Дисперсионный подход к оптимизации портфеля облигаций*

Д. К. МЕХЕДОВ

Аннотация. Исследуется проблема оптимизации портфеля из долговых ценных бумаг — российских государственных облигаций. Для этого применяется средне-дисперсионный анализ Марковица. Цены облигаций рассматриваются как условно-случайные процессы, которые выражаются через процентную ставку. В качестве модели случайного процесса процентной ставки используется параметрическая модель Васичека, основанная на процессе Орнштейна —Уленбека. Неизвестные параметры оцениваются по статистическим данным с помощью фильтрации Калмана и метода наибольшего правдоподобия. Указывается способ построения оптимального множества инструментов, приводится пример определения необходимых параметров.

Ключевые слова: портфель облигаций, стохастическая теория, классическая портфельная теория для портфеля облигаций, трехпараметрическая модель Васичека движения процентной ставки, процесс Орнштейна—Уленбека, фильтрация Калмана.

Введение

Ключевую роль в современной теории портфельного инвестирования сыграла работа Г. Марковица, предложившего необходимый инструмент для учета риска вложений в ценные бумаги. Его вероятностный анализ (mean-variance analysis) выявил важную роль ковариаций между ценами активов и стал основой метода уменьшения несистематической составляющей риска за счет использования в портфеле большого количества ценных бумаг. Известно множество научных трудов, посвященных построению портфеля из долевых ценных бумаг. В то же время редко встречаются работы, посвященные оптимизации портфеля облигаций, исходя из дисперсионного анализа Марковица; в отечественной практике, по наблюдениям автора, их вообще нет.

Этому есть ряд причин. Одной является тот факт, что цены облигаций, в отличие от цен акций, ограничены по времени своего существования и напрямую анализировать доходность и дисперсию облигаций некорректно. К тому же риск облигации поддается разделению на несколько составляющих, не

все из которых можно формализовать с помощью стохастической теории.

Другая возможная причина — структура денежного потока для облигации (cash-flow). Облигация — инструмент с фиксированным денежным потоком. Выгода от держания в портфеле облигации складывается от получения не только номинала в конкретную указанную дату, но и купонных платежей, которые выплачиваются периодически. Таким образом, получается, что доходы от облигаций фиксированы в номинальных величинах. В реальных величинах стоимость облигаций меняется в зависимости как от внешних, так и от внутренних факторов, что делает рынок волатильным и привлекает спекулянтов.

Ситуация существенным образом меняется для нуль-купонных государственных долговых бумаг. Суверенные государственные бумаги содержат в себе относительно постоянный страновой риск¹, остальная часть риска отражается в уровне процентных ставок. Купонные платежи для этих облигаций отсутствуют, и цену бумаги, таким образом, удается

 $^{^*}$ Работа выполнена при финансовой поддержке Российского гуманитарного научного фонда (проект № 11-02-00487.

¹ Страновой риск для суверенных долговых ценных бумаг РФ в посткризисный период опустился практически до значений риска развитых стран. Ставка обслуживания долга последнего выпуска краткосрочных облигаций России (Россия 25074) составила 4,57 %.

Методы и модели в экономикеЛ. К. Мехедов

выразить как условный стохастический процесс. При выборе горизонта инвестиционного периода меньшим, чем даты погашения облигаций, можно построить оптимальный по Марковицу портфель бумаг.

Ключевую роль в анализе доходности—риска облигации играет временная структура процентных ставок. Модель временной структуры процентных ставок формализуется с помощью стохастического исчисления [1, 2]. Основные выводы финансовой стохастической теории строятся в предположении отсутствия арбитражных возможностей на рынке и концепции равновесного состояния рынка. Благодаря этому экономически понятному постулату удается определить риск-нейтральную (мартингальную) меру и использовать хорошо развитый аппарат стохастического исчисления для описания движения цен и ставок на рынке.

Использование временной структуры ставок для средне-дисперсионного анализа облигаций не является новым само по себе [3–5 и др.]. Отдельные публикации посвящены описанию и использованию наиболее популярного аппарата — модели Васичека [6, 7]. Основной целью данной работы являлось изучение структуры государственного долга Российской Федерации, отбор бумаг, необходимых для создания оптимального в средне-дисперсионном смысле портфеля, и получение их статистических характеристик. Для анализа использовались сведения по выпускам облигаций РФ и ЦБ РФ за 2005—2008 гг. В качестве модели, отражающей временную структуру ставок, использовалась трехпараметрическая модель Васичека [4, 6].

1. Составление оптимального портфеля облигаций с помощью моделей временной структуры процентных ставок

Средне-дисперсионный анализ рынка акций использует гипотезу случайного блуждания цен (геометрического броуновского движения), согласно которой логарифмы отношения цен в смежные промежутки времени образуют случайную последовательность — винеровский процесс. Логарифм отношения цен представляет собой нормальную случайную величину с параметрами (μ , σ).

