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Introduction
Over the last decade, the level of application of 

machine learning has grown considerably [1]. Nowa-
days, it is widely used in the areas such as medicine, 
marketing, finance, retail, logistics, robotics and so on 
[2, 3]. Today, almost all companies that collect and 
store large amounts of data have entire departments 
involved in data analysis and machine learning. In ad-
dition, small teams or even individuals are also inter-
ested in using machine learning, because they find data 
analysis techniques useful for developing their proj-
ects and research. For example, scientists who could 
use the existing data to predict possible values of cer-
tain variables or coefficients for conducting scientific 
experiments. 

Simple data analysis such as graph plotting, 
creating charts and calculating some statistical coef-
ficients can be done using the standard tools such as 
Microsoft Excel. But often more complex methods 
involving the use of machine learning models are re-

quired. In this case, not only a comprehensive knowl-
edge of linear algebra, mathematical analysis and sta-
tistics is required, but also understanding of machine 
learning concepts and coding experience, particularly 
in languages such as Python or R, as well as special 
frameworks and libraries are needed. 

Recently, there is a growing number of automat-
ed machine learning solutions that allow training and 
using models for making predictions without writing 
code in a programming language but using visualiza-
tion or other methods of user interaction. Nevertheless, 
some of these solutions, such as Google AutoML have 
been developed for users with significant experience 
and are mostly intended to simplify and speed up the 
work of machine learning engineers and data scientists 
rather than to lower the entry threshold into this area 
for non-expert users. Most of the other solutions that 
can be successfully used by people with basic domain 
knowledge are often designed to solve only some spe-
cific classes of problems, such as computer vision or 
text analysis.

This paper presents an approach that allows users 
with basic machine learning knowledge to train and 
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use different models for obtaining predictions on the 
tabular datasets using a graphical interface. The prob-
lems encountered in creating systems for automated 
machine learning and approaches to solve them are 
also discussed. This work aims to develop a client-serv-
er web application with a graphical user interface for 
data analysis, especially for the supervised learning 
problems such as regression and classification.

The rest of this paper is organized as follows. 
Section 2 discusses related work and common chal-
lenges included in machine learning process. Then, 
Section 3 describes the algorithms and methods used 
in the implementation. Section 4 contains details about 
the implementation of the web application. Finally, 
Section 5 provides the conclusion of the work.

1. Literature review

As previously stated, the popularity of solutions 
for automated machine learning is growing. The paper 
[4] discusses the possible challenges involved in cre-
ating these kinds of solutions.

One of the most challenging problems is the pro-
cess of extracting features from raw data, called fea-
ture engineering. This process often involves handling 
missing values, encoding of categorical variables, 
feature scaling and selection. It is notable that feature 
engineering is not always a simple task even for ex-
perts in machine learning and it is usually performed 
manually by empirical methods.

Missing values are one of the most common 
problems when it comes to preparing data for use with 
machine learning models. Human errors, privacy is-
sues, and other factors can lead to the absence of val-
ues in the dataset. However, missing values require a 
correct handling, since most of the models in the exist-
ing machine learning libraries are not capable to work 
with the data that contain gaps. 

In fact, there is no clear answer regarding how 
to handle missing values in datasets. Although, quite 
several papers discussing the problem of filling gaps 
in a tabular data have been published, most of the pro-
posed solutions were developed for specific tasks and 
may not be as useful in other cases. The standard way 
to solve this problem is to remove features that contain 
many missing values or to fill in the missing values 
with some estimate based on other values of the same 
feature [5].

Most implementations of machine learning al-
gorithms also require all values in the dataset to be 
represented in a numerical form. Because of this, cat-
egorical data must be converted to numerical values 
before being used for model training or prediction. 
The simplest way to encode categorical features is la-

bel encoding (ordinal encoding). The main idea behind 
this method is to associate each category with some 
integer number. This method of encoding is rarely 
used in practice because of its big disadvantage: it can 
add additional dependencies that did not exist in the 
original data, which is critical for linear models, and 
in general can lead to wrong interpretations of feature 
values.

