
55Труды ИСА РАН. Том 73. 1/2023

Introduction
Over the last decade, the level of application of

machine learning has grown considerably [1]. Nowa-
days, it is widely used in the areas such as medicine,
marketing, finance, retail, logistics, robotics and so on
[2, 3]. Today, almost all companies that collect and
store large amounts of data have entire departments
involved in data analysis and machine learning. In ad-
dition, small teams or even individuals are also inter-
ested in using machine learning, because they find data
analysis techniques useful for developing their proj-
ects and research. For example, scientists who could
use the existing data to predict possible values of cer-
tain variables or coefficients for conducting scientific
experiments.

Simple data analysis such as graph plotting,
creating charts and calculating some statistical coef-
ficients can be done using the standard tools such as
Microsoft Excel. But often more complex methods
involving the use of machine learning models are re-

quired. In this case, not only a comprehensive knowl-
edge of linear algebra, mathematical analysis and sta-
tistics is required, but also understanding of machine
learning concepts and coding experience, particularly
in languages such as Python or R, as well as special
frameworks and libraries are needed.

Recently, there is a growing number of automat-
ed machine learning solutions that allow training and
using models for making predictions without writing
code in a programming language but using visualiza-
tion or other methods of user interaction. Nevertheless,
some of these solutions, such as Google AutoML have
been developed for users with significant experience
and are mostly intended to simplify and speed up the
work of machine learning engineers and data scientists
rather than to lower the entry threshold into this area
for non-expert users. Most of the other solutions that
can be successfully used by people with basic domain
knowledge are often designed to solve only some spe-
cific classes of problems, such as computer vision or
text analysis.

This paper presents an approach that allows users
with basic machine learning knowledge to train and

Web Application with GUI for Data Analysis Automation*

M.S. ManakhovaI, V.A. DudarevII

I National Research University Higher School of Economics, Moscow, Russia
II A.A. Baikov Institute of Metallurgy and Materials Science of RAS, Moscow,
Russia

Abstract. In the current digital age, the world has a huge amount of data. Therefore, people are

more and more confronted with the use of such methods as data analysis and machine learning.

Moreover, many people are considering using machine learning algorithms for their own purposes.

However, data analysis is a complex process that can hardly be carried out by people who do not

have sufficient knowledge both in this field and in programming. This paper presents an approach

to give non-expert users the ability to apply machine learning algorithms to their datasets using an

application with a graphical interface. There are a lot of challenges involved in creating ML-solutions,

even if we take advantage of existing ML-algorithms: feature engineering, outliers’ detection, filling

the missing values, ML-method’s hyperparameters optimization and so on. The main point of the

research is to find a balance in solving these complex tasks and to provide a Web-based user inter-

face for unexperienced people to enable them to utilize the power of ML-methods in automatic or

semi-automatic way. The practical outcome is an information system development, that consists of

three interrelated parts: a web application, an API and several microservices that implement ML-al-

gorithms from Scikit-learn library.

Keywords: web Application, Graphical User Interface, data analysis, ML automation.

DOI: 10.14357/20790279230107

* This work was performed under partial financial support from the
Russian Foundation for Basic Research, projects 20-01-00609 and 21-
51-53019, and according to the State Order no. 075-00715-22-00.

56 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных M.S. ManakhovaI, V.A. DudarevII

use different models for obtaining predictions on the
tabular datasets using a graphical interface. The prob-
lems encountered in creating systems for automated
machine learning and approaches to solve them are
also discussed. This work aims to develop a client-serv-
er web application with a graphical user interface for
data analysis, especially for the supervised learning
problems such as regression and classification.

The rest of this paper is organized as follows.
Section 2 discusses related work and common chal-
lenges included in machine learning process. Then,
Section 3 describes the algorithms and methods used
in the implementation. Section 4 contains details about
the implementation of the web application. Finally,
Section 5 provides the conclusion of the work.

1. Literature review

As previously stated, the popularity of solutions
for automated machine learning is growing. The paper
[4] discusses the possible challenges involved in cre-
ating these kinds of solutions.