Описания движения цен облигаций — более сложная задача, связанная с ограничением на конце

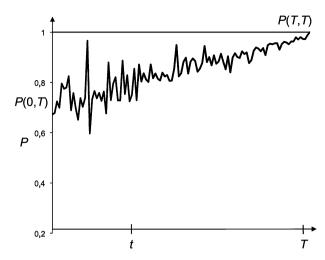


Рис. 1. График движения цены облигации P(t,T) с датой погашения T

временно́го интервала выплатой номинала. Таким образом, процесс движения цены облигации является условным процессом. Другая трудность состоит в том, что на рынках присутствуют облигации с разными периодами погашения T. Поэтому портфели эволюции стоимостей облигаций должны строиться для некоторого подмножества $T \subseteq R_+$, включающего в себя все возможные значения времен исполнения облигаций. Пример графика движения цены облигации представлен на рис. 1.

Предполагается, что портфель составляется в момент времени t=0 и удерживается без изменения до конца горизонта планирования t=T. Такая стратегия подразумевает относительно небольшие транзакционные издержки. Инвестор выбирает бумаги из N государственных нуль-купонных облигаций с временами погашения $T=T_0,\,T_1,\,\ldots,\,T_N$.

Для нахождения средних значений доходностей и ковариационной матрицы облигаций используется трехпараметрическая модель Васичека. Предполагается, что каждый из параметров $X_k(t)$, k=1,2,3 является процессом Орнштейна—Уленбека с математическим ожиданием, стремящимся к нулю. В рискнейтральной мере эти процессы задаются с помощью следующего уравнения:

$$dX_k(t) = \beta_k \cdot [\alpha_k - X_k(t)]dt + \sigma_k dW_k(t), k = 1, 2, 3,$$

где α_k , β_k , σ_k — параметры модели, $\beta_k > 0$, $W_k(t)$ — простой винеровский процесс. Коэффициент β_k — скорость реверсии, α_k — постоянная для каждого параметра премия за риск, σ_k — волатильность винеровского процесса, α_k/β_k представляет собой уровень, вокруг которого колеблется параметр. Пример графика реализации процесса Орнштейна—Уленбека представлен на рис. 2.

Tруды ИСА РАН. Том 61. 2/2011

² До 2005 г. процентные ставки были сильно волатильны (ставка рефинансирования находилась в диапазоне 15–150 %). Высокие значения ставок отражали большой риск дефолта и неуверенность в будущем инвесторов, оправившихся после недавних кризиса 1995 г. и дефолта 1998 г.

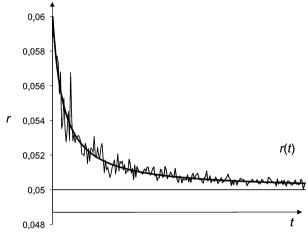


Рис. 2. График реализации процесса Орнштейна—Уленбека с α/β = 0,05

Текущее спот-значение процентной ставки выглядит следующим образом:

$$r(t) = \overline{r} + X_1(t) + X_2(t) + X_3(t)$$
.

Факторы $X_k(t)$ взаимно независимы, \overline{r} — некоторая постоянная процентная ставка, которая также является параметром модели и будет определена ниже. Цена облигации $P(t, \tau)$ в момент времени t с датой погашения τ определяется с помощью математического ожидания в риск-нейтральной мере:

$$P(t, \tau) = E_t^Q \exp\left[-\int_t^{\tau} r(s) ds\right].$$

Произведя вычисления, получаем:

$$P(t,\tau) = \exp\left[-A(t,\tau) - \overline{r}(\tau-t) - \sum_{k=1}^{3} X_k(t)B_k(t,\tau)\right],$$

где

$$A(t,\tau) = \sum_{k=1}^{3} \left\{ \left(\frac{\sigma_k^2}{2\beta_k^2} - \alpha_k \right) \cdot \left[B_k(t,\tau) - (\tau - t) \right] + \frac{\sigma_k^2}{4\beta_k} \left[B_k(t,\tau) \right]^2 \right\},$$

$$B_k(t,\tau) = \frac{1 - \exp\left[-\beta_k(\tau - t) \right]}{\beta_k}.$$

Для решения задачи оптимизации нужны значения ожидаемой доходности для каждой облигации и матрица ковариаций в физической, а не в рискнейтральной мере. Ожидаемые доходности μ_i и ковариации s_{ij}^2 облигаций i и j за период от t=0 до t=T выражаются следующими формулами:

$$\mu_i = \frac{E_0^P [P(T,T_i)]}{P(0,T_i)} - 1,$$

$$s_{ij}^2 = \text{Cov}_0^P \left[\frac{P(T, T_i)}{P(0, T_i)}, \frac{P(T, T_j)}{P(0, T_j)} \right].$$

Для определения указанных выше моментов нужно иметь значения моментов параметров. Динамика факторов $X_k(t)$ в физической мере описывается следующим уравнением:

$$dX_k(t) = \beta_k \cdot [-X_k(t)] dt + \sigma_k dW'_k(t), k = 1, 2, 3,$$

где $W'_k(t)$ — стандартный винеровский процесс в физической мере.

Математическое ожидание $E_0^P\left[X_k(T)\right]$ и вариация $\operatorname{Var}_0^P\left[X_k(T)\right]$ для k-го параметра горизонта планирования t=T в физической мере легко выводятся из хорошо известных свойств процесса Орнштейна—Уленбека:

$$E_0^P [X_k(T)] = X_k(0) \cdot \exp(-\beta_k T),$$

$$\operatorname{Var}_{0}^{P}\left[X_{k}(T)\right] = \frac{\sigma_{k}^{2}}{2\beta_{k}} \left[1 - \exp\left(-2\beta_{k}T\right)\right].$$

Стоит отметить, что параметры взаимно независимы и ковариация двух различных факторов равна нулю.

