An Ethereum Based Attribute-Based Access Control for loT

M.A. MaALLA!, S.V. BEZZATEEV"

' ITMO University, Saint Petersburg, Russia
I Saint Petersburg State University of Aerospace Instrumentation,

Saint Petersburg, Russia

AHHOTauuma. An Ethereum-based integrated access control is proposed in this paper to provide a
scalable access control since the policies are not related to users, instead they are related to the
attributes which provide more generic and scalable way to handle the increase of users in the future.
Proposed Ethereum-based ABAC framework includes several principal elements: users, Ethereum,
a ChainLink gateway, IPSF, and devices. This Ethereum-based system utilizes smart contracts (SCs)
to facilitate access control like AccessRequestContract, AdminPolicyManager, loTDataManager,
PolicyEvaluator, IPFSDataHandler, and ChainLinkOracleAdapter. Storing data on distributed system
like IPFS and using Chainlink to handle communications between on/off-chain brings more efficient to
the proposed model. Together, these components enable our proposed model to deliver distributed,
efficient, and immutable access control management for the loT devices.

KnioueBble cnoBa: Ethereum, Blockchain, ABAC, Chainlink, IPFS.

DOI: 10.14357/20790279240104 EDN: IBRCUX

Introduction

The expansion of 10T sphere makes it so difficult
to keep up with all the new security risks and attack
trends. Moreover, it has become essential to come up
with a more efficient access control mechanism that is
generic and dynamic to not be applicable only to certain
IoT devices and also to be scalable to service wide range
of users. However, with the limited computing capabil-
ity of most of the IoT devices, it’s essential to shift the
processing from IoT devices to other component in the
system, Attributes-based access control is a great, sim-
ple and scalable type of access control that fits the need
of the system, and it’s based on attributes instead of us-
ers, which can be different types of attributes that makes
the system more scalable and dynamic [1]. However,
this access control alone is not immune and it’s hard
to keep the integrity of the access management, Inte-
grating this technique with blockchain technology like
Ethereum, deliver the immutability required for such
system and also the decentralization and transparent due
to the characteristics of the blockchain technology[2]
[3]. The issue of this system alone is where should we
store the data related to the access management, securi-
ty policies, and user management, this issue is resolved
by using a decentralized system IPFS which is designed
for distributed peer-to-peer sharing which solve the
centralization problem. IPFS offers a decentralized way

Tpyabl WCA PAH. Tom 74. 1/2024

of storing and sharing data, enhancing efficiency and
speed by retrieving files from the nearest node. It resists
censorship, reduces redundancy, and provides a more
robust, version-controlled system for a persistent and
resilient internet. This technology is particularly benefi-
cial for decentralized applications, content distribution,
and digital archiving [4].

We can communicate with this IPFS network by
using ChainLink which connects existing systems to
any public or private blockchain and enables secure
cross-chain communication, in this way we shift stor-
ing data on-chain to off-chain IPFS in secure way
using ChainLink and provide better performance on
Ethereum network[5].

1. Proposed Model

Our proposed model is an innovative and solid
access control that combines between the scalability of
ABAC and immutability and transparency of Block-
chain designed for IoT. This model is integrated with
IPFS (InterPlanetary File System) through ChainLink,
is a novel approach that provide efficient, transparent,
decentralized, immutable access control. In this mod-
el, we use the traditional ABAC to provide a scalable
access control, the whole management and mechanism
process is done by the blockchain network through

29

UHdopmaumnoHHbIe TexHonorum

M.A. Maalla, S.V. Bezzateev

SCs, which brings immutability to the system, all re-
quired data for the model is stored on IPFS decentral-
ized system, and the whole communication between
on/off-chain is controlled by SCs.

Blockchain is the core element in the model
since it controls the whole process, verifies the attrib-
utes provided by the users, grants/denies the access,
and also user management and all other data related to
the objects on IPFS [6].

