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Introduction
Segmentation of text or splitting linear text 

into fragments is one of the fundamental operations 
required for most applied NLP tasks. It refers to one 
of the stages of natural language text processing - the 
pre-syntactic analysis of the text[4]. 

Despite a tendency to replace traditional methods 
of NLP with neural-net-based ones in the last years, 
where document analysis might be done without in-
termediate stages, traditional methods are still used in 
some cases. E.g. when we need to calculate statistics 
of words, parts of speech in a document, do some spe-
cific markup, etc. There are multiple implementations 
of text into sentences splitters including open source 
libraries and tools. But the quality of segmentation and 
the performance of each segmentation tool are very 
different. 

Also, we need to take into account a technolog-
ical stack that is used by developers of NLP applica-
tions. In most cases, developers prefer to use libraries 
with API in the same language which is used in their 
applications development.

Let’s take a look at some of the most commonly 
used segmentation tools.

1. Segmentation tools review

1.1. NLTK
NLTK is a set of natural language analysis tools 

written in Python language. It includes a set of librar-
ies for classification, tokenization, word stem finding, 

tagging, parsing, and semantic text analysis. NLTK 
supports many languages depending on the specific 
task. This tool implements the segmentation method 
suggested by S. Bird, etc. [3] using unsupervised learn-
ing (learning algorithm “without a teacher”) to build a 
model of abbreviated words, phrases, and words that 
begin sentences and then find the supply boundary.

1.2. Stanford CoreNLP
CoreNLP is a set of NLP analysis tools written 

in the Java language. CoreNLP allows users to obtain 
linguistic annotations for text, including tokens, sen-
tence boundaries, and many others. Currently supports 
6 languages: Arabic, Chinese, English, French, Ger-
man and Spanish. This software implements a com-
bined segmentation method for text segmentation. A 
combined method means the combination of machine 
learning and rule-based methods. Text processing sug-
gested by C. Manning, etc. [11] executes in the form 
of a pipeline, at each stage in which the user receives 
linguistic annotations. Each stage fulfills its function. 
For example, a pipeline can consist of token boundar-
ies, parts of speech, named entities, and sentence seg-
mentation. Each of these stages can be implemented in 
different ways.

1.3. SpaCy
SpaCy is a set of advanced word processing tools 

written in Python and Cython programming languag-
es. Unlike NLTK, which is widely used for teaching 
and research, SpaCy focuses on providing software 
for production use. With its internal machine learn-
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ing library “Thinc”, SpaCy supports the connection of 
statistical models trained by popular machine learning 
libraries: TensorFlow, PyTorch, and MXNet. SpaCy 
provides models for part-of-speech tagging, depen-
dency analysis, text segmentation, and named enti-
ty recognition. Out-of-the-box statistical models for 
these tasks are available in 17 languages, including 
English, Portuguese, Spanish, Russian, and Chinese. 
There is also a multilingual NER model. Additional to-
kenization support for over 65 languages allows users 
to train models on their own datasets. This tool imple-
ments two segmentation methods: a method based on 
heuristic rules and a method based on machine learn-
ing, namely “decision trees”. The heuristic rules code 
is in the SpaCy documentation [9]. The Dependency 
parser uses a variant of the non-monotonic arc-eager 
transition system suggested by M. Honnibal, etc. [8], 
with the addition of a “break” transition to performing 
the sentence segmentation. The pseudo-projective de-
pendency transformation suggested by J. Nivre, etc. 
[12] is used so that the parser can predict non-projec-
tive parsing.

1.4. Apache OpenNLP
Apache OpenNLP is a machine learning-based 

toolkit for natural language processing. OpenNLP 
supports the most common NLP tasks, such as tokeni-
zation, sentence segmentation, and others. OpenNLP 
does not support languages out of the box. The frame-
work can be used to train a model for any language. 
However, there are adapted models for Danish, Ger-
man, English, Spanish, Dutch, Portuguese, and Sami. 
This tool implements a sentence segmentation meth-
od based on machine learning, namely unsupervised 
learning [2].

