
167Труды ИСА РАН. Том 73. 1/2023

Introduction
Segmentation of text or splitting linear text

into fragments is one of the fundamental operations
required for most applied NLP tasks. It refers to one
of the stages of natural language text processing - the
pre-syntactic analysis of the text[4].

Despite a tendency to replace traditional methods
of NLP with neural-net-based ones in the last years,
where document analysis might be done without in-
termediate stages, traditional methods are still used in
some cases. E.g. when we need to calculate statistics
of words, parts of speech in a document, do some spe-
cific markup, etc. There are multiple implementations
of text into sentences splitters including open source
libraries and tools. But the quality of segmentation and
the performance of each segmentation tool are very
different.

Also, we need to take into account a technolog-
ical stack that is used by developers of NLP applica-
tions. In most cases, developers prefer to use libraries
with API in the same language which is used in their
applications development.

Let’s take a look at some of the most commonly
used segmentation tools.

1. Segmentation tools review

1.1. NLTK
NLTK is a set of natural language analysis tools

written in Python language. It includes a set of librar-
ies for classification, tokenization, word stem finding,

tagging, parsing, and semantic text analysis. NLTK
supports many languages depending on the specific
task. This tool implements the segmentation method
suggested by S. Bird, etc. [3] using unsupervised learn-
ing (learning algorithm “without a teacher”) to build a
model of abbreviated words, phrases, and words that
begin sentences and then find the supply boundary.

1.2. Stanford CoreNLP
CoreNLP is a set of NLP analysis tools written

in the Java language. CoreNLP allows users to obtain
linguistic annotations for text, including tokens, sen-
tence boundaries, and many others. Currently supports
6 languages: Arabic, Chinese, English, French, Ger-
man and Spanish. This software implements a com-
bined segmentation method for text segmentation. A
combined method means the combination of machine
learning and rule-based methods. Text processing sug-
gested by C. Manning, etc. [11] executes in the form
of a pipeline, at each stage in which the user receives
linguistic annotations. Each stage fulfills its function.
For example, a pipeline can consist of token boundar-
ies, parts of speech, named entities, and sentence seg-
mentation. Each of these stages can be implemented in
different ways.

1.3. SpaCy
SpaCy is a set of advanced word processing tools

written in Python and Cython programming languag-
es. Unlike NLTK, which is widely used for teaching
and research, SpaCy focuses on providing software
for production use. With its internal machine learn-

Sentence splitters benchmark

A.P. Zavyalova, P.A. Martynyuk, R.S. Samarev

Bauman Moscow State Technical University, Moscow, Russia

Abstract. There are multiple implementations of text into sentences splitters including open source

libraries and tools. But the quality of segmentation and the performance of each segmentation tool are

very different. Moreover, it is convenient for NLP developers to have all libraries written in the same

programming language, except when using some kind of integration programming language. This paper

considers two aspects - building a uniform framework and estimating language features of the modern

and popular programming language Julia from one side. And the performance estimation of sentence

splitting libraries as is. The paper contains detailed performance results, samples of texts after splitting,

and a list of some typical issues related to sentence splitting.

Keywords: segmentation, sentence, splitting, NLP, Julia language, benchmark, text analysis.

DOI: 10.14357/20790279230119

168 Труды ИСА РАН. Том 73. 1/2023

Компьютерный анализ текстов A.P. Zavyalova, P.A. Martynyuk, R.S. Samarev

ing library “Thinc”, SpaCy supports the connection of
statistical models trained by popular machine learning
libraries: TensorFlow, PyTorch, and MXNet. SpaCy
provides models for part-of-speech tagging, depen-
dency analysis, text segmentation, and named enti-
ty recognition. Out-of-the-box statistical models for
these tasks are available in 17 languages, including
English, Portuguese, Spanish, Russian, and Chinese.
There is also a multilingual NER model. Additional to-
kenization support for over 65 languages allows users
to train models on their own datasets. This tool imple-
ments two segmentation methods: a method based on
heuristic rules and a method based on machine learn-
ing, namely “decision trees”. The heuristic rules code
is in the SpaCy documentation [9]. The Dependency
parser uses a variant of the non-monotonic arc-eager
transition system suggested by M. Honnibal, etc. [8],
with the addition of a “break” transition to performing
the sentence segmentation. The pseudo-projective de-
pendency transformation suggested by J. Nivre, etc.
[12] is used so that the parser can predict non-projec-
tive parsing.