One of the innovative aspects of this model is
the integration with Chainlink, a decentralized ora-
cle network. As shown in Figure 1, This integration
allows the blockchain network to communicate with
off-chain services. Chainlink oracles provide a bridge
between these data stored on IPFS and the block-
chain network, since we can’t store all data on block-
chain and we need a third party to access the storing
systems. This ensures that the AC system can access
up-to-date and accurate information about users and
objects, which is essential for grant/deny accessing
the objects [7][8].

loT device

request access

Ethereum
)l

d Smart Contracts
Access Policy

Users

A

grant/deny access

.

e

A 4

use ChainLink to access external resources

£

URL to device aftributes

or not authorized

v

IPES

Checking Attributes
Checking Policy

Fig. 1. The system flow

1.1. ABAC Model and Requirements
Attributes can be grouped , symbolized as A €
{S, O, P, E} [7][9], where A = {name: value}:
+ Ssignifies the subject’s attribute, which can be pre-
sented as an ID, profession... etc.
* O pertains to the object’s attribute. Which can be IP
address, category, device...etc.
* P relates to the permission attribute, like read,
write, delete, or executing.

30

* E is the environment’s attribute, like time, date,
physical location... etc.

1.2. Policy Definition

We represent the policy as a generic equation
that accommodates various combinations of attributes
from the sets S, O, P, and E, we use logical operators
to encapsulate the possible conditions. Each policy P,
can be thought of as a logical statement that combines
conditions on subject attributes S, object attributes O,
permission attributes P, and environmental attributes E.

Let’s denote each set of attributes as fol-
lows: S ={s1,55, .., Sm} 0 ={04,0,,...,0,},
P ={py,p2 - Pr}, and E = {e, e, ... , e}, A gener-
ic policy P, can be represented as a logical statement
combining elements from these sets:

P = (C(8) ACo(0) A Cy(P) ACe(E)) = AccessGranted

Where: Cs(S), C,(0),Cp(P) and C.(E) are con-
ditions or combinations of conditions applied to the
respective attribute sets.

1.3. Policy Evaluating

We represent this step by EvaluatePolicy pro-
cedure which is done by SCs to assure the validity of
the attributes, as an equation for evaluating whether
all attributes are correct, we can define it in a logical
format. Let’s denote the policy as a set of conditions
C ={cy,c, ..,cp}and the attributes provided in the
access request as 4 = {a,ay,...,a,}. Each ¢, corre-
sponds to a condition in the policy, and each a, corre-
sponds to an attribute in the request.

n
EvaluatePolicy(C, A) = /\(ci o a;)
i=1

This equation states that EvaluatePolicy will re-
turn true if and only if each condition ci in the policy
matches its corresponding attribute ai in the access re-
quest. The operator A denotes a logical AND across
all conditions, ensuring that the function returns true
only when every single condition ¢, exactly matches
the corresponding attribute a..

1.4. Smart Contracts

The SC is the core of our system since it con-
trols the whole process. There are six SCs employed
to achieve this model:

1. AccessRequestContract: Handles user access re-
quests and communicates with policy evaluation.
» submitAccessRequest(attributes): Users send
the attributes to the blockchain network.
+ retrievePolicy(): Retrieves the relevant policy
matching the submitAccessRequest for the uers.
» requestEvaluation(): Initiates the policy evalu-
ation process.
2. AdminPolicyManager: Allows admins to manage
the whole mechanism.

Tpyabl NCA PAH. Tom 74. 1/2024

An Ethereum Based Attribute-Based Access Control for loT

+ addPolicy(policyData): Add a new policies .

+ updatePolicy(policyld, newPolicyData): Up-
date an existing policy.

» deletePolicy(policyld): Remove an existing
policy.

« viewPolicy(policyld): View details of a specific
policy.

3. loTDataManager: Manages data related to objects.

* addloTDevice(deviceData): Register a new ob-
ject.

« updateloTDevice(deviceld, newDeviceData):
Update details of an existing object.

* deleteloTDevice(deviceld): Remove an object
from the system.

« getloTDevicelnfo(deviceld): Retrieve informa-
tion about a specific object.