1.5. WordTokenizers.jl
Apache OpenNLP is a machine learning-based 

toolkit for natural language processing. OpenNLP sup-
ports the most common NLP tasks, such as tokeniza-
tion, sentence segmentation, and others. OpenNLP does 
not support languages out of the box. The framework 
can be used to train a model for any language. Howev-
er, there are adapted models for Danish, German, En-
glish, Spanish, Dutch, Portuguese, and Sami. This tool 
implements a sentence segmentation method based on 
machine learning, namely unsupervised learning [14].

1.6. Sentencize.jl
This package is also written in Julia and re-im-

plements the Python-based package sentence-splitter 
[1]. The sentence-splitter package is a Python imple-
mentation of the Lingua :: Sentence module [13] – a 
Perl-based extension for breaking text paragraphs into 
sentences. Sentencize.jl supports the following lan-
guages: Catalan, Czech, Danish, Dutch, English, Finn-
ish, French, German, Greek, Hungarian, Icelandic, 

Italian, Latvian, Lithuanian, Norwegian (Bokmål), 
Polish, Portuguese, Romanian, Russian, Slovak, Slo-
venian, Spanish, Swedish, Turkish. This tool imple-
ments a sentence segmentation method based on heu-
ristic rules suggested by P. Koehn, etc. [10].

1.7. Outcomes of the review
Heuristic methods are still widely used in text 

processing. They are easy to use and do not require 
significant memory resources. The advantage of these 
methods is also the stability and predictability of their 
work. The supply boundary is determined by matching 
against a set of rules. However, in texts with a special 
arrangement of punctuation marks (e-mail and phys-
ical addresses), mistakes might occur. The disadvan-
tage of these methods is difficult to modify the rules in 
case of significant changes. Machine learning methods 
are more delicate than rule-based methods. They are 
able to find places with a special arrangement of punc-
tuation marks, as well as various mistakes, and avoid 
them when splitting the text into sentences. However, 
when using the wrong training sample, the behavior 
of the sentence splitter in a given text is poorly pre-
dictable. The advantage of modern pre-trained neural 
networks over all the above is context dependence. 
However, as with statistical methods, the behavior de-
pends on the training sample and is poorly predictable, 
and the training costs may not be justified in relation 
to the quality of the text splitting. Combined methods 
should take into account the shortcomings of machine 
learning and rule-based methods. But these combined 
methods require additional RAM resources, which can 
slow down the process. Let’s test all the above seg-
mentation tools to find the best one.

2. Benchmark

2.1. Julia as an integration platform
Julia language is available for production use 

since 2018. Then, the community is continuously 
growing up [7]. Julia can still be called a new lan-
guage, but it already has impressive functionality. For 
example, even a new implementation of old libraries 
and algorithms to solve the problem of text segmenta-
tion is mentioned above. 

Julia offers packages designed for high perfor-
mance from the beginning. In machine learning, and 
natural language processing an immense advantage of 
Julia is that most packages with similar functionality 
were developed after the creation of popular Python, 
Java, and R libraries. But, at the same time, Julia de-
veloped much later compared with other popular lan-
guage stacks. 

For many years, a common approach for devel-
opment libraries that are applicable for multiple lan-
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guages use was the way of building C/C++ based bi-
nary compiled dynamic libraries with C-style exported 
names. These libraries might be used in scripting lan-
guages with appropriate wrapper code prepared manu-
ally or with tools like SWIG.

In the case of Java, there is an interface JNI for 
calling this kind of library. And there is JSR 223 Java 
Scripting API with multiple 3-rd party execution mod-
ules for exact languages to run a script or code snippet. 
At the same time, a programmer has to do a lot of ad-
ditional operations to even activate non-Java code and 
transfer data to the code e.g. in Python. In the case of 
Python, as a result of the low performance of baseline 
implementation of CPython, there is the fragmentation 
of the language dialects with Cython, PyPy, NIM, etc. 
And, there are the same issues with additional pro-
grammers’ work to integrate any other language into 
a Python project with something other than a binary 
dynamic library. And, even after 30 years of develop-
ment, the main issue of Python is low performance and 
a ponderous toolkit to force a Python code to be a pro-
duction-applicable application. 

Key developers of Julia paid attention to integra-
tion features and implemented a way to execute other 
language scripts with their libraries rather than just 
giving a binary interface. And, moreover, even Julia 
code might be integrated into other applications with 
Julia Embedded API and a system image built on a 
Julia code. 