1.4. Apache OpenNLP
Apache OpenNLP is a machine learning-based

toolkit for natural language processing. OpenNLP
supports the most common NLP tasks, such as tokeni-
zation, sentence segmentation, and others. OpenNLP
does not support languages out of the box. The frame-
work can be used to train a model for any language.
However, there are adapted models for Danish, Ger-
man, English, Spanish, Dutch, Portuguese, and Sami.
This tool implements a sentence segmentation meth-
od based on machine learning, namely unsupervised
learning [2].

1.5. WordTokenizers.jl
Apache OpenNLP is a machine learning-based

toolkit for natural language processing. OpenNLP sup-
ports the most common NLP tasks, such as tokeniza-
tion, sentence segmentation, and others. OpenNLP does
not support languages out of the box. The framework
can be used to train a model for any language. Howev-
er, there are adapted models for Danish, German, En-
glish, Spanish, Dutch, Portuguese, and Sami. This tool
implements a sentence segmentation method based on
machine learning, namely unsupervised learning [14].

1.6. Sentencize.jl
This package is also written in Julia and re-im-

plements the Python-based package sentence-splitter
[1]. The sentence-splitter package is a Python imple-
mentation of the Lingua :: Sentence module [13] – a
Perl-based extension for breaking text paragraphs into
sentences. Sentencize.jl supports the following lan-
guages: Catalan, Czech, Danish, Dutch, English, Finn-
ish, French, German, Greek, Hungarian, Icelandic,

Italian, Latvian, Lithuanian, Norwegian (Bokmål),
Polish, Portuguese, Romanian, Russian, Slovak, Slo-
venian, Spanish, Swedish, Turkish. This tool imple-
ments a sentence segmentation method based on heu-
ristic rules suggested by P. Koehn, etc. [10].

1.7. Outcomes of the review
Heuristic methods are still widely used in text

processing. They are easy to use and do not require
significant memory resources. The advantage of these
methods is also the stability and predictability of their
work. The supply boundary is determined by matching
against a set of rules. However, in texts with a special
arrangement of punctuation marks (e-mail and phys-
ical addresses), mistakes might occur. The disadvan-
tage of these methods is difficult to modify the rules in
case of significant changes. Machine learning methods
are more delicate than rule-based methods. They are
able to find places with a special arrangement of punc-
tuation marks, as well as various mistakes, and avoid
them when splitting the text into sentences. However,
when using the wrong training sample, the behavior
of the sentence splitter in a given text is poorly pre-
dictable. The advantage of modern pre-trained neural
networks over all the above is context dependence.
However, as with statistical methods, the behavior de-
pends on the training sample and is poorly predictable,
and the training costs may not be justified in relation
to the quality of the text splitting. Combined methods
should take into account the shortcomings of machine
learning and rule-based methods. But these combined
methods require additional RAM resources, which can
slow down the process. Let’s test all the above seg-
mentation tools to find the best one.

2. Benchmark

2.1. Julia as an integration platform
Julia language is available for production use

since 2018. Then, the community is continuously
growing up [7]. Julia can still be called a new lan-
guage, but it already has impressive functionality. For
example, even a new implementation of old libraries
and algorithms to solve the problem of text segmenta-
tion is mentioned above.

Julia offers packages designed for high perfor-
mance from the beginning. In machine learning, and
natural language processing an immense advantage of
Julia is that most packages with similar functionality
were developed after the creation of popular Python,
Java, and R libraries. But, at the same time, Julia de-
veloped much later compared with other popular lan-
guage stacks.

For many years, a common approach for devel-
opment libraries that are applicable for multiple lan-

169Труды ИСА РАН. Том 73. 1/2023

Sentence splitters benchmark

guages use was the way of building C/C++ based bi-
nary compiled dynamic libraries with C-style exported
names. These libraries might be used in scripting lan-
guages with appropriate wrapper code prepared manu-
ally or with tools like SWIG.