4. PolicyEvaluator: Evaluates access requests against
policies.

» evaluatePolicy(userAttributes, policy): Check
the attributes and the policies and make a deci-
sion to grant/deny access.

5. IPFSDataHandler: Interfaces with IPFS for data re-
trieval and storage.

+ storeData(data): Store data on IPFS.

+ retrieveData(hash): Retrieve data from IPFS
using its hash.

6. ChainLinkOracleAdapter: Facilitates communica-
tion with ChainLink oracles for off-chain data.

» requestDataFromOracle(dataRequest): Request
data from an off-chain source via ChainLink.

+ receiveDataFromOracle(): Receive data from
ChainLink oracle.

1.5. Integration with IPFS

To detail the integration of our model with IPFS,
let’s construct an algorithm that illustrates the process.
This algorithm will include the functions and steps
necessary to interact with IPFS through the hashes
only which is stored on the blockchain network, and
getting object’s data from IPFS using the same hash
stored on blockchain as in fig. 2.

1.6. ChainLink Oracle Integration

Integrating Chainlink oracles is a necessity for
our system, which will interact with the Chainlink net-
work to retrieve or send data to external sources. Here
is a LaTeX representation of the algorithm for integrat-
ing Chainlink oracles with our SC as shown in fig. 3:

In this way we connect the Ethereum platform
with IPFS network and we provide on/off-chain com-
munication in efficient way.

2. Security Considerations

Security is a critical aspect of our system involv-
ing Ethereum blockchain, IPFS, and Chainlink oracles

Tpyabl WCA PAH. Tom 74. 1/2024

Algorithm 1 IPFS Integration Algorithm
1: procedure PREPAREDATA (data)
serializedData «+ serialize(data)
return serialized Data
: procedure UPLOADTOIPFS(serialized Data)
ipfsHash + IPFS.upload(serialized Data)
6 return ipfsHash
7. procedure STOREIPFSHASHINCONTRACT (record I D, ipfsHash)
8 txl D + EthereumSmartContract.storeHash(record! D, ipfsHash)
9 return tr/D
10: procedure GETIPFSHasuFromMCoNTRACT (recordl D)
11 ipfsHash + EthereumSmartContract.getHash(recordl[})
12 return ipfsHash
13: procedure RETRIEVEDATAFROMIPFS(ipfsHash)
14: data + IPFS.fetch(ipfsHash)
15 return data
i data + " Policy or loT Device Information”
17: recordl DD + 7 UniqueldentifierForData”
18: serializedData +— PREPAREDATA (data)
19: ipfsHash + UPLOADTOIPFS(serializedData)
: STOREIPFSHAsSHINCONTRACT (record] D, ipfsHash)
21 retrievedHash + GETIPFSHasuFroMConTRACT(recordID)
retrieved Data «+— RETRIEVEDATAFROMIPFS(retricved Hash)

g

b
I

Fig. 2. IPFS Integration Algorithm
for access control in IoT environments. We consider

Algorithm 2 Chainlink Oracle Integration for Data Retrieval
1: procedure REQUESTDATAFROMORACLE(request Data)

job 1D for the task

VK token payment amount

2 jobld + specify Chai

3 payment + specify L

4: oracleAddress + specify the Chainlink oracle contract address

chainlink Request « create a Chainlink request structure

chainlinkRequest.add(” get”, request Data.apil/rl)

chainlink Request.add(” path™ , request Data.json Path)

requestld « sendChainlinkRequest To(oracle Address, chainlink Request, payment)

9 return request]d

10: procedure RECEIVEDATA(requestld, callback Function)

11: fulfill Oracle response

12: data + read the data sent by the Chainlink oracle

13: callback Function(data)

14: requestData + structure with API URL and JSON path

15: requestld +— REQUESTDATAFROMORACLE(request Data)
initiate the request to the Chainlink oracle

16: RE EDATA(requestId, processRetrievedData) b Callback function to

process data

&

& This will

Fig. 3. Chainlink Integration

the following when we want to address and maintain
the security of our model:

2.1. Data Confidentiality

We can achieve that by storing encrypted ver-
sion of the data by AES algorithm and keep the corre-
sponding hash on the blockchain network. And for key
management, we can use blockchain network itself for
secure distribution of the encrypted keys.