При наличии значений параметров и необходимых констант временная структура ставок определяет стоимость всех облигаций. Однако в реальном мире присутствуют ошибки для горизонта планирования Т. К этим ошибкам можно отнести ошибки измерений $P(T, \tau)$ в формуле связи $P(T, \tau) = f[r(T)]$. Для дальнейшего продвижения предполагается, что все эти ошибки отражаются слагаемыми $\varepsilon_r(T)$ для каждой облигации. Эти ошибки независимы, нормально распределены, имеют нулевое математическое ожидание и дисперсию $s^2[\varepsilon_{\tau}(T)]$. Таким образом, дисперсия этих ошибок является также параметром и может быть оценена с помощью метода наибольшего правдоподобия. В итоге для $\tau > T$ имеем следующую формулу зависимости цены облигации от параметров:

$$P(t,\tau) = \exp\left[-A(t,\tau) - \overline{r}(\tau - t) - \sum_{k=1}^{3} X_k(t)B_k(t,\tau) + \varepsilon_{\tau}(T)\right].$$

При данной постановке задачи с описанными выше условиями ожидаемая доходность μ_i , дисперсии и ковариации s_{ij}^2 облигаций представляются следующими формулами:

Методы и модели в экономике Д. К. Мехедов

	Таблица 1
Объемы государственных займов России в 2004–2010 гг. (млн руб.)	

Вид займа	2004	2005	2006	2007	2008	2009	2010 (9 мес.)
ОФЗ	165 269	167 197	185 179	244 668	181 093	415 931	428 256
ГСО	3919	0	413	48 965	85 209	99 946	79 965
Всего	169 188	167 197	185 592	293 633	266 302	515 876	508 221

$$\mu_{i} = \frac{\exp\left\{M^{(1)}(T_{i}) + \frac{1}{2}\left[S^{(1)}(T_{i})\right]^{2}\right\}}{P(0,T_{i})} - 1,$$

$$s_{ii}^{2} =$$

$$= \frac{\exp\left\{2M^{(1)}(T_{i}) + \left[S^{(1)}(T_{i})\right]^{2}\right\} \cdot \left\{\exp\left\{\left[S^{(1)}(T_{i})\right]^{2}\right\} - 1\right\}}{\left[P(0,T_{i})\right]^{2}},$$

$$s_{ij}^{2} = \frac{\exp\left\{M^{(2)}(T_{i},T_{j}) + \frac{1}{2}\left[S^{(2)}(T_{i},T_{j})\right]^{2}\right\}}{P(0,T_{i}) \cdot P(0,T_{j})} -$$

$$\frac{\exp\left\{M^{(1)}(T_{i}) + M^{(1)}(T_{j}) + \frac{1}{2}\left[\left[S^{(1)}(T_{i})\right]^{2} + \left[S^{(1)}(T_{j})\right]^{2}\right]\right\}}{P(0,T_{i}) \cdot P(0,T_{j})},$$

$$r_{I} \neq j,$$

$$r_{I} = A(T,T_{i}) - \overline{r}(T_{i} - T) - \sum_{k=1}^{3}\left\{E_{0}^{P}\left[X_{k}(T\right] \cdot B_{k}(T,T_{i})\right\},$$

$$S^{(1)}(T_{i}) = \sqrt{\sum_{k=1}^{3}\left\{Var_{0}^{P}\left[X_{k}(T)\right] \cdot B_{k}(T,T_{i})^{2}\right\} + s^{2}\left(\varepsilon_{T_{i}}\right)},$$

$$S^{(2)}(T_{i},T_{j}) =$$

$$= -A(T,T_{i}) - A(T,T_{j}) - \overline{r}(T_{i} + T_{j} - 2T) -$$

$$-\sum_{k=1}^{3}\left\{E_{0}^{P}\left[X_{k}(T)\right] \cdot \left[B_{k}(T,T_{i}) + B_{k}(T,T_{j})\right]\right\},$$

$$S^{(2)}(T_{i},T_{j}) =$$

$$= \left[\sum_{k=1}^{3}\left\{Var_{0}^{P}\left[X_{k}(T)\right] \cdot \left[B_{k}(T,T_{i}) + B_{k}(T,T_{j})\right]^{2}\right\} +$$

$$+ s^{2}\left(\varepsilon_{T_{i}}\right) + s^{2}\left(\varepsilon_{T_{i}}\right)\right].$$

Как только вектор ожидаемых доходностей и матрица ковариаций получены, можно использовать классическую теорию Марковица для нахождения Парето-оптимальных решений.

2. Эмпирическая реализация модели Васичека

Российская Федерация является одним из крупнейших эмитентов долговых ценных бумаг в постсоветском пространстве. В последние два года существенно выросли объемы государственных займов России, что свидетельствует об увеличении финансовой активности в экономике, усилении инвестиционной привлекательности суверенных бумаг, об увеличении степени доверия инвесторов экономике и правительству страны. Объемы государственных займов России представлены в табл. 1 (источник — Министерство финансов России, сайт www.minfin.ru).

