Анализ решений типа «бегущий импульс» сложной формы в распределенной экономической среде, описываемой моделью ФитцХью—Нагумо

А. Г. МАКСИМОВ

Аннотация. Рассмотрена распределенная среда, моделируемая системой уравнений ФитцХью—Нагумо (ФХН), описывающая динамику объектов различной природы — физической, химической, биологической, социальной, экономической. Приведено аналитическое доказательство существования решений в форме импульсов сложного профиля. Такие решения могут быть использованы при описании широкого спектра явлений — от распространения информации, формирования шоков (например, колебания земной коры или цен на финансовые активы и т. д.) до динамики социально-экономических процессов.

Ключевые слова: распределенная экономическая среда, бегущий импульс сложного хаотического профиля, система ФХН, экономические шоки, гомоклиническая траектория.

Введение

Объяснение (качественное и количественное) динамики систем, характеристик процессов, ими порождаемых, может базироваться на результатах исследования математических моделей этих систем. Построение моделей, адекватно описывающих поведение (сложной) системы во всех режимах ее функционирования, основанных на выявлении и учете всех взаимосвязей, определении их количественных характеристик, а также собственно анализ таких систем — задача крайне сложная и далеко не всегда выполнимая. Вместе с тем набор базовых моделей, используемых для описания тех или иных классов явлений, как правило, небольшой. Модель ФитцХью—Нагумо (ФХН) [1, 2] (распределенная, принадлежащая классу систем «реакция—диффузия» и ее «сосредоточенная» версия) — из их числа. Созданная первоначально для анализа динамики аксона кальмара и широко распространенная для моделирования активных (возбудимых) нейроподобных сред и решеточных структур (см., например, [3, 4]) ФХН используется и для анализа экономических процессов (см., например, [5–7]).

Модель ФХН, в зависимости от значений параметров и вида нелинейности, демонстрирует разнообразную, сложную, а иногда и хаотическую динамику. Ниже аналитически докажем существование в модели ФХН решений в виде импульсов сложной формы. Рассмотрим модель ФХН:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial r^2} + f(u) - v,$$

$$\frac{\partial v}{\partial t} = b(u - lv),$$
 (1)

(f(u) = -u(u-n)(u-1), n, b, l —параметры) без ограничения на параметры (случай l = 0 см, например, [8], $0 < b \ll 1$ — [9]). Будем использовать некоторые подходы из [8] и следовать [10]. Решениям типа «бегущий импульс», «бегущий фронт», «соединяющим» пространственно-однородные состояния системы (1), отвечают двояко-асимптотические к состояниям равновесия траектории соответствующей автомодельной системы (2):

$$\dot{x} = y$$
, $\dot{y} = (c - bl/c)y - g(x) + z$, $c\dot{z} = bF(x)$. (2)

Здесь $x \equiv u$, точкой обозначено дифференцирование по «бегущей» (со скоростью c) координате $\xi = r + ct$, введена новая переменная

$$z \equiv v + bl/c - blx$$
,

нелинейные функции

$$g(x) = f(x) - blx, F(x) = x - lf(x).$$

Будем рассматривать систему (2) в фазовом пространстве $G = R^3$ в пространстве параметров

30

$$d: c \ge 0, b \ge 0, 0 < l < l^* \equiv 4(1-n)^{-2},$$

 $0 < n < 1/2\}.$

В d система (2) имеет одно состояние равновесия: $O_1(x=0,y=0,z=0)$, причем — седлового типа с одномерным неустойчивым (w^u) и двумерным устойчивым (w^s) многообразиями. Если сепаратриса w^u принадлежит двумерному многообразию w^s , т. е. образует петлю сепаратрисы (двояко-асимптотическую траекторию) системы (2), то в модели (1) существует решение типа «бегущий импульс», причем форма импульса определяется формой w^u в G.

Введем вспомогательную систему A_c , систему (3):

$$\dot{x} = y$$
, $\dot{y} = (c - bl/c)y - g(x) + z_0$, 0.
 $z_0 = \text{const} \ge (3)$

Пусть $b < b_m \equiv (1-n^2)(4l)^{-1}.$ Тогда g(x) имеет два экстремума ($g_{max}>0$ и g_{\min}). При

$$z_0 \in \left] g_{\min}^{} , g_{max}^{} \right[$$

система A_c имеет три состояния равновесия

$$O_i^c(x_i^c, 0)$$
, $i = 1, 2, 3$, где $x_i^c(x_1^c < x_2^c < x_3^c)$

— корни уравнения

$$z_0 - g(x) = 0, (4)$$

 O_1^c и O_3^c — седла, O_2^c — фокус или узел, устойчивый (при $c > \sqrt{bl}$), неустойчивый (при $c < \sqrt{bl}$) или центр (при $c = \sqrt{bl}$). В области параметров системы A_c построим (аналитически) бифуркационные множества $c = c^+(z_0, b, l, n)$ и $c = c^-(z_0, b, l, n)$, отвечающие существованию в фазовом пространстве системы A_c связки сепаратрис $O_1^c \to O_3^c$ и $O_3^c \to O_1^c$ соответственно. Введем функцию

$$a(p,q,k,\xi) = (p + qe^{-k\xi})/(1 + e^{-k\xi}).$$

(Здесь p, q, k — некоторые функции, зависящие от параметров системы (3)). Несложно видеть, что

$$a(p,q,k,\xi\to-\infty)\to q$$
 $a(p,q,k,\xi\to\infty)\to p,$ если $k>0;$ $a(p,q,k,\xi\to-\infty)\to p$ $a(p,q,k,\xi\to\infty)\to q,$ если $k<0.$ (5