According to that we can update Algorithm 1
mentioned earlier in fig. 2 to include AES-encryption
to the data stored on IPFS, and the updated version of
the algorithm is shown in fig. 4:

The updated algorithm for integrating IPFS
with Ethereum now incorporates additional steps to
enhance data security significantly. Firstly, data is
encrypted using AES before being uploaded to IPFS
ensuring the data remains secure and confidential.
Upon retrieval from IPFS, this data is then decrypt-
ed, allowing for secure access to the original infor-
mation. To facilitate this, the algorithm also includes
a robust procedure for the distribution and retrieval
of AES keys through Ethereum SCs. This method

31

UHdopMaLMOHHbIE TeXHOMornm

M.A. Maalla, S.V. Bezzateev

Algorithm 3 Integration of IPFS with Ethereum using AES Encryption
1. procedure ENCRYPTDATA (data, aesKey)
2 encryptedData + AES.encrypt(data, aesKey)
3 return encrypted Data
4 procedure DECRYPTDATA(cncryptedData, acs Key)
5 data + AES.decrypt(encrypted Data, aesKey)
6 return data
7 procedure DISTRIBUTEAESKEY (aesK ey, authorized Entities)
& keyHash « EthereumSmartContract.storeKey(aesKey, authorizedEntities)
9 return keyHash
10: procedure RETRIEVEAESKEY (keyHash, entityl D)
11 aesK ey + EthereumSmartContract . getKey(keyHash, entitylD)
12: return aesKey
13 procedure PREPAREDATA(data, aesKey)

14 encrypted Data « ENCRYPTDATA(data, aesKey)
15 serialized Data « serialize(encrypted Data)
16: return serialized Data

17 procedure UrLOADTOIPFS(serialized Data)
18 ipfsHash « IPFS.upload(serinlized Data)

19: return ipfsHash
20: procedure STOREIPFSHASHINCONTRACT(record] D ip fsHash)
21 tzl) < EthereumSmartContract.storeHash(recordl D, ipfsHash)

22 return txf D)

23 procedure GETIPFSHASHFROMCONTRACT (recordl 1)

24: ipfsHash « EthereunSmartContract.getHash(recordl D)
25 return ipfsHash

26: procedure RETRIEVEDATAFROMIPFS(ipfsHash, aesKey)

27 encryptedData « IPFS.fetch(ipfsHash)

28: data « DECRYPTDATA(encrypted Data, aesKey)

29, return dota

30. data + " Policy or IoT Device Information”

31 recordl D « " UniqueldentifierFor Data”

32 aesiey + "AESKeyForEneryption™

33 authorized Entities + " List of Authorized Entity 1Ds”

31 keyHash «+ DisTRIBUTEAESKEY (aes Key, authorized Entities)
35 serializedData + PREPAREDATA (data, aesKey)

36 ipfsHash « UrPLOADTOIPFS(serializedData)

a7 STOREIPFSHAsnINCONTRACT (recordI D, ipfsHash)

38 retrievedHash + GETIPFSHASHFROMCONTRACT(recordID)
30: retrieved Key + RETRIEVEAESKEY(keyHash, ™ YourEntityID™)
a0: refrieved Data +— RETRIEVEDATAFROMIPFS(retrievedHash, retrieved Key)

&

Fig. 4. Integration of IPFS with Ethereum using AES

guarantees that only authorized entities have access
to these keys, thereby maintaining the integrity and
confidentiality of the data throughout the process.

2.2. Hashing and Data Integrity

The concept of using IPFS hashes could indirect-
ly ensure data integrity since IPFS generates a unique
hash for each piece of data based on its content. How-
ever, additional cryptographic hash functions (like
SHA-256) for pre-encryption integrity checks could
be used so we can add another layer of integrity to the
data delivered by the IPFS, and we only care about that
part of the system, since the integrity of data managed
by Ethereum, and SCs are already reserved due to the
nature of blockchain itself.