Для проведения анализа были отобраны государственные облигации и облигации ЦБ с датой эмиссии с 2005 г. до 2008 г.³, имеющие следующие коды ISIN: RU000A0DCEG3, RU000A0DZL92, RU000A0D1JF3, RU000A0JP3Y5, RU000A0GMSX0, RU000A0JPLY0, RU000A0JPVH4, RU000A0JP0V7, RU000A0JPLJ1, RU000A0JPWY7, RU000A0DY8K8, RU000A0JP0SP, RU000A0JNHJ4, RU000A0GN9A7, RU000A0JP259, RU000A0JPLH5, RU000A0DGJ32. Даты погашения указанных бумаг варьируются с декабря 2005 г. по июнь 2036 г. Источником информации по эмиссиям, а также по котировкам ценных бумаг является информационное агентство Cbonds (сайт www.cbonds.info).

Дисконтные (нуль-купонные) облигации преимущественно выпускаются для покрытия краткосрочного дефицита денежных средств. Преобладающее большинство ценных бумаг — долгосрочные облигации с купонами. Так как для анализа необходимо использовать бескупонные ценные бумаги, из ежедневных котировок облигаций были удалены стоимости купонов.

Цена каждого купонного платежа для облигации определялась с использованием «*G*-кривой бескупон-

62

³ Облигации раннего выпуска не рассматривались ввиду большой волатильности процентных ставок и больших рисков для этих облигаций. К тому же более ранний период исключает возможность рассматривать отечественный рынок как безарбитражный и равновесный. Использование данных после сентября 2008 г. также не удовлетворяет условиям модели ввиду развившегося мирового финансового кризиса.

ной доходности на рынке ГКО-ОФЗ». Таким образом, стоимость каждого купонного платежа приводилась к дате котировки облигации и вычиталась из котировки.

G-кривая отображает временную структуру процентных ставок. В разных странах используются различные модели для нахождения G-кривой, основными из которых являются модели Нельсона—Сигеля, Свенссона, Фишера—Ничка—Зервоса и др. В России используется модификация модели Нельсона—Сигеля и шестипараметрической модели Свенссона⁴:

$$R(t) = \beta_0 + (\beta_1 + \beta_2) \cdot \frac{\tau}{t} \cdot \left[1 - \exp\left(-\frac{t}{\tau}\right) \right] - \beta_2 \cdot \exp\left(-\frac{t}{\tau}\right) + g_1 \cdot \exp\left(-\frac{t^2}{2}\right) + g_2 \cdot \exp\left[-\frac{(t-1)^2}{2}\right] + g_3 \cdot \exp\left[-\frac{(t-2)^2}{2}\right],$$

где β_0 , β_1 , β_2 , τ , g_1 , g_2 , g_3 — параметры модели, публикуемые на ежедневной основе на сайте ЦБ России и пересчитываемые после каждой сделки с ценными бумагами, входящими в список бумаг для расчета кривой.

Для каждой даты торгов облигаций были получены параметры модели и была рассчитана процентная ставка. Исходя из значений процентной ставки и дат выплаты купонов, из стоимостей облигаций были вычтены приведенные стоимости купонов, что предоставило возможность получить синтетические нуль-купонные бумаги.

Для оценки параметров модели Васичека использовался метод наибольшего правдоподобия для фильтрации Калмана. Фильтр Калмана применялся к имеющейся исторической информации котировок облигаций. Весь исторический период был разбит на промежутки с шагом h=30 дней, $t=t_0$, t_0+h , t_0+2h , ..., $t_0+(m-1)h$, T. Таким образом, в каждый из указанных моментов времени наблюдался имеющий (N+1) элементов $[P(t,t+T_0),P(t,t+T_1),\ldots,P(t,t+T_N)]$ вектор котировок дисконтных облигаций с (N+1) датами погашения T_0,T_1,\ldots,T_N .

Уравнение состояния фильтра Калмана — это уравнение связи наблюдаемых цен облигаций с параметрами модели Васичека:

$$\begin{split} &\ln\left[P(t,t+T_i)\right] = \\ &= -A(T_i) - \overline{r} \cdot T_i - \sum_{k=1}^3 \left[X_k(t)B_k(T_i)\right] + \varepsilon_{T_i}(t) \; . \end{split}$$

Уравнение перехода описывается динамикой стохастических параметров процентной ставки через каждый промежуток *h*. Для каждого фактора, следующего процессу Орнштейна—Уленбека, уравнение перехода выглядит следующим образом:

$$X_k(t) = \exp(-\beta_k h) \cdot X_k(t-h) + w_k(t), k = 1, 2, 3.$$

Ошибки $w_k(t)$ являются последовательно некоррелированными нормально распределенными случайными величинами с нулевым математическим ожиданием и дисперсией, равной

$$[1-\exp(-2\beta_k h)]\cdot(\sigma_k^2/2\beta_k).$$

Функция правдоподобия для описанных выше состояний связи и динамики процессов вычисляется рекурсивным методом с помощью алгоритма фильтрации Калмана, который позволяет численными математическими методами искать максимальное значение функции и определять неизвестные параметры. Как только недостающие параметры определены, следующим шагом рассчитываются факторы для процентной ставки и определяются статистические параметры облигаций — ожидаемая доходность и матрица ковариаций.