One of the most challenging problems is the pro-
cess of extracting features from raw data, called fea-
ture engineering. This process often involves handling
missing values, encoding of categorical variables,
feature scaling and selection. It is notable that feature
engineering is not always a simple task even for ex-
perts in machine learning and it is usually performed
manually by empirical methods.

Missing values are one of the most common
problems when it comes to preparing data for use with
machine learning models. Human errors, privacy is-
sues, and other factors can lead to the absence of val-
ues in the dataset. However, missing values require a
correct handling, since most of the models in the exist-
ing machine learning libraries are not capable to work
with the data that contain gaps.

In fact, there is no clear answer regarding how
to handle missing values in datasets. Although, quite
several papers discussing the problem of filling gaps
in a tabular data have been published, most of the pro-
posed solutions were developed for specific tasks and
may not be as useful in other cases. The standard way
to solve this problem is to remove features that contain
many missing values or to fill in the missing values
with some estimate based on other values of the same
feature [5].

Most implementations of machine learning al-
gorithms also require all values in the dataset to be
represented in a numerical form. Because of this, cat-
egorical data must be converted to numerical values
before being used for model training or prediction.
The simplest way to encode categorical features is la-

bel encoding (ordinal encoding). The main idea behind
this method is to associate each category with some
integer number. This method of encoding is rarely
used in practice because of its big disadvantage: it can
add additional dependencies that did not exist in the
original data, which is critical for linear models, and
in general can lead to wrong interpretations of feature
values.

One-hot encoding or dummy encoding is the
modification that solves the problem of the previously
discussed approach. In this algorithm, a new variable,
sometimes called a dummy variable, is created for
each category of a feature, where a binary value (0 or
1) denotes that a particular feature belongs to a certain
category. The main problem with this method and its
existing modifications is that a new attribute is creat-
ed for each unique value of a category variable. Thus,
the number of attributes grows quadratically, so naive
encoding is only applicable when categorical vari-
ables contain a small number of unique values. Anoth-
er problem of naive encoding is that it produces large
number of binary features in the dataset, which can
significantly reduce the quality of models when using
tree-based algorithms (e.g., decision trees or random
forest). In this regard, this algorithm is not suitable for
use in systems for automated machine learning, be-
cause the number of unique values in the categorical
variables in datasets can be quite large.

Another approach to encode categorical variables
is target encoding. The idea of target encoding is to use
the statistics of a target variable to encode a categori-
cal value. According to the theoretical justification for
this approach given in the paper discussing categorical
feature preprocessing scheme [6], the key transforma-
tion used in this method is a transformation that maps
each value of a categorical feature to an estimate of the
probability of occurrence of the target variable.

When categorical features are encoded in the
training sample, the numerical representation of the
categorical feature corresponds to the posterior proba-
bility of occurrence of the target feature, provided that
the categorical variable takes particular value. In the
case of categorical feature encoding in the prediction
sample, the numerical representation corresponds to
the expected value of the categorical variable. Essen-
tially, this means that for each category, the average
value of the target variable is calculated, with which
the category is subsequently encoded. This method
works for both binary classification and regression. For
multiclass classification a similar technique is used,
where a categorical variable is encoded with m – 1
new variables, where m is the number of classes. It
should be noted, that although the author of the arti-
cle claims that the statistics of the target variable are

57Труды ИСА РАН. Том 73. 1/2023

Web Application with GUI for Data Analysis Automation

used to encode the categorical variable, in fact only its
mean value is used. Although the mean value is a suffi-
cient statistic for binary classification, it is not suitable
for regression because it disregards the intra-category
variance of the target variable. In this regard, this algo-
rithm in its pure form is prone to overfitting, so some
modifications are often added to software implementa-
tions to reduce the probability of overfitting.

In most cases, not all the variables in the raw
datasets are useful when building machine learning
models. Using many redundant features may reduce
the accuracy of the predictions and the generalization
ability of the model, as well as dramatically increase
its overall complexity.