Если удастся подобрать (p, q, k), чтобы подстановка $x(\xi) = a(p, q, k, \xi)$ обращала систему A_c при любом ξ в тождество, то такое $x(\xi)$ — решение A_c . А если при этом удастся удовлетворить условиям (6):

$$q = x_1^c, p = x_3^c,$$
 (6)

то решение

$$\begin{cases} x(\xi) = a(p, q, k, \xi) = \frac{x_3^c + x_1^c e^{-k\xi}}{1 + e^{-k\xi}} \\ y(\xi) = \dot{x}(\xi) = \frac{ke^{-k\xi}(x_3^c - x_1^c e^{-k\xi})}{(1 + e^{-k\xi})^2} \end{cases}, \quad \xi \in]-\infty, +\infty[$$

в фазовом пространстве системы A_c и будет соответствовать связке сепаратрис $O_1^c \to O_3^c$ (при k > 0) и $O_3^c \to O_1^c$ (при k < 0)¹. Подстановка (7) в (3) дает уравнение, которое обращается в тождество для $\xi \in]-\infty, +\infty[$ при одновременном выполнении четырех условий:

$$p^3 - (1+n)p^2 + (n+bl)p + z_0 = 0$$
, (8.1)

$$q^3 - (1+n)q^2 + (n+bl)q + z_0 = 0,$$
 (8.2)

$$k = \pm \sqrt{((1+n)(p+q) - n - bl - 3pq)/2},$$
 (8.3)

$$2\left(c - \frac{bl}{c}\right)k(p - q) - (1 + n)(p^2 + q^2 + 4pq) + 3(pq + n + bl)(p + q) + 6z_0 = 0.$$
 (8.4)

Условия (8.1)–(8.2) — не что иное, как уравнение (4), и, следовательно, (6) выполняется автоматически. Таким образом, условия (8.1–8.4) в области параметров системы A_c определяют бифуркационные множества $c=c^+(z_0,b,l,n)$ и $c=c^-(z_0,b,l,n)$, (см. рис. 1 a), отвечающие существованию в фазовом пространстве системы A_c связке сепаратрис $O_1^c \to O_3^c$ и $O_3^c \to O_1^c$ соответственно.

Рассмотрим некоторые свойства системы (2).

Утверждение 1

Сепаратриса w_2^u (сепаратриса, принадлежащая w^u , выходящая в область x < 0) образовать гомоклиническую траекторию не может.

Рассмотрим область фазового пространства

$$\widehat{G}^3$$
: $\{x < 0, y < 0, z < 0\}$.

Сепаратриса w_2^u входит в \widehat{G}^3 через $O^1(0,0,0)$. Всюду в \widehat{G}^3 для траекторий системы (2) выполняются неравенства

$$\dot{x} < 0$$
, $\dot{y} < 0$, $c\dot{z} < 0$,

и, следовательно, сепаратриса w_2^u уходит на бесконечность, не выходя из \widehat{G}^3 .

Утверждение 2

Сепаратриса w_1^u (сепаратриса, принадлежащая w^u , выходящая в область x > 0) образовать гомоклиническую траекторию при $b > (1-n)^2(4l)^{-1}$ не может.

¹ Случай k=0 соответствует ситуации, когда $a(p,q,k,\xi)=(p+q)/2$, и подстановка в (7) не дает решения, за исключением вырожденного случая $x_2^c=(x_1^c+x_3^c)/2$.

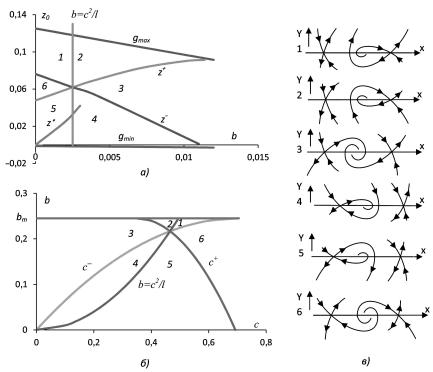


Рис. 1. Сечение бифуркационного множества и соответствующие фазовые портреты: а) системы A_c (l,n,c= const); б) системы A_c^0 (l,n= const); в) 1, 2, 3, 4, 5, 6 — варианты топологии фазового пространства систем A_c и A_c^0 в соответствующих областях параметров рис. 1 а и б

Рассмотрим область фазового пространства

$$\widehat{G}^1$$
: { $x > 0, y > 0, z > 0$ }.

