применению алгоритмы:
- равномерный по дугам алгоритм (Д);
- аддитивный минимально-разрезный алгоритм (РА),

так как они не позволяют достичь увеличения полного потока в сети для критерия № 2 (до полного отказа).

Литература

- Афанасьев А. П., Гринберг Я. Р., Курочкин И. И.; Равномерное заполнение телекоммуникационной сети каналами связи. С. 118–123 // Прикладные проблемы управления макросистемами (Апатиты, 5–9 апреля 2004 года). Сборник докладов. Т. 8. Труды ИСА РАН. М.: URSS, 2004. 288 с.
- Афанасьев А. П., Гринберг Я. Р., Курочкин И. И.; «Равномерные» алгоритмы последовательного заполнения потоковой сети потоками продуктов. С. 118—140 // Проблемы вычислений в распределенной среде. Модели обработки и представления данных. Динамические системы. Том 14. Труды ИСА РАН. М.: КомКнига/URSS, 2005/224 с.
- 3. Гринберг Я. Р., Курочкин И. И. Анализ результатов численного эксперимента по последовательному заполнению сетей со стохастической топологией. С. 99–128 // Проблемы вычислений в распределенной среде: распределенные приложения, коммуникационные системы, математические модели и оптимизация. Том 25. Труды ИСА РАН. М.: КомКнига/URSS, 2006. 224 с.
- Герасимов А. И. Аналитические методы исследования и оптимизации вычислительных систем и сетей на основе сетевых моделей массового обслуживания. М/: Радио и связь, 2001.
- Крылов В. В., Самохвалова С. С. Теория телетрафика и ее приложения. СПб.: БХВ-Петербург, 2005.
- 6. *Ефимова М. Р.*, *Петрова Е. В.*, *Румянцев В. Н.* Общая теория статистики. Учебник. Второе издание, исправленное и дополненное. М.: Инфра-М, 2006.
- 7. Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы. СПб: Питер, 2000. 672 с.
- 8. *Остерлох X.* Маршрутизация в IP-сетях. Принципы, протоколы, настройка. СПб.: ДиаСофтЮП, 2002. 512 с.
- 9. Шмалько А. В. Цифровые сети связи: основы планирования и построения. М.: Эко-Трендз, 2001.
- 10. Ху Т. Целочисленное программирование и потоки в сетях. М.: Мир, 1973.
- 11. *Форд Л. Р.*, *Фалкерсон Д. Р.* Потоки в сетях. М.: Мир, 1962.
- 12. Вишневский В. М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003.
- 13. http://dcs.isa.ru/wiki/_media/staff/static-cluster-add.pdf