In the case of Java, there is an interface JNI for
calling this kind of library. And there is JSR 223 Java
Scripting API with multiple 3-rd party execution mod-
ules for exact languages to run a script or code snippet.
At the same time, a programmer has to do a lot of ad-
ditional operations to even activate non-Java code and
transfer data to the code e.g. in Python. In the case of
Python, as a result of the low performance of baseline
implementation of CPython, there is the fragmentation
of the language dialects with Cython, PyPy, NIM, etc.
And, there are the same issues with additional pro-
grammers’ work to integrate any other language into
a Python project with something other than a binary
dynamic library. And, even after 30 years of develop-
ment, the main issue of Python is low performance and
a ponderous toolkit to force a Python code to be a pro-
duction-applicable application.

Key developers of Julia paid attention to integra-
tion features and implemented a way to execute other
language scripts with their libraries rather than just
giving a binary interface. And, moreover, even Julia
code might be integrated into other applications with
Julia Embedded API and a system image built on a
Julia code.

This allowed us to speak about integration pos-
sibilities of other languages and libraries into a Julia
code, and take into account all the advantages and dis-
advantages of all the mentioned above packages, as
well as use ready-made solutions or their parts written

in other languages. Let’s look at some of its integration
features.

Julia can initially (without any “glue” code, code
generation, or compilation) [6] directly call the C and
Fortran libraries (fig. 1).

Also, there are special packages to call Python,
R, Java code. The following sample uses the package
PyCall (fig. 2). It allows us to call Python functions
and even to write Python code inside Julia program-
mers.

JavaCall allows only to call Java packages from
within Julia code (fig. 3). First of all, we need to ini-
tialize the Java Virtual Machine before we can call any
other functions in this module. After that, we get ac-
cess to all the functions of this package, along with the
Java program.

In this benchmark, we take into account all the
Julia possibilities making Julia a perfect tool for com-
parison libraries in different languages under equal
conditions.

2.2. Benchmark details
The idea of the benchmark is to compare text

splitting into sentences with the segmentation tools
mentioned above using the same set of text and a ref-
erence markup of sentences. We illustrate the principle
of operation in figure 4. In the input section, we have
a marked-up dataset, on the basis of which we form
plain text with and without markup. Next, we split the
text without markup into sentences using each seg-
mentation tool. After that, we make a comparison of
the obtained sentences with its reference. In the result

Fig. 1. Example of calling C library

Fig. 2. Example of calling Python library

170 Труды ИСА РАН. Том 73. 1/2023

Компьютерный анализ текстов A.P. Zavyalova, P.A. Martynyuk, R.S. Samarev

section, we calculate f-measures and the splitting per-
formance time.

We illustrate the benchmark architecture as the
package diagram in figure 6. Here you can see how
Julia, Python, and Java packages from its libraries
connect with each other. SentenceSplitterBenchmark.
jl is our package written in Julia language only. We
highlight other packages belonging to different pro-
gramming languages.

The benchmark framework developed in this
work gives a simple way to describe a frame for a new
library or algorithm for testing. Any specific frame is
stored in the structure like this: (fig. 5)

For each segmentation tool, its own object with
the described structure is created. That object de-
scribes a function for doing some work before starting
the benchmark, a function for running the benchmark,
and a function for collecting results if these are not
available directly. That description is looking like a
declarative form.

It was decided to measure the performance
(speed of each tool) using BenchmarkTools.jl [5]. This
solution will solve problems with launch heterogene-
ity by averaging measurements.

In the example above (fig. 8), let’s pay attention
to the fact that the teardown is set in such a way that
running the JVM does not affect the result.

Fig. 3. Example of calling Java library

Fig. 4. Principle of benchmark operation

171Труды ИСА РАН. Том 73. 1/2023

Sentence splitters benchmark

Then we can call all benchmark objects of seg-
mentation tools sequentially via evaluate_list() with
specifying the number of samples and the benchmark
duration after that the trial will be terminated(fig.7).
Parameters samples = 100, seconds = 40 passed direct-
ly into the BenchmarkTools.jl module which is provid-
ing running of tests and collecting a stable execution
statistics.

2.3. Setup
Let’s compare the segmentation tools for the

problem of splitting the text into sentences according
to the following criteria:

1. Execution performance and required resources.
2. Quality of text segmentation.
3. Errors of text segmentation.

It was decided to measure the performance (speed
of each tool) using the BenchmarkTools.jl [5]. Testing
will be performed on 5840 sentences from “The
GUM Corpus” [16].