Сепаратриса w_1^u входит в \widehat{G}^1 через $O^1(0,0,0)$. Всюду в \widehat{G}^1 для траекторий системы (2) выполняются неравенства

$$\dot{x} > 0$$
, $\dot{y} > 0$, $c\dot{z} > 0$,

и, следовательно, сепаратриса w_1^u уходит на бесконечность, не выходя из \widehat{G}^1 .

Утверждение 3

Cenapampuca w_1^u npu

$$d^1$$
: { $b < (1-n)^2/(4l), c > c^+(z_0, b, l, n)$ }

не может образовать гомоклиническую траекторию.

Рассмотрим взаимную ориентацию в G векторных полей системы (2) и системы A_c^0 (системы A_c при $z_0=0)^2$. Для этого введем R_1 :

$$R_1 \equiv \frac{dy}{dx}\Big|_{\text{CHCTEMA}(2)} - \frac{dy}{dx}\Big|_{\text{CHCTEMA}(A_c^0)} = \frac{z}{y}.$$

Выделим в G область G^2 : $\{x \ge 0, y \ge y^*(x), z \ge 0\}$. Здесь $y^*(x)$ – сепаратриса \widetilde{w}_1^u состояния равновесия $\widetilde{O}_1(0,0)$ системы A_c^0 , выходящая в область x > 0, y > 0. В d^1 сепаратриса \widetilde{w}_1^u , «выходя» из точки \widetilde{O}_1 системы A_c^0 , уходит на бесконечность в 1-м квадранте, не пересекая прямую y = 0. Рассмотрим ориентацию векторного поля системы (2) на границе G^2 : δG^2 , вне O_1 :

$$\dot{z}|_{z=0} > 0$$
; $\dot{x}|_{x=0} > 0$; $R_1|_{y=y^*(x)} > 0$.

Следовательно, траектории системы (2) пересекают δG^2 трансверсально вовнутрь G^2 . Сепаратриса w_1^u (системы (2)) локально входит в G^2 «через» O_1 . Выйти из G^2 она могла бы только в O_1 с координатой x=0. Однако в G^2 координата y>0 (а $y=\dot{x}$), сле-

ратрис системы A_c^0 , полученные из решения (8.1)–(8.4) для случая $z_0 \equiv 0$:

$$\begin{split} c^+|_{z_0=0} &= \frac{\tau}{2} + \sqrt{\frac{r^2}{4} + bl} \ ; \ c^-|_{z_0=0} = \frac{\tau}{2} - \sqrt{\frac{r^2}{4} + bl} \ , \\ \text{где } T &= \left[1 - 4n + n^2 - 6bl + (1+n)\sqrt{(1-n)^2 - 4bl}\right] / \\ \left[2\sqrt{1 + n^2 - 2bl + (1+n)\sqrt{(1-n)^2 - 4bl}}\right]. \end{split}$$

² На рис. 1 δ показан вид элементов бифуркационного множества и характерные фазовые портреты системы A_c^0 . На плоскости параметров $(b,c),(l,n={\rm const})$ приведены линии $c^+(b),c^-(b)$, отвечающие существованию связок сепа-

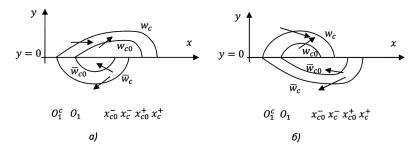


Рис. 2. Сечения плоскостью $z={\rm const}$ «русел», образованных сепаратрисами состояний равновесия O_1^c и O_1 систем A_c и A_c^0 (соответственно), которые в некоторой части G «мажорируют» соответствующие многообразия состояния равновесия O_1 системы (2)

довательно координата x сепаратрисы монотонно растет с ростом ξ от x=0 и сепаратриса, оставаясь в G^2 , уходит на бесконечность и образовать гомоклиническую траекторию не может. Таким образом, гомоклиническую траекторию может образовать сепаратриса w_1^u в области параметров

$$\hat{d} = d \cap \{b < (1 - n)^2 (4l)^{-1}\} \cap \{c < c^+(z_0 = 0, b, l, n)\}.$$