В качестве стартовой даты для оценки параметров выбрана первая доступная дата котировок бумаг t=31.03.2005; дата окончания статистического анализа $T_0=14.02.2008$. При использовании длины шага h=30 дней для статистического анализа получилось 36 периодов. При отсутствии котировки бумаги на какую-нибудь дату использовалась последняя предыдущая доступная котировка. При прекращении обращения бумаги, бумага выбывала из статистического анализа. В качестве начальных условий были выбраны $X_1=0$, $X_2=0$, $X_3=0$, r=5%. Для указанных условий с помощью максимизации функции правдоподобия градиентным методом были получены оценки параметров, представленные в табл. 2.

Полученные значения имеют следующую трактовку: величина процентной ставки состоит из суммы \overline{r} и случайных процессов $X_1(t)$, $X_2(t)$, $X_3(t)$ (в зависимости от количества параметров модели), стремящихся на бесконечности к нулю. Параметр \bar{r} отображает постоянную, не изменяющуюся во времени часть параметрической процентной ставки, α_k , β_k , σ_k , k=1, 2, 3, являются параметрами соответствующих процессов, $s(\varepsilon_i)$, i = 1, 2, ..., 18, являются среднеквадратичными ошибками случайных величин ε_i , отражающих ошибки прогнозного периода и ошибки вычислений. Таким образом, фильтр Калмана позволяет оценить параметры для стохастической процентной ставки и установить стохастическую связь между стоимостями облигаций и этой параметризированной процентной ставкой.

⁴ Подробно методика построения *G*-кривой описана на сайте Московской межбанковской валютной биржи (ММВБ) www.micex.ru и на сайте ЦБ России www.cbr.ru

Методы и модели в экономике Л. К. Мехедов

 Таблица 2

 Оценки параметров моделей

Пара- метр	Однопарамет- рическая модель	Двухпарамет- рическая модель	Трехпарамет- рическая модель	Пара- метр	Однопарамет- рическая модель	Двухпарамет- рическая модель	Трехпарамет- рическая модель
\overline{r} (%)	1,89	0,12	2,69	$s(\varepsilon_5)$	0,054	0,004	0,0035
α_1	0,029	0,0001	-0,0040	$s(\varepsilon_6)$	0,094	0,019	0,0192
β_1	0,013	0,102	0,1420	$s(\varepsilon_7)$	0,100	0,100	0,1000
σ_1	0,003	0,008	0,0030	$s(\varepsilon_8)$	0,059	0,002	0,0023
α_2		0,0001	-0,0020	$s(\varepsilon_9)$	0,050	0,013	0,0157
β_2		0,543	0,0070	$s(\varepsilon_{10})$	0,100	0,100	0,1000
σ_2		0,005	0,0030	$s(\varepsilon_{11})$	0,006	0,100	0,0988
α_3			0,0070	$s(\varepsilon_{12})$	0,057	0,100	0,1000
β_3			0,8000	$s(\varepsilon_{13})$	0,100	0,100	0,1000
σ_3			0,0090	$s(\varepsilon_{14})$	0,0003	0,009	0,0104
$s(\varepsilon_1)$	0,017	0,002	0,0031	$s(\varepsilon_{15})$	0,099	0,004	0,00002
$s(\varepsilon_2)$	0,052	0,011	0,0109	$s(\varepsilon_{16})$	0,100	0,006	0,0163
$s(\varepsilon_3)$	0,055	0,014	0,0146	$s(\varepsilon_{17})$	0,100	0,100	0,0984
$s(\varepsilon_4)$	0,014	0,012	0,0139	$s(\varepsilon_{18})$	0,100	0,100	0,1000

 Таблица 3

 Характеристики облигаций для модели Марковица

				Коли	чество пар	аметров мо	одели	
Тикер	ISIN	, ,	Дата 1			2		3
		погашения	μ (%)	σ^2	μ (%)	σ^2	μ (%)	σ^2
RU 25059	RU000A0GMSX0	19.01.2011	2,34	0,0031	0,21	0,0002	0,33	0,0001
RU 25062	RU000A0JPLY0	04.05.2011	4,42	0,0097	1,74	0,0006	1,83	0,0005
RU 26199	RU000A0JP0V7	11.07.2012	3,73	0,0038	0,46	0,0004	0,41	0,0001
RU 26200	RU000A0JPLJ1	17.07.2013	3,86	0,0028	0,00	0,0008	-0,14	0,0004
RU 46017	RU000A0DY8K8	03.08.2016	-0,27	0,0003	-4,80	0,0102	-5,04	0,0092
RU 46018	RU000A0D0G29	24.11.2021	-1,26	0,0038	-6,75	0,0105	-6,83	0,0095
RU 46019	RU000A0JNHJ4	20.03.2019	73,23	0,0315	63,38	0,0312	63,08	0,0284
RU 46020	RU000A0GN9A7	06.02.2036	2,75	0,0026	2,49	0,0035	2,53	0,0032
RU 46021	RU000A0JP2S9	08.08.2018	7,96	0,0120	1,44	0,0016	1,24	0,0006
RU 46022	RU000A0JPLH5	19.07.2023	7,62	0,0126	0,89	0,0023	0,87	0,0013
RU 48001	RU000A0DGJ32	01.10.2018	7,95	0,0122	1,90	0,0121	1,68	0,0106

Однако при увеличении точности и числа итераций численного метода связь между стоимостью облигации и процентной ставкой теряется, параметр \overline{r} оценивается равным нулю, а факторы $X_1(t)$, $X_2(t)$, $X_3(t)$ слишком быстро убывают к нулю. Таким образом, функциональная зависимость стоимости облигации от параметризированной процентной ставки полностью перекрывается зашумленностью измерений. Это можно объяснить достаточно малым количеством доступных ценных бумаг, а также существенным риском дефолта бумаги, не отраженном в модели временной структуры процентных ставок.