One-hot encoding or dummy encoding is the 
modification that solves the problem of the previously 
discussed approach. In this algorithm, a new variable, 
sometimes called a dummy variable, is created for 
each category of a feature, where a binary value (0 or 
1) denotes that a particular feature belongs to a certain 
category. The main problem with this method and its 
existing modifications is that a new attribute is creat-
ed for each unique value of a category variable. Thus, 
the number of attributes grows quadratically, so naive 
encoding is only applicable when categorical vari-
ables contain a small number of unique values. Anoth-
er problem of naive encoding is that it produces large 
number of binary features in the dataset, which can 
significantly reduce the quality of models when using 
tree-based algorithms (e.g., decision trees or random 
forest). In this regard, this algorithm is not suitable for 
use in systems for automated machine learning, be-
cause the number of unique values in the categorical 
variables in datasets can be quite large.

Another approach to encode categorical variables 
is target encoding. The idea of target encoding is to use 
the statistics of a target variable to encode a categori-
cal value. According to the theoretical justification for 
this approach given in the paper discussing categorical 
feature preprocessing scheme [6], the key transforma-
tion used in this method is a transformation that maps 
each value of a categorical feature to an estimate of the 
probability of occurrence of the target variable.

When categorical features are encoded in the 
training sample, the numerical representation of the 
categorical feature corresponds to the posterior proba-
bility of occurrence of the target feature, provided that 
the categorical variable takes particular value. In the 
case of categorical feature encoding in the prediction 
sample, the numerical representation corresponds to 
the expected value of the categorical variable. Essen-
tially, this means that for each category, the average 
value of the target variable is calculated, with which 
the category is subsequently encoded. This method 
works for both binary classification and regression. For 
multiclass classification a similar technique is used, 
where a categorical variable is encoded with m – 1 
new variables, where m is the number of classes. It 
should be noted, that although the author of the arti-
cle claims that the statistics of the target variable are 
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used to encode the categorical variable, in fact only its 
mean value is used. Although the mean value is a suffi-
cient statistic for binary classification, it is not suitable 
for regression because it disregards the intra-category 
variance of the target variable. In this regard, this algo-
rithm in its pure form is prone to overfitting, so some 
modifications are often added to software implementa-
tions to reduce the probability of overfitting.

In most cases, not all the variables in the raw 
datasets are useful when building machine learning 
models. Using many redundant features may reduce 
the accuracy of the predictions and the generalization 
ability of the model, as well as dramatically increase 
its overall complexity. 

The paper [7] contains a detailed review of the 
existing methods for feature selection. As stated, there 
are three main types of feature selection techniques: 
filtering, wrapper, and embedded models. Filtering 
methods are a general set of methods that do not in-
volve the use of a specific machine learning algorithm. 
They are based on probability theory and statistical 
approaches and include visual analysis (e.g., construc-
tion of a correlation matrix to identify the features 
that have a weak correlation with the target variable), 
evaluation of features using some statistical criterion 
(variance, correlation, χ2, etc.), and feature ranking 
by significance. In filtering methods, each feature is 
considered separately, so it is not possible to identify 
more complex dependencies in the data, and the re-
sulting subset of features that are most correlated with 
the target will not always be the subset on which the 
prediction accuracy will be the highest.

In addition, the existing implementations of these 
methods often require a choice of a certain threshold 
value to filter out the redundant features, which is quite 
difficult to determine automatically, while ensuring 
equally good quality for datasets that differ in struc-
ture (as in the case of automated machine learning sys-
tems). In general, these methods are more suitable for 
a machine learning process fully controlled by user. 
The main advantage of this class of methods over oth-
er feature selection algorithms is a low computational 
complexity that linearly depends on the total number 
of features and, consequently, high computation speed. 
Moreover, filters can be used when the dimensionality 
of the feature space is larger than the number of ob-
servations in the sample, which is not always possible 
with other methods.