На рис. 1 а показан вид бифуркационного множества и характерные фазовые портреты системы A_c . На плоскости параметров (b, z_0) , (c, l, n = const)приведены линии $z^+(b)$, $z^-(b)$, отвечающие существованию связки сепаратрис $O_1^c \rightarrow O_3^c$ и $O_3^c \rightarrow O_1^c$ (соответственно) системы A_c , полученные из решения (8.1)–(8.4) для фиксированных *c*, *l*, *n*. Построим в G четыре цилиндрические поверхности w_c , w_{c0} , \overline{w}_c , \overline{w}_{c0} с образующими, параллельными оси z (рис. 2): поверхность $w_c(w_{c0})$ образована частью неустойчивой сепаратрисы, выходящей в область y > 0 состояния равновесия O_1^c (O_1) системы A_c (A_c^0) до первого (после O_1^c (O_1)) пересечения с плоскостью y = 0 по координате $x = x_c^+ (x = x_{c0}^+)$; поверхность $\overline{w}_{c}(\overline{w}_{c0})$ образована частью устойчивой сепаратрисы, приходящей из области y < 0 состояния равновесия O_1^c (O_1) системы A_c (A_c^0) от последнего (перед O_1^c (O_1)) пересечения с плоскостью y = 0 по координате $x = x_c^- (x = x_{c0}^-)$. В качестве z_0 для A_c выберем $z^+(b)$ (при $b < c^2/l$) и $z^-(b)$ (при $b \ge c^2/l$) и систему A_c будем обозначать A_c^+ и A_c^- соответственно. (Мы получили «русла», которые, как будет показано далее, в некоторой части G «мажорируют» соответствующие многообразия состояния равновесия O_1 системы (2).)

Обозначим через точку $E^*(x^* > 0, 0, z^*)$ «первую» точку пересечения w_1^u (сепаратриса состояния равновесия O_1 системы (2), выходящая в область x > 0) с плоскостью y = 0 (если такая существует.

Заметим, что в этом случае z^* — максимальное значение координаты w_1^u на участке от O_1 до первого пересечения с плоскостью y=0). Сформулируем следующие условия 1, 2.

Условие 1

В области параметров d при (c, l, n = const) существуют такие b_1 и b_2 $(0 < b_1 < c^2/l < < b_2)$, что z —координата точки E^* : $z^*(b)$ удовлетворяет следующим условиям:

$$0 < z^*(b) < z^+(b)$$
 при $b_1 \le b < c^2/l$, $0 < z^*(b) < z^-(b)$ при $c^2/l \le b \le b_2$. (9)

Условие 2

В области параметров d (c, l, n = const) существуют такие b_1 и b_2 $(0 < b_1 < c^2/l < < b_2)$, что для систем A_c^-, A_c^+ и A_c^0

$$x_c^- \le x_{c0}^+$$
, при $b = b_1$, $x_c^+ \le x_{c0}^-$, при $b = b_2$. (10)

Докажем следующее утверждение.

Утверждение 4

Если в области параметров d при (c,l,n= = const) существует интервал $[b_1,b_2]$ такой, что на всем этом интервале справедливо Условие 1, а на его границах справедливо Условие 2, то существует хотя бы одно значение $b^* \in]b_1,b_2[$, которому соответствует двоякоасимптотическая к 0_1 траектория системы (2) в G.

Оценим сначала координаты точки E^* . Для этого введем в G область G^+ , ограниченную поверхностями δG_i^+ , i=1,...,6 (все параметры системы (2), кроме b, считаем фиксированными)

$$\begin{split} \delta G_1^+ \colon & \{x=0, 0 \leq y < y - \text{координаты} \\ & w_c \,|_{x=0}, 0 < z < \min{(z^-(b), z^+(b))}\}, \\ & \delta G_2^+ \colon \{x>0, y>0, z=0\}, \\ \delta G_3^+ \colon & \{x>0, y>0, z=\min{(z^-(b), z^+(b))}\}, \\ & \delta G_4^+ \colon & \{x_{c0}^+ < x < x_c^+, \\ & y=0, 0 < z < \min{(z^-(b), z^+(b))}\}, \\ \delta G_5^+ \colon & \{x>0, y=y-\text{координате } w_c, \\ & 0 < z < \min{(z^-(b), z^+(b))}\}, \\ \delta G_6^+ \colon & \{x>0, y=y-\text{координате } w_{c0}, \\ & 0 < z < \min{(z^-(b), z^+(b))}\}. \end{split}$$

Сепаратриса w_1^u локально в окрестности $O_1(0,0,0)$ входит в G^+ . (Это следует, например, из того, что она «выходит» из координаты x=0 в область x>0, следовательно

$$y(=\dot{x}) > 0$$
 и $z > 0$ (т. к. $\dot{z} = F(x)|_{x>0} > 0$),

и ориентация векторного поля системы (2) на δG_6^+ такова, что $R_2|_{x>0,y>0}>0$, про R_2- ниже.)

Покажем, что при выполнении Условия 1 и $b \in [b_1, b_2]$ сепаратриса w_1^u выйти из G^+ может только через границу по плоскости y = 0 через δG_4^+ . Действительно,

- 1) траектории системы (2) пересекают δG_1^+ вне O_1 вовнутрь G^+ , согласно первому уравнению системы (2) и, следовательно, сепаратриса w_1^u покинуть G^+ через δG_1^+ не может;
- 2) сепаратриса w_1^u покинуть G^+ через δG_2^+ не может, т. к., согласно третьему уравнению системы (2), z-координата сепаратрисы в G^+ монотонно увеличивается от нуля;
- 3) сепаратриса w_1^u не пересекает поверхность δG_3^+ согласно Условию 1;
- 4) рассмотрим наклон векторного поля системы (2) на δG_5^+ и δG_6^+ . На δG_6^+ ориентация векторного поля системы (2) такова, что $R_1>0$, следовательно, траектории системы (2) пересекают δG_6^+ вовнутрь G^+ и поэтому сепаратриса w_1^u покинуть G^+ через δG_6^+ не может;
- 5) рассмотрим наклон векторного поля системы (2) на δG_5^+ .