Тем не менее для имеющихся облигаций удалось получить характеристики, необходимые для использования средне-дисперсионного анализа. Для получения характеристик был выбран горизонт планирования T = 01.09.2008. Дата составления портфеля $T_0 = 14.02.2008$. Для торгующихся на эту дату бумаг, дата погашения которых больше горизонта планирования, средние значения и дисперсия бумаг приведены в табл. 3.

Ковариационные матрицы исследуемых облигаций представлены в табл. 4, табл. 5 и табл. 6. Для экономии места в каждой из них первые 6 символов кодов

Tруды ИСА РАН. Том 61. 2/2011

 Таблица 4

 Ковариационная матрица исследуемых облигаций в однопараметрической модели

RU000A0	GMSX0	JPLY0	JP0V7	JPLJ1	DY8K8	D0G29	JNHJ4	GN9A7	JP2S9	JPLH5	DGJ32
GMSX0	0,0031	0,00003	0,00004	0,0001	0,0001	0,0001	0,0002	0,0003	0,0001	0,0002	0,0001
JPLY0	0,00003	0,0097	0,0001	0,0001	0,0001	0,0002	0,0002	0,0003	0,0001	0,0002	0,0001
JP0V7	0,00004	0,0001	0,0038	0,0001	0,0001	0,0002	0,0003	0,0004	0,0002	0,0003	0,0002
JPLJ1	0,0001	0,0001	0,0001	0,0028	0,0002	0,0003	0,0004	0,0005	0,0002	0,0003	0,0002
DY8K8	0,0001	0,0001	0,0001	0,0002	0,0003	0,0004	0,0006	0,0008	0,0004	0,0005	0,0004
D0G29	0,0001	0,0002	0,0002	0,0003	0,0004	0,0038	0,0010	0,0013	0,0006	0,0008	0,0006
JNHJ4	0,0002	0,0002	0,0003	0,0004	0,0006	0,0010	0,0315	0,0019	0,0008	0,0012	0,0008
GN9A7	0,0003	0,0003	0,0004	0,0005	0,0008	0,0013	0,0019	0,0026	0,0011	0,0016	0,0011
JP2S9	0,0001	0,0001	0,0002	0,0002	0,0004	0,0006	0,0008	0,0011	0,0120	0,0007	0,0005
JPLH5	0,0002	0,0002	0,0003	0,0003	0,0005	0,0008	0,0012	0,0016	0,0007	0,0126	0,0007
DGJ32	0,0001	0,0001	0,0002	0,0002	0,0004	0,0006	0,0008	0,0011	0,0005	0,0007	0,0122

 Таблица 5

 Ковариационная матрица исследуемых облигаций в двухпараметрической модели

RU000A0	GMSX0	JPLY0	JP0V7	JPLJ1	DY8K8	D0G29	JNHJ4	GN9A7	JP2S9	JPLH5	DGJ32
GMSX0	0,0002	0,0002	0,0003	0,0003	0,0004	0,0006	0,0009	0,0008	0,0005	0,0007	0,0005
JPLY0	0,0002	0,0006	0,0003	0,0004	0,0005	0,0006	0,0010	0,0009	0,0006	0,0007	0,0006
JP0V7	0,0003	0,0003	0,0004	0,0005	0,0007	0,0009	0,0013	0,0012	0,0008	0,0010	0,0008
JPLJ1	0,0003	0,0004	0,0005	0,0008	0,0008	0,0010	0,0016	0,0014	0,0010	0,0012	0,0010
DY8K8	0,0004	0,0005	0,0007	0,0008	0,0102	0,0014	0,0021	0,0019	0,0013	0,0015	0,0013
D0G29	0,0006	0,0006	0,0009	0,0010	0,0014	0,0105	0,0028	0,0024	0,0017	0,0020	0,0017
JNHJ4	0,0009	0,0010	0,0013	0,0016	0,0021	0,0028	0,0312	0,0038	0,0026	0,0031	0,0026
GN9A7	0,0008	0,0009	0,0012	0,0014	0,0019	0,0024	0,0038	0,0035	0,0023	0,0028	0,0023
JP2S9	0,0005	0,0006	0,0008	0,0010	0,0013	0,0017	0,0026	0,0023	0,0016	0,0019	0,0016
JPLH5	0,0007	0,0007	0,0010	0,0012	0,0015	0,0020	0,0031	0,0028	0,0019	0,0023	0,0019
DGJ32	0,0005	0,0006	0,0008	0,0010	0,0013	0,0017	0,0026	0,0023	0,0016	0,0019	0,0121