3. Performance Analysis

To assess the performance and viability of our
model, we utilized a PC equipped with an Intel i7 pro-
cessor (2.60GHz) and 16 GB of RAM for the proto-
type implementation. For the development of smart
contracts, the Solidity language was used. These smart
contracts were created using Solidity and deployed on
the Goerli testnet, which serves as a testing platform
for Ethereum smart contract development.

32

In our experiment, we quantified the cost time
expense associated with smart contracts’ procedures
deployed on the Goerli testnet. The specific contracts
examined included AccessRequestContract, AdminPol-
icyManager, loTDataManager, PolicyEvaluator, IPFS-
DataHandler, and ChainLinkOracleAdapter.

The performance tests have been conducted by
different number of concurrent accesses to the six

Cost Time for AccessRequestContract

»
20
1
10
5 I
o mm I mm | . .
10 s 100 500

number of users

Cost Time (Seconds)

WsubmitAccesRequest W retrievePolicy M requestEvauation

Fig. 5. Cost Time for AccessRequestContract

CostTime for AdminPolicyManager

©
2y
£
F I
10
, HElm= II [| I I
sa 200 so0

10
P 2t e

makPoiy mupdssPoicy m deletePoicy mvienPs

Fig. 6. Cost Time for AdminPolicyManager

CostTime for loTDataManager

30
»
) I I
0 100 s00

10

Cost Time (Seconds]

number of users

maddoTDevice mupdateioTDevice m deleteloTDevice m getioTDeviceinfo

Fig. 7. Cost Time for loTDataManager

Cost Time for PolicyEvaluator

0
35
El
2
2
1
10
5
— L
50 100 500

number of users

R]

CostTime (Seconds)

Fig. 8. Cost Time for PolicyEvaluator

Tpyobl NCA PAH. Tom 74. 1/2024

An Ethereum Based Attribute-Based Access Control for loT

CostTime for IPFSDataHandler

50 100 500

numbes of users

Cost Time (Secands)
s w oo om

10

mstoreDas W retrievedaa

Fig. 9. Cost Time for IPFSDataHandler

Cost Time for ChainLinkOracleAdapter

60
) I I I I I
o = .

50 100 500

10

Cost Time iSeconds)

number of users

HrequestDatFromOracle MreceiveDaaFromOracle

Fig. 10. Cost Time for ChainLinkOracleAdapter

smart contracts with some test data. Those numbers
are 10, 50, 100, 500 requests and the results of cost
time (in seconds) were measured for each smart con-
tract as shown in fig. 5-10.

The results show the cost time for calling each
procedure in the six smart contracts, which is con-
sidered acceptable considering the complexity of the
deployed system. We can notice that the cost time of
each procedure differs due to the differences in com-
plexity of the contract, the more complex the smart
contract, the more computational resources are needed
to execute it. This includes the number of functions,
the complexity of the logic within those functions, and
the amount of data being processed.

Conclusion

The paper presents an innovative and solid access
control that combines the scalability of ABAC and im-
mutability and transparency of Blockchain designed for
IoT. This approach effectively leverages Ethereum’s de-
centralization, tamper-proofing, and immutability capa-
bilities, moreover, it provides more distributed method
to store data, also enhancing data availability and system
resilience by using IPFS instead of traditional databas-
es, with applying AES encryption to assure the security

Tpyabl WCA PAH. Tom 74. 1/2024

of data. Integration with Chainlink provides a secure,
reliable and efficient channel to communicate between
on/off-chain systems. Our experiments were conduct-
ed on all smart contracts: AccessRequestContract, Ad-
minPolicyManager, loTDataManager, PolicyEvaluator,
IPFSDataHandler, and ChainLinkOracleAdapter and
the results shows the cost time of each one. Moreover,
storing data on distributed system like IPFS and using
Chainlink to handle communications between on/off-
chain brings more efficient to the proposed model.