Для этого введем

$$\begin{split} R_2 &= \\ &= \left[\frac{dy}{dx} \right|_{\text{система (2)}} - \frac{dy}{dx} \right|_{\text{система } A_c^+} = \frac{z - z^+(b)}{y} \text{ при } b < \frac{c^2}{l}, \\ \left. \frac{dy}{dx} \right|_{\text{система (2)}} - \frac{dy}{dx} \right|_{\text{система } A_c^-} = \frac{z - z^-(b)}{y} \text{ при } b \geq \frac{c^2}{l}. \end{split}$$

При выполнении Условия 1 $R_2|_{\delta G_5^+} < 0$. Следовательно, все траектории системы (2) пересекают δG_5^+

вовнутрь G^+ и поэтому сепаратриса w_1^u покинуть G^+ через δG_5^+ не может.

Поскольку в G^+ нет притягивающих множеств (это следует хотя бы из монотонности изменения z-координаты траекторий системы (2) в G^+ : $\dot{z}>0$), и сепаратриса w_1^u покидает G^+ , то произойти это может (при выполнении Условия 1) только через δG_4^+ . В силу этого для координат точки $E^*(x^*,0,z^*)\in w_1^u$ точки пересечения сепаратрисы w_1^u с плоскостью y=0, справедливо следующее:

$$x_{c0}^+ < x^* < x_c^+,$$

 $0 < z^* < \min(z^-(b), z^+(b)).$

Введем в G область G^- , ограниченную поверхностями δG_i^- , i=1,...,5:

$$\delta G_1^-:\{x>x_1^c,y<0,z=0\},$$

$$\delta G_2^-:\{x>x_1^c,y<0,z<\min(z^-(b),z^+(b))\},$$

$$\delta G_3^-:\{0\leq x< x_{c0}^-,y=y-\text{координате }\overline{w}_{c0}\,,$$

$$z=\min(z^-(b),z^+(b))\},$$

$$\delta G_4^-:\{x_1^c\leq x< x_c^-,y=y-\text{координате }\overline{w}_c\,,$$

$$z=\min(z^-(b),z^+(b))\},$$

$$\delta G_5^-:\{x_{c0}^-\leq x\leq x_c^-,y=0,.$$

$$0< z<\min(z^-(b),z^+(b))\}$$

Рассмотрим ориентацию векторного поля системы (2) на δG_3^- и δG_4^- :

$$\begin{cases} R_1|_{\delta G_3^-} < 0, \\ R_2|_{\delta G_4^-} > 0. \end{cases}$$

Следовательно, траектории системы (2) пересекают δG_3^- и δG_4^- из G^- наружу (см. рис. 2 a) Поэтому, часть w_1^s , приходящая в $O_1(0,0,0)$ из области y < 0, в интервале по координате

$$z \in (0, min(z^{-}(b), z^{+}(b)))$$

мажорируется поверхностями δG_3^- и δG_4^- и выходит из G^- через поверхность δG_5^- . Таким образом, w_1^s пересекает полосу $\delta G_0: \{y=0,0< z< \min{(z^-(b),\,z^+(b)\}}$ в диапазоне координат $x\in]x_{c0}^-,x_c^-[$.

Итак, при выполнении Условия 1 и Условия 2:

- 1) сепаратриса w_1^u пересекает полосу δG_0 в точке $E^*(x^*>0,0,z^*)$, при чем $x^*\in]x_{c0}^+,x_c^+[;$
- 2) w_1^s пересекает полосу δG_0 по линии $h(x_h, y = 0, z_h)$, «соединяя» прямые $\{y = 0, z = 0\}$ и $\{y = 0, z = \min(z^-(b), z^+(b))\}$ с x-координатой $h: x_h \in]x_{c0}^-, x_c^-[$;
- 3) при $b=b_1$ точка E^* на полосе δG_0 находится справа от линии h, а при $b=b_2$ слева;
- 4) на всем интервале $b \in [b_1, b_2]$ на полосе δG_0 существуют E^* и линия h.

Следовательно, при непрерывном изменении b от b_1 до b_2 (при выполнении условий 1, 2) обязательно найдется хотя бы одно значение $b^* \in [b_1, b_2]$, при котором E^* «ляжет» на h, т. е. при этом наборе параметров в фазовом пространстве G системы (2) образуется гомоклиническая траектория состояния равновесия $O_1(0,0,0)$. Утверждение 4 доказано.

Осталось выделить область параметров системы (2), в которой выполняются Условие 1 и Условие 2. К сожалению, аналитически этого сделать не удалось, поэтому поиск осуществлялся при помощи численного моделирования. На рис. 1 a для c=0.1, l=4, n=0.1 на плоскости (b,z) приведены зависимости:

- а) $z^{-}(b)$, $z^{+}(b)$ получены из уравнений (8.1–8.4).
- б) $z^*(b)$ z-координата точки E^* моделирование системы (2).