In wrapper methods, the process of feature selec-
tion is based on applying some classifier to different 
subsets of features in the training sample. After select-
ing the optimal subset, the algorithm is tested on the 
dataset that was not involved into selection process. 
This class of methods is divided into two main ap-

proaches: forward and backward selection. In the first 
case, the algorithm starts with an empty subset of fea-
tures to which, at each iteration, the feature that has the 
greatest influence on the quality of the model is added. 
In the second case, the initial subset contains all the 
attributes of the training sample, from which the least 
significant attributes are removed at each iteration. In 
both cases, the process continues until a statistically 
significant improvement in the quality of the model is 
obtained (the stopping criterion is reached). Wrapper 
methods use a greedy search approach to evaluate all 
possible combinations of features using some evalu-
ation criterion (e.g., p-value and determination coef-
ficient (R2) for regression; accuracy, precision, recall 
or F-score for classification), thus having a rather high 
computational complexity. Another problem with this 
approach is that the backward selection method cannot 
be used when the number of features exceeds the num-
ber of observations in the training sample.

Embedded methods combine the advantages 
of filters and wrappers, integrating feature selection 
into the learning process. The most common embed-
ded methods are based on tree-based algorithms. At 
each recursion step, some feature is selected, and the 
sample is divided into smaller subsets. The more child 
nodes in a subset belong to the same class, the more 
informative the feature is considered. In classification 
problems, the partitioning is usually performed either 
according to the Gini coefficient (index) or using the 
information gain, which is based on the concepts of 
entropy and the volume of information. In regression 
problems, the partitioning is performed by a disper-
sion value. In addition to tree-based algorithms, reg-
ularization approaches are also common. The idea of 
regularization approaches to construct an algorithm 
that minimizes not only the model error but also the 
number of variables used. In such cases, both L1-regu-
larization or L2-regularization and their combinations 
are used. These regularization methods reduce some 
model coefficients to zero, which allows removing 
such features from the model. Embedded methods al-
low to identify more complex dependencies in datasets 
and are less prone to overfitting and computationally 
complex than wrapper methods. Even though embed-
ded methods are still more computationally complex 
than filtering methods, this class of methods is best 
suited for automating feature selection.

Another challenge is related to the hyperparam-
eter optimization. Machine learning models often 
include hyperparameters whose values are very im-
portant for achieving high quality models [4]. The hy-
perparameter optimization algorithms work with the 
model as with a black box: only the value of the model 
loss function obtained by training with the considered 
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set of hyperparameters is important, not the algorithm 
itself. In formalized form the problem of hyperparam-
eter optimization can be written in the following way: 
let A be the model of the algorithm characterized by 
hyperparameters . Then, 
the space of hyperparameters associated with it is 

. The goal is to find such set of hy-
perparameters λ* ∈ A with which the given model of 
algorithm A is the most efficient.   

Several methods of automatic hyperparameter 
selection have been proposed by researchers in the 
field of computer science. As stated in one of the pa-
pers discussing the use of automated machine learning 
[8], the simplest ways to optimize hyperparameters are 
grid and random search. Grid and random search are 
uninformed methods, which means that they do not 
learn any information from previous iterations. 

Grid search is a brute-force algorithm in which 
model is trained and evaluated for a complete set of hy-
perparameter combinations. Because of this, increase 
in the size of the hyperparameter search space leads 
to an exponential rise in computational complexity. 
Therefore, this algorithm is often an unsuitable choice 
as it could be inefficient in terms of performance.

In random search a complete set of hyperparam-
eter optimization is replaced by a subset of a randomly 
chosen length. Since length of a hyperparameter set 
is less than in grid search, this algorithm requires less 
computational time, but here comes a risk that the best 
combination of hyperparameters would not be includ-
ed in the tested set.

Recently, such method as Bayesian optimization 
is increasingly used for the hyperparameter optimiza-
tion. Its major difference from the previously present-
ed approaches is that it is an informed method, so the 
tuning algorithm optimizes the choice of parameters 
at each step according to the evaluation of the pre-
vious step. In summary, this method creates a prob-
abilistic model which maps hyperparameters to their 
corresponding estimation probability. Instead of trying 
complete set or subset of hyperparameters, the Bayes-
ian optimization method can converge to the optimal 
hyperparameters. Thus, the best hyperparameters 
can be obtained without examining the entire sample 
space. However, additional time is required to deter-
mine the next hyperparameters to estimate based on 
the results of previous iterations, so this method could 
be slower than random search.