GUM stands for Georgetown University Multi-
layer Corpus, a corpus of English texts with different
text types. This corpus consists of interviews, news,
travel guides, how-to guides, academic writing, bi-
ographies, fiction, online forum discussions, sponta-
neous face-to-face conversations, political speeches,
textbooks, and vlogs. Such a variety of texts allows us
to test segmentation close to natural conditions when
we don’t know what is the input text. For example, one
sentence from the GUM Corpus is presented in fig.9

Each token (word, punctuation mark) has its an-
notation. Our task was to test sentence segmentation,
so we use GUM annotation only as a reference for sen-
tence boundaries. Thus, we will combine all the sen-
tences of the corpus into plain text without line breaks
(punctuation will remain) and compare the splitting
using each of the tools with the reference markup.

We will take average values of the time to obtain
the execution performance of tools.

The task of text segmentation is the task of clas-
sification (hyphenation might be present or not). The
effectiveness of the text segmentation tool can be nu-
merically assessed by the quality of predictions for the

Fig. 5. BrenchmarkFrame structure

Fig. 6. Package diagram

172 Труды ИСА РАН. Том 73. 1/2023

Компьютерный анализ текстов A.P. Zavyalova, P.A. Martynyuk, R.S. Samarev

Fig. 7. Example of calling all benchmark objects

Fig. 8. BrenchmarkFrame structure for NLTK and WordTokenizers.jl

173Труды ИСА РАН. Том 73. 1/2023

Sentence splitters benchmark

test sample. The forecasts made are considered either
positive or negative, and the expected judgments are
true or false.

Four classes that include all predictions made by
the segmentation tool are shown in Table 1. Predic-
tions must be made for each token (word, punctuation
mark) in the sentence. So each token goes to one of the
four classes (TP, FN, TN, FN) according to prediction.

Table 1
Confusion matrix

C
la

s
s

P
re

d
ic

t

R
e
s
u
lt

E
x
p
la

n
a
ti
o
n

TP, True
Positive

1 1 Line break where it should be

FP, False
Positive

1 0 Line break NOT where it should be

TN, True
Negative

0 1
There is no line break, but there
should be

FN, False
Negative

0 0
There is no line break, and there
shouldn’t be

We use the following general indicators [15]:

2.4. Execution time performance
Table 2 shows the results of measuring the exe-

cution time of the text segmentation tools.

The table is sorted in ascending order of average
execution time for each tool.

The first three lines are the simplest and the fast-
est algorithms with the supposedly lowest segmenta-
tion quality. Next, the best results are WordTokeniz-
ers.jl and OpenNLP. The difference in the average
execution time of 100 iterations ranges from 0.1s to
2s at each benchmark run, with WordTokenizers.
jl having an advantage. Thus, the WordTokenizers.jl
(Julia-based with heuristics) can be said to perform
sentence splitting faster than others. At this step, the
hypothesis about rule-based methods is only partial-
ly confirmed. One of the rule-based tools shows the
fastest results, the other two show the slowest. It all
depends on the quality of heuristics. The next step is to
estimate the quality of the sentence splitting.

Table 2
Performance

Tool Name Iterations Time(ms)

Julia split() 100 0,57

Julia split() with file 100 3,58

SimpleSplitter 100 13,77

WordTokenizers.jl 100 30,20

OpenNLP 100 30,73

NLTK 100 216,07

CoreNLP 100 311.99

Spacy (Rule-based) 43 1036.76

Sentencize.jl 7 6476.84

Spacy (Dependency parser) 6 10690.8

2.5. Text segmentation quality
As each segmentation tool has its own tokenizer,

the number of tokens (predictions) for each tool might
be different. Thus, we can compare the quality of seg-
mentation with relative values (accuracy, error, preci-
sion, error, f1).

It is worth clarifying that “Julia split () with file”
is omitted in this table, since “Julia split ()” and “Julia
split () with file” are one splitting algorithm, therefore,
the results of the accuracy estimation will be the same.

The quality of text segmentation is shown in
Table 3. As we can see, the best quality is shown by
Sentencize.jl - port of a rule-based Perl extension for

Fig.9. One sentence from the GUM Corpus

174 Труды ИСА РАН. Том 73. 1/2023

Компьютерный анализ текстов A.P. Zavyalova, P.A. Martynyuk, R.S. Samarev

sentence splitting. At this step, again the hypothesis is
only partially confirmed. The best quality is shown by
another heuristic.