The paper [7] contains a detailed review of the
existing methods for feature selection. As stated, there
are three main types of feature selection techniques:
filtering, wrapper, and embedded models. Filtering
methods are a general set of methods that do not in-
volve the use of a specific machine learning algorithm.
They are based on probability theory and statistical
approaches and include visual analysis (e.g., construc-
tion of a correlation matrix to identify the features
that have a weak correlation with the target variable),
evaluation of features using some statistical criterion
(variance, correlation, χ2, etc.), and feature ranking
by significance. In filtering methods, each feature is
considered separately, so it is not possible to identify
more complex dependencies in the data, and the re-
sulting subset of features that are most correlated with
the target will not always be the subset on which the
prediction accuracy will be the highest.

In addition, the existing implementations of these
methods often require a choice of a certain threshold
value to filter out the redundant features, which is quite
difficult to determine automatically, while ensuring
equally good quality for datasets that differ in struc-
ture (as in the case of automated machine learning sys-
tems). In general, these methods are more suitable for
a machine learning process fully controlled by user.
The main advantage of this class of methods over oth-
er feature selection algorithms is a low computational
complexity that linearly depends on the total number
of features and, consequently, high computation speed.
Moreover, filters can be used when the dimensionality
of the feature space is larger than the number of ob-
servations in the sample, which is not always possible
with other methods.

In wrapper methods, the process of feature selec-
tion is based on applying some classifier to different
subsets of features in the training sample. After select-
ing the optimal subset, the algorithm is tested on the
dataset that was not involved into selection process.
This class of methods is divided into two main ap-

proaches: forward and backward selection. In the first
case, the algorithm starts with an empty subset of fea-
tures to which, at each iteration, the feature that has the
greatest influence on the quality of the model is added.
In the second case, the initial subset contains all the
attributes of the training sample, from which the least
significant attributes are removed at each iteration. In
both cases, the process continues until a statistically
significant improvement in the quality of the model is
obtained (the stopping criterion is reached). Wrapper
methods use a greedy search approach to evaluate all
possible combinations of features using some evalu-
ation criterion (e.g., p-value and determination coef-
ficient (R2) for regression; accuracy, precision, recall
or F-score for classification), thus having a rather high
computational complexity. Another problem with this
approach is that the backward selection method cannot
be used when the number of features exceeds the num-
ber of observations in the training sample.

Embedded methods combine the advantages
of filters and wrappers, integrating feature selection
into the learning process. The most common embed-
ded methods are based on tree-based algorithms. At
each recursion step, some feature is selected, and the
sample is divided into smaller subsets. The more child
nodes in a subset belong to the same class, the more
informative the feature is considered. In classification
problems, the partitioning is usually performed either
according to the Gini coefficient (index) or using the
information gain, which is based on the concepts of
entropy and the volume of information. In regression
problems, the partitioning is performed by a disper-
sion value. In addition to tree-based algorithms, reg-
ularization approaches are also common. The idea of
regularization approaches to construct an algorithm
that minimizes not only the model error but also the
number of variables used. In such cases, both L1-regu-
larization or L2-regularization and their combinations
are used. These regularization methods reduce some
model coefficients to zero, which allows removing
such features from the model. Embedded methods al-
low to identify more complex dependencies in datasets
and are less prone to overfitting and computationally
complex than wrapper methods. Even though embed-
ded methods are still more computationally complex
than filtering methods, this class of methods is best
suited for automating feature selection.

Another challenge is related to the hyperparam-
eter optimization. Machine learning models often
include hyperparameters whose values are very im-
portant for achieving high quality models [4]. The hy-
perparameter optimization algorithms work with the
model as with a black box: only the value of the model
loss function obtained by training with the considered

58 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных M.S. ManakhovaI, V.A. DudarevII

set of hyperparameters is important, not the algorithm
itself. In formalized form the problem of hyperparam-
eter optimization can be written in the following way:
let A be the model of the algorithm characterized by
hyperparameters . Then,
the space of hyperparameters associated with it is

. The goal is to find such set of hy-
perparameters λ* ∈ A with which the given model of
algorithm A is the most efficient.

Several methods of automatic hyperparameter
selection have been proposed by researchers in the
field of computer science. As stated in one of the pa-
pers discussing the use of automated machine learning
[8], the simplest ways to optimize hyperparameters are
grid and random search. Grid and random search are
uninformed methods, which means that they do not
learn any information from previous iterations.