This allowed us to speak about integration pos-
sibilities of other languages and libraries into a Julia 
code, and take into account all the advantages and dis-
advantages of all the mentioned above packages, as 
well as use ready-made solutions or their parts written 

in other languages. Let’s look at some of its integration 
features. 

Julia can initially (without any “glue” code, code 
generation, or compilation) [6] directly call the C and 
Fortran libraries (fig. 1).

Also, there are special packages to call Python, 
R, Java code. The following sample uses the package 
PyCall (fig. 2). It allows us to call Python functions 
and even to write Python code inside Julia program-
mers.

JavaCall allows only to call Java packages from 
within Julia code (fig. 3). First of all, we need to ini-
tialize the Java Virtual Machine before we can call any 
other functions in this module. After that, we get ac-
cess to all the functions of this package, along with the 
Java program.

In this benchmark, we take into account all the 
Julia possibilities making Julia a perfect tool for com-
parison libraries in different languages under equal 
conditions.

2.2. Benchmark details
The idea of the benchmark is to compare text 

splitting into sentences with the segmentation tools 
mentioned above using the same set of text and a ref-
erence markup of sentences. We illustrate the principle 
of operation in figure 4. In the input section, we have 
a marked-up dataset, on the basis of which we form 
plain text with and without markup. Next, we split the 
text without markup into sentences using each seg-
mentation tool. After that, we make a comparison of 
the obtained sentences with its reference. In the result 

 
Fig. 1. Example of calling C library

 
Fig. 2. Example of calling Python library
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section, we calculate f-measures and the splitting per-
formance time.

We illustrate the benchmark architecture as the 
package diagram in figure 6. Here you can see how 
Julia, Python, and Java packages from its libraries 
connect with each other. SentenceSplitterBenchmark.
jl is our package written in Julia language only. We 
highlight other packages belonging to different pro-
gramming languages.

The benchmark framework developed in this 
work gives a simple way to describe a frame for a new 
library or algorithm for testing. Any specific frame is 
stored in the structure like this: (fig. 5)

For each segmentation tool, its own object with 
the described structure is created. That object de-
scribes a function for doing some work before starting 
the benchmark, a function for running the benchmark, 
and a function for collecting results if these are not 
available directly. That description is looking like a 
declarative form.

It was decided to measure the performance 
(speed of each tool) using BenchmarkTools.jl [5]. This 
solution will solve problems with launch heterogene-
ity by averaging measurements.

In the example above (fig. 8), let’s pay attention 
to the fact that the teardown is set in such a way that 
running the JVM does not affect the result.

Fig. 3. Example of calling Java library

Fig. 4. Principle of benchmark operation
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Then we can call all benchmark objects of seg-
mentation tools sequentially via evaluate_list() with 
specifying the number of samples and the benchmark 
duration after that the trial will be terminated(fig.7). 
Parameters samples = 100, seconds = 40 passed direct-
ly into the BenchmarkTools.jl module which is provid-
ing running of tests and collecting a stable execution 
statistics.

2.3. Setup
Let’s compare the segmentation tools for the 

problem of splitting the text into sentences according 
to the following criteria:

1. Execution performance and required resources. 
2. Quality of text segmentation. 
3. Errors of text segmentation.

It was decided to measure the performance (speed 
of each tool) using the BenchmarkTools.jl [5]. Testing 
will be performed on 5840 sentences from “The 
GUM Corpus” [16]. 

GUM stands for Georgetown University Multi-
layer Corpus, a corpus of English texts with different 
text types. This corpus consists of interviews, news, 
travel guides, how-to guides, academic writing, bi-
ographies, fiction, online forum discussions, sponta-
neous face-to-face conversations, political speeches, 
textbooks, and vlogs. Such a variety of texts allows us 
to test segmentation close to natural conditions when 
we don’t know what is the input text. For example, one 
sentence from the GUM Corpus is presented in fig.9

Each token (word, punctuation mark) has its an-
notation. Our task was to test sentence segmentation, 
so we use GUM annotation only as a reference for sen-
tence boundaries. Thus, we will combine all the sen-
tences of the corpus into plain text without line breaks 
(punctuation will remain) and compare the splitting 
using each of the tools with the reference markup.

We will take average values of the time to obtain 
the execution performance of tools.