2.6. Types of segmentation errors
For a more complete understanding of the work

of each segmentation tool, it is necessary to take into

account the nuances of their work. This can be done by
printing out the markup errors and comparing them to
the reference markup. During the analysis, we identi-
fied two types of errors: errors in setting the line break
and errors in recognizing tokens.

Errors of the 1st type are associated with the ab-
sence of punctuation marks in the source text, head-
ings, and enumerations. All segmentation tools make
similar errors in the same places. There is no point in
showing them.

Errors of the 2nd type are more exotic. They de-
pend on the segmentation tool and are not repeated in
the analyzed tools. It is associated with a specific seg-
mentation algorithm (method). These errors consist of
incorrect recognition of tokens and occur with consec-
utive punctuation marks. Consider some examples in
Table 5.

Table 3
Comparison metrics results.

Tool Name tp fp tn fn accuracy error precision recall f1

Sentencize.jl 6330 254 107813 1078 0,99 0,01 0,96 0,85 0,905

NLTK 6269 283 107787 1139 0,99 0,01 0,96 0,85 0,898

OpenNLP 6255 276 107791 1153 0,99 0,01 0,96 0,84 0,897

CoreNLP 6278 362 107786 1130 0,99 0,01 0,95 0,85 0,894

WordTokenizers.jl 6140 264 107809 1268 0,99 0,01 0,96 0,83 0,889

Spacy (Dependency parser) 6631 934 107268 777 0,99 0,01 0,88 0,90 0,886

Spacy (Rule-based) 6183 994 107531 1225 0,98 0,02 0,86 0,83 0,848

SimpleSplitter 5760 772 107847 1648 0,98 0,02 0,88 0,78 0,826

Julia split() 5760 878 107780 1648 0,98 0,02 0,87 0,78 0,820

Table 4
Number of 2nd type errors

Tool Name Errors

Sentencize.jl 0

NLTK 3

OpenNLP 0

CoreNLP 84

WordTokenizers.jl 6

Spacy (Dependency parser) 135

Spacy (Rule-based) 458

Table 5
Error examples

WordTokenizers.jl

Reference markup Markup error

- It ‘s a little bit like Achilles and the turtle.\vskip 3pt- ... love
story and romance and surprises and tragedies and all this
but alsothis structure interested me a lot.

- It ‘s a little bit like Achilles and the turtle.... love story and
romance andsurprises and tragedies and all this but also
this structure interested me a lot.

NLTK

Reference markup Markup error

- A Connecticut Yankee in King Arthur ‘s Court (solo)\vskip
3pt- Ed.: See the LibriVox catalog for a full index.

- A Connecticut Yankee in King Arthur ‘s Court (solo) Ed.\
vskip 3pt- : See the LibriVox catalog for a full index.

CoreNLP

Reference markup Markup error

- Had they died fast or were they now suffering a fate far
worse..?

- Had they died fast or were they now suffering a fate far
worse.\vskip 3pt- .\vskip 3pt- ?

Spacy (Dependency parser)

Reference markup Markup error

- Finally, our study complements Navarro’s (2016) automatic
metrical analyses of Spanish Golden Age sonnets, by cover-
ing a wider period and focusing on enjambment.

- Finally, our study complements Navarro\vskip 3pt- s (2016)
automatic metrical analyses of Spanish Golden Age sonnets,
by covering a wider period and focusing on enjambment.

Spacy (Rule-based)

Reference markup Markup error

- The severe concerns underpinning the alleged crisis have
several dimensions relating to: (a) the (small) amount of
published replication research; (b) the (poor) quality of rep-
lication research; and (c) the (lack of) reproducibility, which
refers to the extent to which findings can (not) be repro-
duced in replication attempts that have been undertaken.

- The severe concerns underpinning the alleged crisis have sev-
eral dimensions relating to: (\vskip 3pt- a) the (small) amount of
published replication research; (\vskip 3pt- b) the (poor) quality
of replication research;\vskip 3pt- and (c) the (lack of) reproduc-
ibility, which refers to the extent to which findings can (not) be
reproduced in replication attempts that have been undertaken.