Из рис. 1 a видно, что Условие 1 выполняется на интервале, например, $b \in]0$, 0.0032]. Выберем $b_1 = 10^{-8}$, $b_2 = 0.0032$. Численное исследование сепаратрис двумерных систем $A_c^{+,-}$ и A_c^0 подтверждают справедливость Условия 2 для b_1 и b_2 . Таким образом, для конкретного набора значений $\{c,l,n\}$ доказано существование гомоклинической траектории в системе (2).

Замечание

Варьируя набор $\{c,l,n\}$, можно получить пространство параметров, для которых таким образом можно доказать существование гомоклинической траектории. Если есть необходимость «увеличить» эту область параметров, можно использовать более «мягкий вариант» условий 1, 2, выбрав в качестве системы сравнения $A_c^{+,-}$ систему A_c с z_0 , удовлетворяющим следующему условию:

$$\begin{split} z_o &= (1+\mathrm{e}) \tilde{z}^* < \min{(z^-(b), z^+(b))}, \\ \text{где } \tilde{z}^* &= \max{(z^*(b_1 < b < b_2))}, 0 < \mathrm{e} \ll 1. \end{split}$$

Легко показать, что с уменьшением z_o уменьшаются значения x_c^+, x_c^- . Что касается самого доказательства Утверждения 4, то, при «мягком» варианте Условия 2, в нем (доказательстве) достаточно всюду (на поверхностях, в выражениях) заменить величину $\min(z^-(b), z^+(b))$ на $z_o = (1+e)\tilde{z}^*$.

Утверждения 1–3 позволяют существенно сократить область параметров для поиска бифуркационного множества $\widetilde{\Pi}$, соответствующего существованию в G двоякоасимптотической траектории состояния равновесия $O_1(0,0,0)^3$. Численное построение

 $\widetilde{\Pi}$ проводилось при помощи алгоритма, описанного в [10, 11]. Этот алгоритм основан на использовании конических поверхностей V(x,y,z)=0 в G, пересекаемых траекториями системы (2) трансверсально в одну сторону (поверхностей Ляпунова).

На рис. З приведено сечение Π множества $\widetilde{\Pi}$ плоскостями l= const, n= const. Множество Π примыкает к оси b=0 в точках $B^1(0,0)$ и $B^2(0,c_{max})$. Гомоклиническая траектория в окрестности B^1 «отрождается» от петли сепаратрисы двумерной консервативной системы на плоскости z=0, соответствующей собственно B^1 . Гомоклиническая траектория в B^2 устроена более сложно. Она «склеена» из 4-х интегральных траекторий. Возможно два случая для b=0, выбранных n,l и полученного c_{max} :

- 1) существует $z_1^0 = z^-(b=0, l, c=c_m) < g_{max}(b=0, l, n)$, соответствующее связке сепаратрис $O_3^c \to O_1^c$ системы A_c ;
- 2) такого z_1^0 не существует.

Для случая 1) гомоклиническая траектория составлена из следующих частей:

- а) расположенная на плоскости z=0 сепаратрисная связка системы $A_c^0\colon O_1^c\to O_3^{c\,4};$
- б) линия r_1

$${z = g(x), x \in [x_c^-, x_{c0}^- \equiv 1], y = 0, z \in [0, z_1^0]};$$

- в) расположенная на плоскости $z=z_1^0$ сепаратрисная связка системы $A_c\colon O_3^c \to O_1^{c\,5}$;
- г) линия r_2 : $\{z=g(x), x\in [\bar{x}_1,0], y=0, z\in [0,z_1^0]\}$. Для случая 2) z_1^0 везде заменяется на $g_{\max}(b=0,l,n)$, а на плоскости $z=g_{\max}(b=0,l,n)$ имеется приходящая из узловой области седлоузла O_3^c сепаратрису седла O_1^c . Таким образом, получаем склейку, состоящую из двух сепаратрисных связок на плоскостях z=0 и $z=z_1^0$ (случай 1) или сепаратрисной связки на z=0 и сепаратрисы седла O_1^c на плоскости $z=g_{\max}(b=0,l,n)$ (случай 2) и двух линий r_1 и r_2 , составленных из седловых состояний равновесия двумерных систем на плоскостях z= const. В окрестности B^2 гомоклиническая траектория отрождается от этой «четырехкусочной склейки» и по форме в фазовом пространстве G и по

 $^{^3}$ Напомним, что, согласно Утверждениям 2 и 3, $\widetilde{\Pi}$ может быть расположена лишь в той части d, где $b < b_{\rm max} \equiv$

 $[\]equiv (1-n)^2(4l)^{-1}, \, c < c^+(z_0=0,b,n,l).$ Значение $c^+(\cdot)$ можно получить из решения (8.1)–(8.4) для случая $z_0\equiv 0$ (см. [2]). В качестве оценки $c^+(\cdot)$ можно воспользоваться величиной $c_{\max}\equiv \frac{1-2n}{\sqrt{2}}=\max (c^+(z_0=0,b,n,l))$ в области d.