Grid search is a brute-force algorithm in which
model is trained and evaluated for a complete set of hy-
perparameter combinations. Because of this, increase
in the size of the hyperparameter search space leads
to an exponential rise in computational complexity.
Therefore, this algorithm is often an unsuitable choice
as it could be inefficient in terms of performance.

In random search a complete set of hyperparam-
eter optimization is replaced by a subset of a randomly
chosen length. Since length of a hyperparameter set
is less than in grid search, this algorithm requires less
computational time, but here comes a risk that the best
combination of hyperparameters would not be includ-
ed in the tested set.

Recently, such method as Bayesian optimization
is increasingly used for the hyperparameter optimiza-
tion. Its major difference from the previously present-
ed approaches is that it is an informed method, so the
tuning algorithm optimizes the choice of parameters
at each step according to the evaluation of the pre-
vious step. In summary, this method creates a prob-
abilistic model which maps hyperparameters to their
corresponding estimation probability. Instead of trying
complete set or subset of hyperparameters, the Bayes-
ian optimization method can converge to the optimal
hyperparameters. Thus, the best hyperparameters
can be obtained without examining the entire sample
space. However, additional time is required to deter-
mine the next hyperparameters to estimate based on
the results of previous iterations, so this method could
be slower than random search.

2. Chosen algorithms implementations

The algorithm for preparing a dataset for further
use in model training consists of four steps:
1. Imputation of missing values.

2. Encoding of categorical features.
3. Feature selection.
4. Data scaling.

Non-categorical features containing more than
50 percent of missing values are deleted. Categorical
variables with more than half of the missing values
are filled with a special mark. For imputing continu-
ous variables, the k nearest neighbors (kNN) method
based implementation from Scikit-learn library [9]
called KNNImputer is used. Each sample’s missing
values are imputed using the mean value from 5 near-
est neighbors found in the training set. The gaps in the
remaining features are filled with the most popular
value using SimpleImputer from Scikit-learn library.

The rows of the dataset are shuffled randomly
before encoding categorical features, as some data-
sets may be sorted according to the value of the tar-
get variable, which can lead to problems when using
target encoding algorithm. After random shuffling the
text processing algorithm to determine whether the
values of the feature are textual representations of
integer numbers is applied (e.g., “seven” is convert-
ed to 7). Features containing only one unique value
are removed since they have low effect on the target
variable. If a feature consists of only two different val-
ues, then ordinal encoding is applied. In other cases,
the target encoding algorithm from CatBoost library
called CatBoostEncoder is applied.

The features are encoded according to the fol-
lowing formula:

 (1)

where is a sum of the target value for that
particular categorical feature (before the current one),

 is the constant value defined as the ratio of the
sum of all values of the target variable in the dataset to
the total number of observations, is the
total number of categorical features observed before
the current one and having the same value as the cur-
rent one. With this approach, the first few observations
in the dataset always have the statistics of the target
feature with much higher variance than the subsequent
ones. To reduce this effect, many random permutations
of the same data are used to calculate the statistics of
the target variable, and the final encoding is calculated
by averaging across these permutations.

As previously discussed, the best approach for
selecting the most significant features in machine
learning systems is the embedded methods, so the
Scikit-learn implementation called SelectFromMod-
el with ElasticNet estimator for regression problems
and DecisionTreeClassifier estimator for classification
problems was chosen. At the first step of the feature

59Труды ИСА РАН. Том 73. 1/2023

Web Application with GUI for Data Analysis Automation

selection algorithm, a model based on a training sam-
ple is constructed. Then an approach based on feature
importance calculation is used. Features are consid-
ered unimportant if the corresponding feature impor-
tance values are below a given threshold parameter.
The threshold is calculated programmatically using
the median value of importance of all features multi-
plied by a constant as a heuristic. At the last step of the
algorithm, the features that the algorithm has marked
as unsignificant are removed.

Feature scaling is based on Scikit-learn Stan-
dardScaler which standardize features by removing
the mean and scaling to unit variance. The standard
score of a sample x is calculated as:

 (2)

where u is the mean of the training samples and s is the
standard deviation of the training samples.