References

1. Shahid H. et al. “Machine learning-based mist com-
puting enabled Internet of Battlefield Things,” ACM
Trans. Internet Technol., vol. 21, no. 4, pp. 1-26, 2021.

Andaloussi Y., El Ouadghiri M.D., Maurel Y., Bon-

nin J.-M. and Chaoui H. “Access control in [oT en-

vironments: Feasible scenarios,” Procedia Comput.

Sci., vol. 130, pp. 1031-1036, 2018.

3. Deebak B.D. and Fadi A.-T. “Privacy-preserving
in smart contracts using blockchain and artificial
intelligence for cyber risk measurements,” J. Inf.
Secur. Appl., vol. 58, p. 102749, 2021.

4. Norvill R., Pontiveros B.B.F., State R., and Cullen
A. “IPFS for reduction of chain size in Ethereum,”
in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 2018, pp. 1121-1128.

5. Breidenbach L. et al. “Chainlink 2.0: Next steps
in the evolution of decentralized oracle networks,”
Chain. Labs, vol. 1, pp. 1-136, 2021.

6. Ouaddah A. “A blockchain based access control
framework for the security and privacy of loT with
strong anonymity unlinkability and intractability
guarantees,” in Advances in Computers, vol. 115,
Elsevier, 2019, pp. 211-258.

7. Figueroa S., Aniorga J., Arrizabalaga S., Irigoyen I.
and Monterde M. “An attribute-based access control
using chaincode in RFID systems,” in 2019 10th
IFIP international conference on new technologies,
mobility and security (NTMS), 2019, pp. 1-5.

8. Cruz J.P, Kaji Y. and Yanai N. “RBAC-SC: Role-
based access control using smart contract,” Ieee
Access, vol. 6, pp. 12240-12251, 2018.

9. Liu H.,, Han D. and Li D. “Fabric-IoT: A block-
chain-based access control system in [oT,” IEEE
Access, vol. 8, pp. 18207-18218, 2020.

N

33

UHdopmaumnoHHbIe TexHonorum M.A. Maalla, S.V. Bezzateev

Maalla Maher A. PhD student, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia,
E-mail:maher.malla7@gmail.com

Bezzzateev Sergey V. Head of department, Doctor of technical science, State University of Aerospace Instru-
mentation, Bolshaya Morskaya St. 67, bldg. A, St. Petersburg, 190000, Russia, E-mail: bsv(@aanet.ru

ATpuOyTHBHAs CHCTeMa KOHTPOoJA 1ocTyna Ha ocHoBe Ethereum gust IoT

M.A. Maanna', C.B. be33arees"
'ITMO Vuusepcurer, T. Cankr-IlerepOypr, Poccus
"TocynapcTBeHHBINH YHUBEPCUTET ad3POKOCMHYECKOr0 MPHOOpOCTpoeHus, I. CaHKT-
[etepOypr, Poccus

AnHoTanus. [IpennaraeTcs UCIIONB30BaTh HHTETPUPOBAHHBIN KOHTPOJIB AOCTYIa HAa ocHOBe Ethereum miist obe-
CTICYCHHS MACIIITAOUPYEMOCTH, YTO o0ecTiedrBaeT Oosiee OO crioco0 yrpaBIeHUs yBETHUYECHUEM KOJIMYeCTBa
nons3oBarenei. [Ipennaraemas cuctema ABAC Ha ocHoBe Ethereum BkiTFOUaeT HECKOIBKO OCHOBHBIX 3JIEMEH-
TOB: moJib3oBareib, Ethereum, numo3 ChainLink, IPSF u yctpoiictBa. Dta cuctema Ha ocHoBe Ethereum wc-
MOJTb3yeT cMapT-KOHTpakThl AccessRequestContract, AdminPolicyManager, loTDataManager, PolicyEvaluator,
IPFSDataHandler u ChainLinkOracleAdapter asnst ynpomieHust KOHTPOJIsl TOCTYIoM. XpaHeHHEe JTaHHBIX B pac-
npejiesieHHol cucreme, Takod kak IPFS, n ucnone3oBanue Chainlink a1 00pabOTKH KOMMYHUKAIMA MEXITY
BHEITHIMHU ¥ BHYTPEHHHMH CETSIMH ACTAIOT NPEUIOKEHHYI0 Mozenb Oornee addekriuBHOi. Bmecte 3TH KOM-
MTOHEHTHI TTO3BOJIIOT MPEIOKCHHONW MOAETH 00eCIeunBaTh pacipeaeneHHoe, 3G HeKTHBHOE U HEM3MEHIEMOE
yIpaBlI€HHE AOCTyNoM st yeTpoicTB loT.