⁴ При b = 0 O_3^c имеет координаты (1,0,0).

 $^{^{5}}$ Координаты точек O_{3}^{c} ($ar{x}_{3,}$ 0, z_{1}^{0}), O_{1}^{c} ($ar{x}_{1,}$ 0, z_{1}^{0}), где $ar{x}_{i}$ (i=1,2,3) — корни уравнения. $f(ar{x}_{i})=z_{1}^{0}, ar{x}_{1}<0<ar{x}_{2}<ar{x}_{3}$

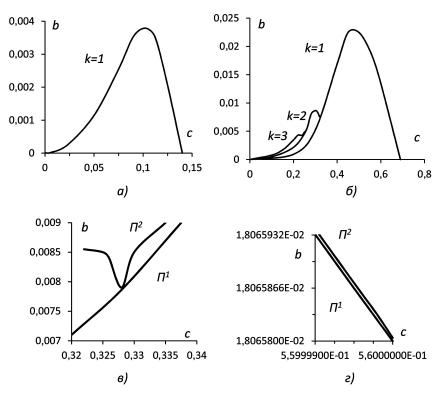


Рис. 3. Элементы бифуркационного множества, соответствующие петле сепаратрисы системы (2) для разного набора параметров в случае a и b-a. Графики b и a — увеличенные в окрестностях точек b и b «области» рисунка b

характеру движения изображающей точки эта траектория близка к ней.

Множество П «бывает» двух типов. В первом случае — (рис. 3 а) — это гладкая кривая, примыкающая, как уже указывалось, к оси b=0 в точках $B^1(0,0)$ и $B^2(0,c_{\max})$. Для $b < b_{\max}(l,n)$ имеется два значения параметра $c\colon c_s$ и c_q ($0 < c_s < c_q \le c^+(z_0=0,b,n,l)$) — «медленный» и «быстрый» импульсы в системе (1). Такой «простой» вид кривая П имеет в случае, если она вся лежит в области параметров системы (2), когда $O_1(0,0,0)$ является седлом

$$\begin{array}{l} (\Theta \equiv -(c-blc^{-1})^2(n+bl)^2 - 4(n+bl)^3 + \\ +4(c-blc^{-1})^3bc^{-1}(1+nl) + 18(c-blc^{-1})(n+blbc-11+nl-271+nlb3c-3<0). \end{array}$$

Форма решений здесь тоже проста — от солитонообразной (с одним «горбом» в окрестности B^1 при движении вдоль П она плавно меняется до релаксационной в окрестности B^2 .

Во втором случае (рис. 3 б, n=0.01, l=3) также имеется гладкая кривая $B^1B^2-\Pi^1$, точкам которой соответствуют «одногорбые» импульсы (k=1). Но на ней появляются точки B^3 и B^4 , разбивающие Π на три части. Участки кривой B^1B^3 и B^4B^2 лежат в области параметров, в которой $O_1(0,0,0)$ — седло

(0 < 0). Участок $B^3 B^4$ — назовем его Π_c^1 — проходит в области параметров, в которой $O_1(0,0,0)$ седло-фокус (0 > 0) с положительной седловой величиной ($\Sigma = M_1 + \text{Re } M_{2,3} > 0$). (Здесь μ_1 — действительный, $\mu_{2,3}$ — комплексно-сопряженные корни характеристического уравнения системы (2) в $O_1(0,0,0)$. Из [12] следует, что в этом случае в окрестности Π^1 существует счетное множество бифуркационных кривых, соответствующих «петлям» сепаратрисы w_u^1 (гомоклинической траектории) возрастающей обходности (такая «петля» имеет не один, а несколько участков прохождения своей расширенной окрестности). В частности, к точкам B^3 и B^4 должен примыкать (сверху от Π^1) пучок кривых $\left\{\Pi_{j}^{2}\right\}_{j=1}^{\infty}$. Такая кривая соответствует двугорбому импульсу. В свою очередь в окрестности Π^2 имеется множество кривых Π^3 , Π^4 и т. д. Таким образом, на плоскости (c,b) существуют элементы множества П, которым соответствуют сложные импульсы с любым числом «горбов». Такой импульс имеет некоторое число «больших» максимумов (их количество равно обходности соответствующей гомоклинической траектории), участки между которыми заполнены как монотонными линиями, так и «малыми» осцилляциями (импульсы, имеющие такую форму, принято называть стохастическими или импульсами хаотического профиля). Некоторые элементы множества Π^k (k=2,3) приведены на рис. 3 δ , ϵ , ϵ). На форму импульсов Π^i накладывает отпечаток близость соседних кривых Π^j .