 Таблица 6

 Ковариационная матрица исследуемых облигаций в трехпараметрической модели

RU000A0	GMSX0	JPLY0	JP0V7	JPLJ1	DY8K8	D0G29	JNHJ4	GN9A7	JP2S9	JPLH5	DGJ32
GMSX0	0,0001	0,0001	0,0001	0,0001	0,0001	0,0002	0,0003	0,0004	0,0002	0,0002	0,0002
JPLY0	0,0001	0,0005	0,0001	0,0001	0,0002	0,0002	0,0003	0,0004	0,0002	0,0003	0,0002
JP0V7	0,0001	0,0001	0,0001	0,0002	0,0002	0,0003	0,0004	0,0006	0,0003	0,0004	0,0003
JPLJ1	0,0001	0,0001	0,0002	0,0004	0,0003	0,0004	0,0005	0,0007	0,0003	0,0004	0,0003
DY8K8	0,0001	0,0002	0,0002	0,0003	0,0092	0,0005	0,0007	0,0010	0,0004	0,0006	0,0004
D0G29	0,0002	0,0002	0,0003	0,0004	0,0005	0,0095	0,0011	0,0015	0,0007	0,0009	0,0007
JNHJ4	0,0003	0,0003	0,0004	0,0005	0,0007	0,0011	0,0284	0,0022	0,0010	0,0013	0,0010
GN9A7	0,0004	0,0004	0,0006	0,0007	0,0010	0,0015	0,0022	0,0032	0,0013	0,0018	0,0013
JP2S9	0,0002	0,0002	0,0003	0,0003	0,0004	0,0007	0,0010	0,0013	0,0006	0,0008	0,0006
JPLH5	0,0002	0,0003	0,0004	0,0004	0,0006	0,0009	0,0013	0,0018	0,0008	0,0013	0,0008
DGJ32	0,0002	0,0002	0,0003	0,0003	0,0004	0,0007	0,0010	0,0013	0,0006	0,0008	0,0106

Методы и модели в экономике Д. К. Мехедов

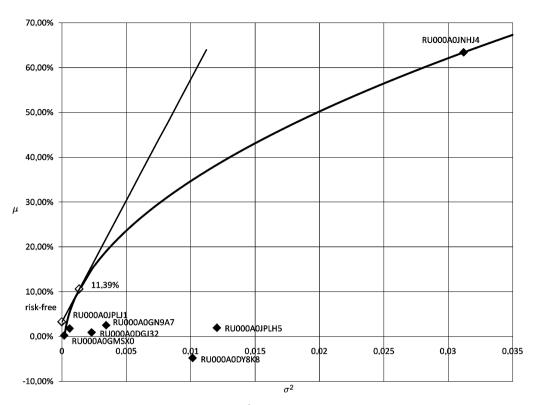


Рис. 3. Расположение бумаг на плоскости (μ , σ^2), эффективная граница, безрисковый актив и рыночный портфель⁵

ISIN (RU000A0), общие для всех облигаций, размещены в верхнем левом углу, а обозначение каждой облигации начинается с 7-го символа ее кода ISIN.

Зная характеристики облигаций — ожидаемую доходность и ковариационную матрицу — можно определить минимальную границу и заняться проблемой составления оптимального портфеля.

Графически на плоскости (μ , σ^2) характеристики облигаций, эффективная граница, безрисковый актив (гипотетическая облигация, построенная с помощью G-кривой), и рыночный портфель для двухпараметрической модели выглядят так, как показано на рис. 3.

На рис. 3 стоит сразу выделить бумагу RU000A0J NHJ4, которая очень далеко отстоит от основной группы облигаций. Эта бумага торгуется с большим дисконтом, поэтому предлагает большую доходность, но и обладает повышенным риском. Также отметим бумагу RU000A0DY8K8, одну из двух, показывающих в историческом периоде отрицательную доходность.

Большой интерес представляет также сопоставление оптимальных портфелей всех трех моделей и сравнение их с существующими облигациями; анализ колебания стоимостей портфелей и облигаций во времени для выбранного горизонта планирования.

Доходности оптимальных портфелей, полученных для среднеквадратической ошибки σ^2 , равной 0,0013 (точки, достаточно близкие от рыночных портфелей для всех трех моделей), представлены в табл. 7.

Из табл. 7 хорошо видно, что для составления оптимальных портфелей двух- и трехпараметрической моделей использовался один и тот же набор бумаг. В данной ситуации это можно объяснить лучшей оценкой параметров моделей с несколькими параметрами по сравнению с однопараметрическим процессом.

На рис. 4 изображено изменение стоимостей некоторых облигаций и полученных оптимальных портфелей во времени. Рисунок 4 показывает, что диверсификация бумаг привела к меньшей волатильности и колебаниям стоимостей портфелей. Как и следовало ожидать, стоимость бумаги RU000A0JNHJ4 в исследуемом периоде колебалась значительно больше, но показала максимальную доходность.

⁵ Во избежание загромождения рисунка представлены не все участвующие в анализе облигации. Эффективная граница составлена без использования численных методов оптимизации, поэтому возможны расхождения изображенной на рисунке и фактической эффективных границ. Рыночный портфель найден с использованием методов оптимизации и является фактическим для данных условий рыночным портфелем.