For hyperparameter optimization an implemen-
tation of the Bayesian optimization method from
Scikit-optimize library called BayesSearchCV is
used. The choice of Bayesian optimization method
was made for reasons of reducing training time and
increasing the models’ quality. As mentioned earlier,
grid search is not a suitable choice for automated ma-
chine learning systems because of its high computa-
tional complexity, as it can lead to an excessive load
on the system when the system is used by a sufficient
number of users at the same time. Random search, as
stated before, may not find the best hyperparameter
combination in a given number of iterations.

To prove the above statements, a couple of exper-
iments with different number of hyperparameter com-
binations for random search classifier was conducted
on the breast cancer dataset (https://www.kaggle.com/
datasets/uciml/breast-cancer-wisconsin-data). The re-
sults of hyperparameter optimization on 2160 hyper-
parameter combinations is presented in the Table 1.
Default algorithms parameters were not changed. As
can be seen, the grid search is about three times slower
than the Bayesian optimization and 62 times slower
than the random search. However, the grid search al-
gorithm gives the best model score, while the random
search gives the worst. Therefore, to achieve a balance
between computation time and model quality, Bayes-
SearchCV is a suitable choice.

Table 1
Comparison of hyperparameter optimization

algorithms from Scikit-learn library.

Algorithm F1 score Elapsed time
(seconds / s)

GridSearchCV 0.971874 176.38

RandomizedSearchCV 0.959786 2.83

BayesianSearchCV 0.968036 63.71

For model evaluation the Scikit-learn implemen-
tation of Leave-One-Out cross-validation method is
used. The advantage of this method is that each object
of the sample participates in the control sample exactly
once, and the length of the training subsamples is only
one less than the length of the full sample. The main
disadvantage of this method is high resource intensity,
since the learning process is performed as many times
as number of objects in the sample. Nevertheless, this
method is the most accurate among all cross-valida-
tion methods because in most other cases (Hold-Out
Validation, k-fold cross-validation) the training sample
is divided into fewer parts.

The algorithm for preprocessing prediction data
is similar to the dataset preparation before model train-
ing:
1. Imputation of missing values.
2. Removal of the features that are not presented in

the training sample after preprocessing.
3. Encoding of categorical features.
4. Data scaling.

3. Web application implementation details

A web service (source code: https://github.com/
sirenescx/fastml-web-application) is a system of five
interrelated parts (Fig. 1):
1. Web application with a graphical user interface,

which is responsible for processing user actions,
data input and output, and forming and sending re-
quests to the API.

2. A microservice (API) which processes incoming
requests from a web application and distributes
data according to the algorithms selected by user.

3. A microservice for data preprocessing.
4. Set of microservices with regression and classifica-

tion algorithms for training and prediction.
5. A database used for storing user data and algo-

rithms and microservices’ settings.
The microservice architecture was chosen for the

following reasons:
1. For implementation of a microservice for data pro-

cessing and microservices for machine learning, the
Python language was chosen because of significant
number of tools and libraries for data analysis and
machine learning. However, when it comes to cre-
ating of web services, Python is not the best choice
due to its low performance compared to most other
programming languages, as well as the difficulty of
testing. The microservice architecture provides the
ability to use different technology stacks for dif-
ferent tasks and allows to easily connect services
written in different programming languages into a
common system.

60 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных M.S. ManakhovaI, V.A. DudarevII

2. The microservice architecture allows to extend the
system functionality without rewriting the existing
source code which makes future development eas-
ier and faster.

3. On certain datasets, usage of some machine learn-
ing algorithm implementations from libraries may
lead to an infinite loop. Placing the algorithms in
separate microservices prevents the entire applica-
tion from crashing by using method execution tim-
eouts. In the case when the specified time for meth-
od execution is exceeded, the task is terminated.

One of the most common tabular data formats for
use in machine learning is CSV. In addition, Microsoft
Excel is often used to create and edit tables, where files
have the extension .xlsx. Therefore, the both XLSX
and CSV file formats are supported.