The task of text segmentation is the task of clas-
sification (hyphenation might be present or not). The 
effectiveness of the text segmentation tool can be nu-
merically assessed by the quality of predictions for the 

 
Fig. 5. BrenchmarkFrame structure

Fig. 6. Package diagram
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Fig. 7. Example of calling all benchmark objects

Fig. 8. BrenchmarkFrame structure for NLTK and WordTokenizers.jl
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test sample. The forecasts made are considered either 
positive or negative, and the expected judgments are 
true or false. 

Four classes that include all predictions made by 
the segmentation tool are shown in Table 1. Predic-
tions must be made for each token (word, punctuation 
mark) in the sentence. So each token goes to one of the 
four classes (TP, FN, TN, FN) according to prediction.

Table 1
Confusion matrix
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TP, True 
Positive

1 1 Line break where it should be

FP, False 
Positive

1 0 Line break NOT where it should be

TN, True 
Negative

0 1
There is no line break, but there 
should be

FN, False 
Negative

0 0
There is no line break, and there 
shouldn’t be

We use the following general indicators [15]:

2.4. Execution time performance
Table 2 shows the results of measuring the exe-

cution time of the text segmentation tools.

The table is sorted in ascending order of average 
execution time for each tool.

The first three lines are the simplest and the fast-
est algorithms with the supposedly lowest segmenta-
tion quality. Next, the best results are WordTokeniz-
ers.jl and OpenNLP. The difference in the average 
execution time of 100 iterations ranges from 0.1s to 
2s at each benchmark run, with WordTokenizers.
jl having an advantage. Thus, the WordTokenizers.jl 
(Julia-based with heuristics) can be said to perform 
sentence splitting faster than others. At this step, the 
hypothesis about rule-based methods is only partial-
ly confirmed. One of the rule-based tools shows the 
fastest results, the other two show the slowest. It all 
depends on the quality of heuristics. The next step is to 
estimate the quality of the sentence splitting.

Table 2
Performance

Tool Name Iterations Time(ms)

Julia split() 100 0,57

Julia split() with file 100 3,58

SimpleSplitter 100 13,77

WordTokenizers.jl 100 30,20

OpenNLP 100 30,73

NLTK 100 216,07

CoreNLP 100 311.99

Spacy (Rule-based) 43 1036.76

Sentencize.jl 7 6476.84

Spacy (Dependency parser) 6 10690.8

2.5. Text segmentation quality
As each segmentation tool has its own tokenizer, 

the number of tokens (predictions) for each tool might 
be different. Thus, we can compare the quality of seg-
mentation with relative values (accuracy, error, preci-
sion, error, f1).

It is worth clarifying that “Julia split () with file” 
is omitted in this table, since “Julia split ()” and “Julia 
split () with file” are one splitting algorithm, therefore, 
the results of the accuracy estimation will be the same.

The quality of text segmentation is shown in 
Table 3. As we can see, the best quality is shown by 
Sentencize.jl - port of a rule-based Perl extension for 

Fig.9. One sentence from the GUM Corpus
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sentence splitting. At this step, again the hypothesis is 
only partially confirmed. The best quality is shown by 
another heuristic.

2.6. Types of segmentation errors
For a more complete understanding of the work 

of each segmentation tool, it is necessary to take into 

account the nuances of their work. This can be done by 
printing out the markup errors and comparing them to 
the reference markup. During the analysis, we identi-
fied two types of errors: errors in setting the line break 
and errors in recognizing tokens.

Errors of the 1st type are associated with the ab-
sence of punctuation marks in the source text, head-
ings, and enumerations. All segmentation tools make 
similar errors in the same places. There is no point in 
showing them.

Errors of the 2nd type are more exotic. They de-
pend on the segmentation tool and are not repeated in 
the analyzed tools. It is associated with a specific seg-
mentation algorithm (method). These errors consist of 
incorrect recognition of tokens and occur with consec-
utive punctuation marks. Consider some examples in 
Table 5.

Table 3
Comparison metrics results.