2. Chosen algorithms implementations

The algorithm for preparing a dataset for further 
use in model training consists of four steps:
1. Imputation of missing values.

2. Encoding of categorical features.
3. Feature selection.
4. Data scaling.

Non-categorical features containing more than 
50 percent of missing values are deleted. Categorical 
variables with more than half of the missing values 
are filled with a special mark. For imputing continu-
ous variables, the k nearest neighbors (kNN) method 
based implementation from Scikit-learn library [9] 
called KNNImputer is used. Each sample’s missing 
values are imputed using the mean value from 5 near-
est neighbors found in the training set. The gaps in the 
remaining features are filled with the most popular 
value using SimpleImputer from Scikit-learn library.

The rows of the dataset are shuffled randomly 
before encoding categorical features, as some data-
sets may be sorted according to the value of the tar-
get variable, which can lead to problems when using 
target encoding algorithm. After random shuffling the 
text processing algorithm to determine whether the 
values of the feature are textual representations of 
integer numbers is applied (e.g., “seven” is convert-
ed to 7). Features containing only one unique value 
are removed since they have low effect on the target 
variable. If a feature consists of only two different val-
ues, then ordinal encoding is applied. In other cases, 
the target encoding algorithm from CatBoost library 
called CatBoostEncoder is applied. 

The features are encoded according to the fol-
lowing formula:

                         (1)

where  is a sum of the target value for that 
particular categorical feature (before the current one), 

 is the constant value defined as the ratio of the 
sum of all values of the target variable in the dataset to 
the total number of observations,  is the 
total number of categorical features observed before 
the current one and having the same value as the cur-
rent one. With this approach, the first few observations 
in the dataset always have the statistics of the target 
feature with much higher variance than the subsequent 
ones. To reduce this effect, many random permutations 
of the same data are used to calculate the statistics of 
the target variable, and the final encoding is calculated 
by averaging across these permutations.

As previously discussed, the best approach for 
selecting the most significant features in machine 
learning systems is the embedded methods, so the 
Scikit-learn implementation called SelectFromMod-
el with ElasticNet estimator for regression problems 
and DecisionTreeClassifier estimator for classification 
problems was chosen. At the first step of the feature 
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selection algorithm, a model based on a training sam-
ple is constructed. Then an approach based on feature 
importance calculation is used. Features are consid-
ered unimportant if the corresponding feature impor-
tance values are below a given threshold parameter. 
The threshold is calculated programmatically using 
the median value of importance of all features multi-
plied by a constant as a heuristic. At the last step of the 
algorithm, the features that the algorithm has marked 
as unsignificant are removed.

Feature scaling is based on Scikit-learn Stan-
dardScaler which standardize features by removing 
the mean and scaling to unit variance. The standard 
score of a sample x is calculated as:

                              (2)

where u is the mean of the training samples and s is the 
standard deviation of the training samples.

For hyperparameter optimization an implemen-
tation of the Bayesian optimization method from 
Scikit-optimize library called BayesSearchCV is 
used. The choice of Bayesian optimization method 
was made for reasons of reducing training time and 
increasing the models’ quality. As mentioned earlier, 
grid search is not a suitable choice for automated ma-
chine learning systems because of its high computa-
tional complexity, as it can lead to an excessive load 
on the system when the system is used by a sufficient 
number of users at the same time. Random search, as 
stated before, may not find the best hyperparameter 
combination in a given number of iterations. 

To prove the above statements, a couple of exper-
iments with different number of hyperparameter com-
binations for random search classifier was conducted 
on the breast cancer dataset (https://www.kaggle.com/
datasets/uciml/breast-cancer-wisconsin-data). The re-
sults of hyperparameter optimization on 2160 hyper-
parameter combinations is presented in the Table 1. 
Default algorithms parameters were not changed. As 
can be seen, the grid search is about three times slower 
than the Bayesian optimization and 62 times slower 
than the random search. However, the grid search al-
gorithm gives the best model score, while the random 
search gives the worst. Therefore, to achieve a balance 
between computation time and model quality, Bayes-
SearchCV is a suitable choice.