KuroueBnie ciaoBa: Ethereum, brokuenun, ABAC, Chainlink, IPFS

DOI: 10.14357/20790279240104 EDN: IBRCUX

JIuteparypa

computing enabled Internet of Battlefield Things,”
ACM Trans. Internet Technol., vol. 21, no. 4, pp.
1-26, 2021.

. Andaloussi Y., El Ouadghiri M.D., Maurel Y., Bon-
nin J.-M. and Chaoui H. “Access control in loT en-
vironments: Feasible scenarios,” Procedia Comput.
Sci., vol. 130, pp. 1031-1036, 2018.

. Deebak B.D. and Fadi A.-T. “Privacy-preserving
in smart contracts using blockchain and artificial
intelligence for cyber risk measurements,” J. Inf.
Secur. Appl., vol. 58, p. 102749, 2021.

. Nowvill R., Pontiveros B.B.F., State R., and Cullen
A. “IPFS for reduction of chain size in Ethereum,”
in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cy-
ber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), 2018, pp. 1121-
1128.

1. Shahid H. et al. “Machine learning-based mist 5. Breidenbach L. et al. “Chainlink 2.0: Next steps

in the evolution of decentralized oracle networks,”
Chain. Labs, vol. 1, pp. 1-136, 2021.

. Ouaddah A. “A blockchain based access control

framework for the security and privacy of loT with
strong anonymity unlinkability and intractability
guarantees,” in Advances in Computers, vol. 115,
Elsevier, 2019, pp. 211-258.

. Figueroa S., Anorga J., Arrizabalaga S., Irigoy-

en 1. and Monterde M. “An attribute-based access
control using chaincode in RFID systems,” in 2019
10th IFIP international conference on new technol-
ogies, mobility and security (NTMS), 2019, pp.
1-5.

. Cruz J.P, Kaji Y. and Yanai N. “RBAC-SC: Role-

based access control using smart contract,” leee
Access, vol. 6, pp. 12240-12251, 2018.

. Liu H., Han D. and Li D. “Fabric-IoT: A block-

chain-based access control system in [oT,” IEEE
Access, vol. 8, pp. 18207-18218, 2020.

Maaaaa Maxep Agnan. Yausepcuter UTMO, 1. Cankr IletepOypr, Poccust. Acriupant. O6macTs HaydHBIX
WHTEpEeCcOB: MH(POpPMAIMOHHAs OE30MIaCHOCTh, OJoKYeiH TexHojoruu. E-mail: maher.malla7@gmail.com
Be33areer Cepreii BanenTunoBu4. ['ocy1apcTBEHHBIH YHUBEPCUTET a3POKOCMUYECKOTO MPHOOPOCTPOCHNS,
r. Cankr-IletepOypr, Poccus. 3aBenytommii kadeapoii. JIOKTOp TEXHUYECKUX HAyK, JOUEHT. O0NacTh HayYHbBIX
HUHTEPECOB: TCOPUS KOMUPOBAHUS, KpUnTorpadus, uHhopMamoHHas 6e3onacHocTs. E-mail: bsv@aanet.ru (O1-
BETCTBEHHBIH 3a TIEPEIUCKY)

34 Tpyabl NCA PAH. Tom 74. 1/2024