The first line of the uploaded dataset should con-
tain the names of the columns, the second and the next
lines should contain the feature description of the ob-
jects (one object per line). Also, by default, it is con-
sidered that the first column of the dataset contains the
object name. At the same time, the user can specify
that the first column of the sample loaded also contains
the feature description of the objects. The output files
are in CSV format, with a comma as the separator. As
with user-loaded datasets, the first line of the output
file contains the column (feature) names. The column
containing the result of the target variable prediction is
marked as “target”.

The graphical user interface is simple and
consists of a set of HTML pages that requires min-
imum user interaction to create, configure, and use
machine learning models for prediction. The train-
ing or prediction process involves a step-by-step
navigation through the several web pages of the
application.

First page of training process requires dataset
upload and choice of delimiter character if the data
is presented as a .csv file (screenshot: https://github.
com/sirenescx/DAMDID-data/blob/master/gui/up-
load_train.png). Next page provides an ability to
choose problem type, target variable and needed
machine learning algorithms (screenshot: https://
github.com/sirenescx/DAMDID-data/tree/master/
gui/problem_settings). On this page user is also able
to set custom model parameters for one or more se-
lected models. After training process is set up, user
is redirected to a web page on which he or she can
track the progress of learning process (screenshot:
https://github.com/sirenescx/DAMDID-data/blob/
master/gui/log.png). Once training process is com-
plete, the user will see a table containing the val-
ues of quality metrics for each of the selected algo-
rithms which could be sorted by algorithms names
or metrics values (screenshot: https://github.com/
sirenescx/DAMDID-data/blob/master/gui/choice.
png). At this stage, the user is prompted to select the
best models for saving and further use.

Fig. 1. Web service architecture scheme

61Труды ИСА РАН. Том 73. 1/2023

Web Application with GUI for Data Analysis Automation

The interface of the prediction process is even
simpler, the user just needs to select one of the saved
pre-trained models (screenshot: https://github.com/si-
renescx/DAMDID-data/blob/master/gui/results.png),

upload a dataset (screenshot: https://github.com/sire-
nescx/DAMDID-data/blob/master/gui/predict.png),
and wait for the prediction process to complete. Then,
user can download prediction results to personal com-

Fig. 2. Web pages navigation scheme

62 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных M.S. ManakhovaI, V.A. DudarevII

puter (screenshot: https://github.com/sirenescx/DAM-
DID-data/blob/master/gui/prediction_results.png). The
page navigation scheme is presented below (Fig. 2).

To describe an example usage of the web appli-
cation, a regression dataset containing 29 chemical ob-
jects – chalcospinels with ABCX4 composition – with
108 continuous features was used for training (raw
training dataset: https://github.com/sirenescx/DAM-
DID-data/blob/master/training_set.csv). This dataset
contains data about chalcospinel compounds and their
properties. The value of the target variable (crystal lat-
tice parameter, a, ranges from 7.419 to 8.635).

After data preprocessing one feature (E2-67)
was dropped as non-informative because of a constant
value of 1.8 (preprocessed training dataset: https://
github.com/sirenescx/DAMDID-data/blob/master/
training_set_processed.csv). Chosen algorithms set
incuded three regularization methods (L2, L1 and L1/
L2 regularization) and its implementations in Scikit-
learn: Ridge, Lasso and ElasticNet models.

To evaluate the quality of the obtained models
standard metrics for regression problems were used:
the coefficient of determination (R2), mean squared
error (MSE) and mean absolute error (MAE). As
can be noticed from the results (application output:
https://github.com/sirenescx/DAMDID-data/blob/
master/metrics.csv) given in Table 2, after applying
hyperparameter optimization and cross-validation,
all of the trained models had sufficient quality be-
cause R2 score is close to 1. However, best algorithm
is Lasso according to MSE value, and Ridge accord-
ing to MAE value.

Conclusion
The popularity of machine learning is growing

every year, so programs and web services for automat-
ed machine learning seem to be quite a promising area,
as they make machine learning accessible not only to
experts, but also to users with a basic understanding of
the field. In addition, these systems can simplify and
speed up development while analyzing data.

This paper presents one of the possible approach-
es to automate and simplify training, evaluation and
obtaining predictions from machine learning algo-
rithms for tabular datasets. The proposed approach is
based on the development of the web application with
graphical user interface.