Table 1
Comparison of hyperparameter optimization  

algorithms from Scikit-learn library.

Algorithm F1 score Elapsed time 
(seconds / s)

GridSearchCV 0.971874 176.38

RandomizedSearchCV 0.959786 2.83

BayesianSearchCV 0.968036 63.71

For model evaluation the Scikit-learn implemen-
tation of Leave-One-Out cross-validation method is 
used. The advantage of this method is that each object 
of the sample participates in the control sample exactly 
once, and the length of the training subsamples is only 
one less than the length of the full sample. The main 
disadvantage of this method is high resource intensity, 
since the learning process is performed as many times 
as number of objects in the sample. Nevertheless, this 
method is the most accurate among all cross-valida-
tion methods because in most other cases (Hold-Out 
Validation, k-fold cross-validation) the training sample 
is divided into fewer parts.

The algorithm for preprocessing prediction data 
is similar to the dataset preparation before model train-
ing:
1.  Imputation of missing values.
2.  Removal of the features that are not presented in 

the training sample after preprocessing.
3.  Encoding of categorical features.
4.  Data scaling.

3. Web application implementation details

A web service (source code: https://github.com/
sirenescx/fastml-web-application) is a system of five 
interrelated parts (Fig. 1):
1.  Web application with a graphical user interface, 

which is responsible for processing user actions, 
data input and output, and forming and sending re-
quests to the API.

2.  A microservice (API) which processes incoming 
requests from a web application and distributes 
data according to the algorithms selected by user.

3.  A microservice for data preprocessing.
4.  Set of microservices with regression and classifica-

tion algorithms for training and prediction.
5.  A database used for storing user data and algo-

rithms and microservices’ settings.
The microservice architecture was chosen for the 

following reasons:
1.  For implementation of a microservice for data pro-

cessing and microservices for machine learning, the 
Python language was chosen because of significant 
number of tools and libraries for data analysis and 
machine learning. However, when it comes to cre-
ating of web services, Python is not the best choice 
due to its low performance compared to most other 
programming languages, as well as the difficulty of 
testing. The microservice architecture provides the 
ability to use different technology stacks for dif-
ferent tasks and allows to easily connect services 
written in different programming languages into a 
common system.
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2.  The microservice architecture allows to extend the 
system functionality without rewriting the existing 
source code which makes future development eas-
ier and faster. 

3.  On certain datasets, usage of some machine learn-
ing algorithm implementations from libraries may 
lead to an infinite loop. Placing the algorithms in 
separate microservices prevents the entire applica-
tion from crashing by using method execution tim-
eouts. In the case when the specified time for meth-
od execution is exceeded, the task is terminated.

One of the most common tabular data formats for 
use in machine learning is CSV. In addition, Microsoft 
Excel is often used to create and edit tables, where files 
have the extension .xlsx. Therefore, the both XLSX 
and CSV file formats are supported.

The first line of the uploaded dataset should con-
tain the names of the columns, the second and the next 
lines should contain the feature description of the ob-
jects (one object per line). Also, by default, it is con-
sidered that the first column of the dataset contains the 
object name. At the same time, the user can specify 
that the first column of the sample loaded also contains 
the feature description of the objects. The output files 
are in CSV format, with a comma as the separator. As 
with user-loaded datasets, the first line of the output 
file contains the column (feature) names. The column 
containing the result of the target variable prediction is 
marked as “target”.

The graphical user interface is simple and 
consists of a set of HTML pages that requires min-
imum user interaction to create, configure, and use 
machine learning models for prediction. The train-
ing or prediction process involves a step-by-step 
navigation through the several web pages of the 
application.

First page of training process requires dataset 
upload and choice of delimiter character if the data 
is presented as a .csv file (screenshot: https://github.
com/sirenescx/DAMDID-data/blob/master/gui/up-
load_train.png). Next page provides an ability to 
choose problem type, target variable and needed 
machine learning algorithms (screenshot: https://
github.com/sirenescx/DAMDID-data/tree/master/
gui/problem_settings). On this page user is also able 
to set custom model parameters for one or more se-
lected models. After training process is set up, user 
is redirected to a web page on which he or she can 
track the progress of learning process (screenshot: 
https://github.com/sirenescx/DAMDID-data/blob/
master/gui/log.png). Once training process is com-
plete, the user will see a table containing the val-
ues of quality metrics for each of the selected algo-
rithms which could be sorted by algorithms names 
or metrics values (screenshot: https://github.com/
sirenescx/DAMDID-data/blob/master/gui/choice.
png). At this stage, the user is prompted to select the 
best models for saving and further use.