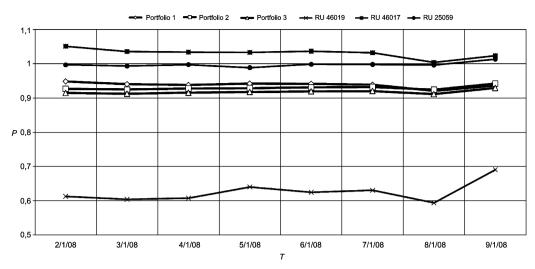


Рис. 4. Движение стоимостей оптимальных портфелей моделей и некоторых облигаций во времени

Таблица 7
Веса облигаций оптимальных портфелей и их доходности для параметрических моделей

		Количе	ество параметров	модели
Тикер	ISIN	1	2	3
		вес облигации	вес облигации	вес облигации
RU 25059	RU000A0GMSX0	0,12	0,55	0,46
RU 25062	RU000A0JPLY0	0,05	0,28	0,34
RU 26199	RU000A0JP0V7	0,11	0,00	0,00
RU 26200	RU000A0JPLJ1	0,15	0,00	0,00
RU 46017	RU000A0DY8K8	0,29	0,00	0,00
RU 46018	RU000A0D0G29	0,00	0,00	0,00
RU 46019	RU000A0JNHJ4	0,16	0,17	0,20
RU 46020	RU000A0GN9A7	0,00	0,00	0,00
RU 46021	RU000A0JP2S9	0,04	0,00	0,00
RU 46022	RU000A0JPLH5	0,03	0,00	0,00
RU 48001	RU000A0DGJ32	0,04	0,00	0,00
Ожидаемая доходность (%)		13,99	11,39	13,69
Среднеквадратич	іная ошибка	0,0013	0,0013	0,0013

Результаты изменения стоимостей и итоговые значения доходностей от владения оптимальными портфелями и облигациями в указанный промежуток времени приведены в табл. 8.

Из табл. 8 видно, что оптимальные портфели для двух- и трехпараметрической моделей принесли доходность, в то время как портфель для однопараметрической модели показал отрицательную доходность, т. е. принес убыток. Заметим, что для данного горизонта планирования доходность, примерно равную доходностям оптимальных портфелей, показала бумага RU000A0GMSX0.

* * *

Данное исследование показало, что существуют модели, которые при определенных условиях позволяют использовать классическую теорию для составления портфеля долговых ценных бумаг. Стоимость облигаций на рынке в наибольшей степени зависит от процентных ставок, поведение которых исследуется уже на протяжении многих лет. Именно благодаря возможности рассматривать временную структуру процентных ставок как некоторый стохастический процесс удается изучить историю движе-

Методы и модели в экономике Л. К. Мехедов

Таблица 8

Стоимости и итоговые доходности от владения оптимальными портфелями
и некоторыми облигациями в течение горизонта планирования

Дата	Портфель 1	Портфель 2	Портфель 3	RU 46019	RU 46017	RU 25059
14.02.2008	0,9487	0,9272	0,9148	0,6124	1,0511	0,9968
15.03.2008	0,9403	0,9247	0,9127	0,6037	1,0357	0,9933
14.04.2008	0,9380	0,9277	0,9154	0,6073	1,0340	0,9975
14.05.2008	0,9423	0,9283	0,9178	0,6403	1,0330	0,9885
13.06.2008	0,9418	0,9312	0,9193	0,6247	1,0367	0,9985
13.07.2008	0,9388	0,9321	0,9204	0,6301	1,0321	0,9982
12.08.2008	0,9213	0,9242	0,9114	0,5937	1,0041	0,9963
11.09.2008	0,9361	0,9423	0,9291	0,6903	1,0238	1,0133
Доходность (%)	-1,321	1,627	1,566	12,722	-2,593	1,647

ния цен облигаций, несмотря на их ограниченное по времени существование. С помощью стохастической теории функционирования финансового рынка можно описать эволюцию цен не только акций, но и облигаций. Оценивая для каждой облигации — участника рынка среднее и дисперсию, можно провести корреляционный анализ и, используя классическую портфельную теорию, построить портфель долговых инструментов, а затем — общий, сложный портфель долговых и долевых ценных бумаг.

Литература

1. *Ширяев А. Н.* Основы стохастической финансовой математики. М.: ФАЗИС, 1998.

- 2. *Musiela M.*, *Rutkowski M.* Martingale Methods in Financial Modeling. School of Mathematics \ The University of New South Wales. Sydney, Australia, 2002.
- 3. *Kaufman G. G.* Measuring risk and return for bonds: a new approach // Journal of Bank Research. 1978. 9. P. 82–90.
- Korn O., Koziol C. Bond Portfolio Optimization: A Risk-Return Approach. Centre for Financial Research, 2003.
- 5. Harvey A. C., Shephard H. Structural Time Series Models // Handbook of Statistics. 1993. V. 11.
- Vasicek O. An equilibrium characterization of the term structure // Journal of Financial Economics. 1977. V. 5. P. 177–188.
- 7. Babbs S. H., Nowman K. B. Kalman Filtering of Generalized Vasicek Term Structure Models // Journal of Financial and Quantitative Analysis. 1999. V. 34. № 1. March.

Мехедов Денис Константинович. Аспирант МФТИ. Окончил МФТИ в 2008 г. Количество печатных работ: 4. Область научных интересов: математические и инструментальные методы экономики. E-mail: zavelsky@isa.ru