На падающем участке Π^1 в окрестности точки B^4 также существуют элементы множества Π^k с k = 2, 3, ... Однако построить эти «элементы» численно даже с использованием приведенного в [11] алгоритма не удалось. Связано это в первую очередь с высокой скоростью разбегания фазовых траекторий в некоторых областях фазового пространства G. Нисходящий участок Π^1 «втыкается» в точку B^2 , в которой, как указывалось ранее, петля сепаратрисы образована склейкой из 4 участков, два из которых: r_1 и r₂ «составлены» из седловых состояний равновесия O_3^c , O_1^c систем A_c . При b>0 в окрестности точки B^2 участки гомоклинической траектории, соответствующие $r_{1.2}$ (назовем их $\tilde{r}_{1.2}$) «помнят» седловой характер $r_{1,2}$. Вместе с этим скорость движения по $\tilde{r}_{1,2}$ пропорциональна в и может быть очень мала. Поэтому фазовые траектории в окрестности $\tilde{r}_{1,2}$ обладают высокой чувствительностью к параметрам системы. Используемый алгоритм построения бифуркационного множества позволяет определять параметры, соответствующие гомоклиническим траекториям, не доводя саму траекторию в малую окрестность O_1^c и элементы падающего участка Π^1 строит легко. Однако для построения -обходной петли в G участки в окрестности $\tilde{r}_{1,2}$ необходимо пройти k раз. Конечное количество значащих цифр числа в компьютере и накапливаемая ошибка интегрирования не позволяют решить проблему «лобовым» моделированием. Хотя понятно, что счетное множество кривых Π^k с k > 1очень сильно здесь прижаты к Π^1 (см. рис. 3 ϵ).

Заключение

Для одной из базовых моделей типа «реакция диффузия», описывающей динамику объектов различной природы (физической, химической, биологической, социальной, экономической), для системы уравнений ФитцХью—Нагумо приведено аналитическое доказательство существования решений в форме импульсов сложного (хаотического) профиля. Аналитически выделены области параметров модели, где существуют такие решения и численно построены элементы, точкам которых эти решения соответствуют. Решения в форме импульсов сложного профиля могут описывать широкий спектр явлений — от распространения информации, формирования шоков (например, землетрясения или цен на финансовые активы и т. д.) до динамики социально-экономических процессов.

Автор благодарен профессору В. И. Некоркину за полезные обсуждения.

Литература

- FitzHugh R. Mathematical models of excitation and propagation in nerve. Biological Engineering // Schwan H. P. (ed.) New York, McGraw-Hill, 1969, pp. 1–85.
- Nagumo J., Arimoto S., Yoshizawa S. An Active Pulse Transmission Line Simulating Axon. Proc. IRE. V. 50. 1962, pp. 2061–2070.
- Некоркин В. И. Нелинейные колебания и волны в нейродинамике // УФН. 2008. Т. 178. № 3. С. 313–323.
- Nekorkin V. I., Dmitrichev A. S., Bilbault J. M., Binczak S. Polymorphic and regular localized activity structures in a two-dimensional two-component reaction-diffusion lattice with complex threshold excitation // Physica D. 2010. Vol. 239. No 12. P. 972–987.
- Lucheroni C. Stochastic models of resonating markets // Journal of Economic Interaction and Coordination, Springer. V. 5(1), 2010, pp. 77–88.
- Bracken A. J., Tuckwell H. C. Simple Mathematical Models for Urban Growth, Proc. Mathematical and Physical Sciences, The Royal Society Publishing. V. 438, No 1902, 1992, pp. 171–181.
- Мазуров М. Е. О конкурентной динамике в распределенных экономических системах // Экономика, статистика и информатика. 2011. № 2. С. 191–195.
- Некоркин В. И. Бегущие импульсы в двухкомпонентной активной среде с диффузией // Изв. вузов. Радиофизика. 1988. Т. 31. № 1. С. 41–52.
- Hastings S. P. On Existence of Homoclinic and Periodic Orbits for the FitzHugh-Nagumo Equations // Quart. J. Math. Oxford. 1976. Vol. 27. P. 123–134.
- 10. Максимов А. Г. Фронты и солитонные пакеты в мультистабильных распределенных системах: Автореф. дис.... канд. физ.-мат. наук / А. Г. Максимов. Нижний Новгород: ННГУ, 1993. 20 с.
- 11. Максимов А. Г. О численном построении двоякоасимптотических траекторий в фазовом пространстве динамических систем // Изв. вузов. Прикладная нелинейная динамика. 1994. Т. 2. № 1. С. 43–51.
- Шильников Л. П. К вопросу о структуре расширенной окрестности грубого состояния равновесия типа седлофокус // Матем. сб. 1970. Т. 81(123). № 1. С. 92–103.

Максимов Андрей Геннадьевич. Профессор НИУ ВШЭ — Нижний Новгород, к. ф.-м. н. Окончил Горьковский государственный университет им. Н. И. Лобачевского в 1983 г. Количество печатных работ: 55, в т. ч. 1 монография. Область научных интересов: динамические системы, качественная теория дифференциальных уравнений, пространственновременной хаос, численное моделирование, эконометрический анализ. E-mail: amaksimov@hse.ru