Fig. 1. Web service architecture scheme
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The interface of the prediction process is even 
simpler, the user just needs to select one of the saved 
pre-trained models (screenshot: https://github.com/si-
renescx/DAMDID-data/blob/master/gui/results.png), 

upload a dataset (screenshot: https://github.com/sire-
nescx/DAMDID-data/blob/master/gui/predict.png), 
and wait for the prediction process to complete. Then, 
user can download prediction results to personal com-

Fig. 2. Web pages navigation scheme
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puter (screenshot: https://github.com/sirenescx/DAM-
DID-data/blob/master/gui/prediction_results.png). The 
page navigation scheme is presented below (Fig. 2).

To describe an example usage of the web appli-
cation, a regression dataset containing 29 chemical ob-
jects – chalcospinels with ABCX4 composition – with 
108 continuous features was used for training (raw 
training dataset: https://github.com/sirenescx/DAM-
DID-data/blob/master/training_set.csv). This dataset 
contains data about chalcospinel compounds and their 
properties. The value of the target variable (crystal lat-
tice parameter, a, ranges from 7.419 to 8.635 ).

After data preprocessing one feature (E2-67) 
was dropped as non-informative because of a constant 
value of 1.8 (preprocessed training dataset: https://
github.com/sirenescx/DAMDID-data/blob/master/
training_set_processed.csv). Chosen algorithms set 
incuded three regularization methods (L2, L1 and L1/
L2 regularization) and its implementations in Scikit-
learn: Ridge, Lasso and ElasticNet models.

To evaluate the quality of the obtained models 
standard metrics for regression problems were used: 
the coefficient of determination (R2), mean squared 
error (MSE) and mean absolute error (MAE). As 
can be noticed from the results (application output: 
https://github.com/sirenescx/DAMDID-data/blob/
master/metrics.csv) given in Table 2, after applying 
hyperparameter optimization and cross-validation, 
all of the trained models had sufficient quality be-
cause R2 score is close to 1. However, best algorithm 
is Lasso according to MSE value, and Ridge accord-
ing to MAE value.

Conclusion
The popularity of machine learning is growing 

every year, so programs and web services for automat-
ed machine learning seem to be quite a promising area, 
as they make machine learning accessible not only to 
experts, but also to users with a basic understanding of 
the field. In addition, these systems can simplify and 
speed up development while analyzing data.

This paper presents one of the possible approach-
es to automate and simplify training, evaluation and 
obtaining predictions from machine learning algo-
rithms for tabular datasets. The proposed approach is 
based on the development of the web application with 
graphical user interface. 

Existing approaches for filling in missing data, 
encoding categorical variables, feature selection, and 
hyperparameter optimization were analyzed in this 
work. Chosen algorithms, methods, and implementa-
tions were also provided.

The current result of this work is a web appli-
cation with GUI for the tabular data analysis which 
allows users to upload raw tabular dataset in one of 
the supported formats (.xlsx or .csv) and use Scikit-
learn implementations of classification and regression 
machine learning algorithms to train the models or use 
them for making predictions on structurally identical 
data. Data preprocessing, hyperparameter optimiza-
tion and model evaluation are done automatically by 
the web service. However, it is also possible for user 
to set custom model parameters if required.

As a next step, it is planned to add more complex 
solutions of value imputation, support of more regres-
sion and classification algorithms for tabular data from 
Scikit-learn library as well as to add such models from 
Keras library. Since the system can be easily extended 
due to the microservices architecture, it is also planned 
to provide users an ability to add handwritten models 
at a runtime.

In addition, at the time of writing this paper, the 
web application is being tested by real users, which 
allow us to collect a feedback and use it to improve the 
user interface and overall system performance.
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