175Труды ИСА РАН. Том 73. 1/2023

Sentence splitters benchmark

The results in Table 4 shows that CoreNLP and
Spacy make the most errors of the 2nd type (in recog-
nizing tokens). Because of this, the share of correct pre-
dictions and other indicators were not maximum. It also
confirms that Sentencize.jl performs segmentation with
the fewest errors (all tokens were recognized correctly).

Conclusion

In this paper, we compared the results of the 8
segmentation tools using comparison metrics and cal-
culating performance. It is worth noting that the best
results in terms of performance (WordTokenizers.jl)
and quality (Sentencize.jl) belong to Julia tools. The
benchmark source code is available at https://bmstu.
codes/AnnaZav/sentencesplitterbenchmark.

The novelty from the technical side is developed by
our unified benchmarking framework for libraries writ-
ten in different programming languages which allows
connecting the new libraries into a testing pipeline and
getting comparison results on both quality and execution
performance. And, due to the selected Julia language,
these libraries might be written in different languages, in-
cluding native Julia, Python, R, Java, etc. That work con-
firms that Julia might be used as an integration platform.

This paper is a part of the research work carried
out within the Bauman Deep Analytics project of the
Priority 2030 program.

References

1. Text to sentence splitter. https://github.com/media-
cloud/sentence-splitter, 2019. Accessed: 2022-01-20.

2. Apache. Opennlp. http://opennlp.apache.org, 2010.
Accessed: 2022-01-20.

3. Bird, S., Klein, E., and Loper, E. Natural language
processing with Python: analyzing text with the
natural language toolkit. “ O’Reilly Media, Inc.”,
2009.

4. Bolshakova, E.I., Peskova, O., Klyshinsky, E.,
Noskov, A.A., Lande, D., and Yagunova, E.V. Au-
tomatic natural language processing and computa-
tional linguistics, 2015.

5. Chen, J., and Revels, J. Robust benchmarking in
noisy environments. arXiv e-prints (Aug 2016).

6. Community, T.J. Calling c and fortran code, may
2022.

7. Community, T.J. Why we use julia, 10 years later,
february 2022.

8. Honnibal, M., and Johnson, M. An improved
non-monotonic transition system for dependency
parsing. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing (Lisbon, Portugal, Sept. 2015), Association for
Computational Linguistics, pp. 1373–1378.

9. Honnibal, M., and Montani, I. spaCy 2: Natural
language understanding with Bloom embeddings,
convolutional neural networks and incremental
parsing. 2017.

10. Koehn, P., et al. Europarl: A parallel corpus for
statistical machine translation. In MT summit
(2005), vol. 5, Citeseer, pp. 79–86.

11. Manning, C. D., Surdeanu, M., Bauer, J., Finkel,
J. R., Bethard, S., and McClosky, D. The stanford
corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the as-
sociation for computational linguistics: system
demonstrations (2014), pp. 55–60.

12. Nivre, J., and Nilsson, J. Pseudo-projective depen-
dency parsing. In Proceedings of the 43rd Annu-
al Meeting of the Association for Computational
Linguistics (ACL’05) (Ann Arbor, Michigan, June
2005), Association for Computational Linguistics,
pp. 99–106.

13. Ruopp, A. Lingua sentence. https://metacpan.org/
pod/Lingua::Sentence, 2010. Accessed: 2022-01-
20.

14. Sætre, R., Søvik, H., Amble, T., and Tsuruoka,
Y. Genetuc, genia and google: Natural language
understanding in molecular biology literature. In
Transactions on Computational Systems Biology
V (Berlin, Heidelberg, 2006), C. Priami, X. Hu, Y.
Pan, and T. Y. Lin, Eds., Springer Berlin Heidel-
berg, pp. 68–82.

15. Soricut, R., and Marcu, D. Sentence level dis-
course parsing using syntactic and lexical in-
formation. In Proceedings of the 2003 Human
Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (2003), pp. 228–235.

16. Zeldes, A. The GUM corpus: Creating multilayer
resources in the classroom. Language Resources
and Evaluation 51, 3 (2017), 581–612.

A.P.Zavyalova. Master student. Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5, Mos-
cow, 105005, Russia. E-mail: annazav13@gmail.com
P.A.Martynyuk. Master student. Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5, Mos-
cow, 105005, Russia. E-mail: martapauline@yandex.ru
R.S.Samarev. Associate Professor. Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5,
Moscow, 105005, Russia. E-mail: samarev@acm.org