Existing approaches for filling in missing data,
encoding categorical variables, feature selection, and
hyperparameter optimization were analyzed in this
work. Chosen algorithms, methods, and implementa-
tions were also provided.

The current result of this work is a web appli-
cation with GUI for the tabular data analysis which
allows users to upload raw tabular dataset in one of
the supported formats (.xlsx or .csv) and use Scikit-
learn implementations of classification and regression
machine learning algorithms to train the models or use
them for making predictions on structurally identical
data. Data preprocessing, hyperparameter optimiza-
tion and model evaluation are done automatically by
the web service. However, it is also possible for user
to set custom model parameters if required.

As a next step, it is planned to add more complex
solutions of value imputation, support of more regres-
sion and classification algorithms for tabular data from
Scikit-learn library as well as to add such models from
Keras library. Since the system can be easily extended
due to the microservices architecture, it is also planned
to provide users an ability to add handwritten models
at a runtime.

In addition, at the time of writing this paper, the
web application is being tested by real users, which
allow us to collect a feedback and use it to improve the
user interface and overall system performance.

References

1. Sarker, I.H. 2021. Machine Learning: Algorithms,
real-world applications and research directions.
SN Computer Science 2. Available at: https://doi.
org/10.1007/s42979-021-00592-x (accessed No-
vember 15, 2021).

2. Kumar Y., Kaur K., Singh G. 2020. Machine learn-
ing aspects and its applications towards different
research areas. 2020 International Conference on
Computation, Automation and Knowledge Man-
agement (ICCAKM) Proceedings. Dubai. 150-156.

3. Angra S., Ahuja S. 2017. Machine learning and its
applications: A review. 2017 International Confer-
ence on Big Data Analytics and Computational In-
telligence (ICBDAC) Proceedings. Chirala. 57-60.

4. Santu S. K. K., Hassan M. M., Smith M. J., Xu L.,
Zhai C., Veeramachaneni K. 2022. AutoML to Date

Table 2
Model evaluation results

Algorithm R2 MSE MAE

Ridge 0.987098625135458 0.0008175182548120166 0.01915270571705796

Lasso 0.987187519807067 0.0008118852879725164 0.021722537383973752

ElasticNet 0.986884345202036 0.0008310964787650111 0.02216231766619828

63Труды ИСА РАН. Том 73. 1/2023

Web Application with GUI for Data Analysis Automation

and Beyond: Challenges and Opportunities. ACM
Computing Surveys (CSUR) 54(8). Available at:
https://doi.org/10.1145/3470918 (accessed No-
vember 17, 2022).

5. Harrison M., eds. 2019. Machine Learning Pocket
Reference: Working with Structured Data in Python.
1st ed. Sebastopol, CA, USA: O’Reilly Media. 320 p.

6. Micci-Barreca D. 2001. A preprocessing scheme for
high-cardinality categorical attributes in classification
and prediction problems. SIGKDD Explorations 3(1).
Available at: https://doi.org/10.1145/507533.507538
(accessed March 31, 2022).

7. Jović A., Brkić K., Bogunović N. 2015. A review
of feature selection methods with applications.

2015 38th International Convention on Infor-
mation and Communication Technology, Elec-
tronics and Microelectronics (MIPRO). Opatija.
1200-1205.

8. Waring J., Lindvall C., Umeton R. 2020. Automat-
ed machine learning: Review of the state-of-the-art
and opportunities for healthcare. Artificial Intelli-
gence in Medicine 104. Available at: https://doi.
org/10.1016/j.artmed.2020.101822 (accessed No-
vember 21, 2021).

9. Pedregosa F. et al. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning
Research 12. Available at: https://doi.org/10.48550/
arXiv.1201.0490 (accessed May 12, 2022).

M.S. Manakhova. National Research University Higher School of Economics, 11 Pokrovsky boul., Moscow,
109028, Russia, e-mail: mmanakhova@hse.ru
V.A. Dudarev. PhD, A.A. Baikov Institute of Metallurgy and Materials Science of RAS, 49, Leninsky pr.,
Moscow, 119334, Russia, e-mail: vic@imet.ac.ru (correspondent author)