Tool Name tp fp tn fn accuracy error precision recall f1

Sentencize.jl 6330 254 107813 1078 0,99 0,01 0,96 0,85 0,905

NLTK 6269 283 107787 1139 0,99 0,01 0,96 0,85 0,898

OpenNLP 6255 276 107791 1153 0,99 0,01 0,96 0,84 0,897

CoreNLP 6278 362 107786 1130 0,99 0,01 0,95 0,85 0,894

WordTokenizers.jl 6140 264 107809 1268 0,99 0,01 0,96 0,83 0,889

Spacy (Dependency parser) 6631 934 107268 777 0,99 0,01 0,88 0,90 0,886

Spacy (Rule-based) 6183 994 107531 1225 0,98 0,02 0,86 0,83 0,848

SimpleSplitter 5760 772 107847 1648 0,98 0,02 0,88 0,78 0,826

Julia split() 5760 878 107780 1648 0,98 0,02 0,87 0,78 0,820

Table 4
Number of 2nd type errors

Tool Name Errors

Sentencize.jl 0

NLTK 3

OpenNLP 0

CoreNLP 84

WordTokenizers.jl 6

Spacy (Dependency parser) 135

Spacy (Rule-based) 458

Table 5
Error examples

WordTokenizers.jl

Reference markup Markup error

- It ‘s a little bit like Achilles and the turtle.\vskip 3pt- ... love 
story and romance and surprises and tragedies and all this 
but alsothis structure interested me a lot.

- It ‘s a little bit like Achilles and the turtle.... love story and 
romance andsurprises and tragedies and all this but also 
this structure interested me a lot.

NLTK

Reference markup Markup error

- A Connecticut Yankee in King Arthur ‘s Court ( solo )\vskip 
3pt- Ed.: See the LibriVox catalog for a full index.

- A Connecticut Yankee in King Arthur ‘s Court ( solo ) Ed.\
vskip 3pt- : See the LibriVox catalog for a full index.

CoreNLP

Reference markup Markup error

- Had they died fast or were they now suffering a fate far 
worse..?

- Had they died fast or were they now suffering a fate far 
worse.\vskip 3pt- .\vskip 3pt- ?

Spacy (Dependency parser)

Reference markup Markup error

- Finally, our study complements Navarro’s (2016) automatic 
metrical analyses of Spanish Golden Age sonnets, by cover-
ing a wider period and focusing on enjambment.

- Finally, our study complements Navarro\vskip 3pt- s (2016) 
automatic metrical analyses of Spanish Golden Age sonnets, 
by covering a wider period and focusing on enjambment.

Spacy (Rule-based)

Reference markup Markup error

- The severe concerns underpinning the alleged crisis have 
several dimensions relating to: (a) the (small) amount of 
published replication research; (b) the (poor) quality of rep-
lication research; and (c) the (lack of) reproducibility, which 
refers to the extent to which findings can (not) be repro-
duced in replication attempts that have been undertaken.

- The severe concerns underpinning the alleged crisis have sev-
eral dimensions relating to: (\vskip 3pt- a) the (small) amount of 
published replication research; (\vskip 3pt- b) the (poor) quality 
of replication research;\vskip 3pt- and (c) the (lack of) reproduc-
ibility, which refers to the extent to which findings can (not) be 
reproduced in replication attempts that have been undertaken.
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The results in Table 4 shows that CoreNLP and 
Spacy make the most errors of the 2nd type (in recog-
nizing tokens). Because of this, the share of correct pre-
dictions and other indicators were not maximum. It also 
confirms that Sentencize.jl performs segmentation with 
the fewest errors (all tokens were recognized correctly).

Conclusion

In this paper, we compared the results of the 8 
segmentation tools using comparison metrics and cal-
culating performance. It is worth noting that the best 
results in terms of performance (WordTokenizers.jl) 
and quality (Sentencize.jl) belong to Julia tools. The 
benchmark source code is available at https://bmstu.
codes/AnnaZav/sentencesplitterbenchmark. 

The novelty from the technical side is developed by 
our unified benchmarking framework for libraries writ-
ten in different programming languages which allows 
connecting the new libraries into a testing pipeline and 
getting comparison results on both quality and execution 
performance. And, due to the selected Julia language, 
these libraries might be written in different languages, in-
cluding native Julia, Python, R, Java, etc. That work con-
firms that Julia might be used as an integration platform.

This paper is a part of the research work carried 
out within the Bauman Deep Analytics project of the 
Priority 2030 program.
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