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Abstract. Kubernetes has become the cornerstone of container orchestration in modern cloud
computing, offering unmatched scalability and flexibility. However, its growing adoption has
introduced critical security challenges, particularly in mitigating Denial-of-Service (DoS) attacks. This
study presents an innovative seven-layer framework to enhance Kubernetes security through real-
time anomaly detection and feedback-driven machine learning models. The framework integrates two
core components: a Feedback Application that captures user input to improve detection precision
and a Model Agent for real-time data collection, anomaly detection, and adaptive model retraining.
By combining real-time metrics with user feedback, the system dynamically evolves to address
emerging threats, ensuring robust protection for Kubernetes environments. Experimental results
demonstrate the framework's effectiveness in achieving high anomaly detection accuracy, reducing
false positives, and maintaining adaptability in dynamic, cloud-native infrastructures.
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Introduction

Kubernetes has revolutionized the deployment
and management of containerized applications, pro-
viding organizations with unparalleled flexibility and
scalability. As the backbone of modern cloud-native
architectures, it supports a wide range of applications,
from microservices to large-scale enterprise platforms.
However, the distributed and dynamic nature of Ku-
bernetes introduces unique security challenges, partic-
ularly in detecting and mitigating sophisticated threats
such as Denial-of-Service (DoS) attacks [1].

Traditional security mechanisms, which rely
heavily on static rules and signature-based detection,
have proven insufficient to address the complexities of
Kubernetes clusters. These clusters operate in highly
dynamic environments where workloads, configura-
tions, and user interactions are constantly evolving.
The inability of conventional systems to adapt to such
changes leaves Kubernetes environments vulnerable
to service disruptions, data breaches, and system in-
stability [1].

To address these limitations, researchers have
increasingly turned to machine learning (ML) as a
promising solution for real-time anomaly detection.
ML models can analyze large datasets to identify pat-
terns indicative of potential threats, providing a proac-
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tive approach to securing cloud-native environments.
However, existing solutions often lack adaptability,
relying on pre-trained models or static rules that fail to
account for evolving threat landscapes [2].

This study introduces a novel security framework
that combines real-time anomaly detection with feed-
back-driven machine learning. The proposed frame-
work leverages a Feedback Application and a Model
Agent to continuously refine detection capabilities
based on user input and real-time metrics. By integrat-
ing these components, the system dynamically adapts
to emerging threats, providing a robust and adaptive
security solution for Kubernetes environments. The
following sections outline the framework’s design,
implementation, and evaluation, highlighting its po-
tential to transform Kubernetes security practices.

1. Background and Related Work

Container security has emerged as a critical area
of focus for organizations leveraging Kubernetes to
orchestrate their cloud-native applications. The inher-
ent flexibility and scalability of Kubernetes make it
highly effective for containerized workloads but also
introduce significant security vulnerabilities. This sec-
tion provides an overview of existing tools, method-
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ologies, and gaps in Kubernetes security, setting the
stage for the proposed framework.

Several tools have been developed to enhance
container security, such as AppArmor, a Linux ker-
nel security module that enforces mandatory access
control policies. AppArmor enables administrators
to restrict process capabilities using custom security
profiles, offering a baseline defense against unau-
thorized access [4]. Other works, such as Medel et
al. [5], explored formal modeling for resource man-
agement within Kubernetes clusters, underscoring
the importance of robust security measures in dy-
namic environments.

Monitoring solutions like Prometheus and
Grafana are widely adopted in Kubernetes environ-
ments. Prometheus excels in scraping and storing
time-series metrics, while Grafana is renowned for
its powerful data visualization capabilities [6, 7].
Despite their effectiveness, these tools typically rely
on static rules and thresholds, which often fail to de-
tect sophisticated or evolving attacks. This limitation
highlights the need for integrating machine learning
models to enable real-time anomaly detection and
adaptive learning [8].

The application of machine learning (ML) tech-
niques in anomaly detection has been explored exten-
sively in recent years. ML approaches such as random
forests, support vector machines (SVM), and neu-
ral networks have demonstrated success in detecting
anomalies across network traffic, system logs, and
application metrics [9]. For instance, KubAnoma-
ly, a neural network-based system, collects contain-
er events using tools like Sysdig and Falco to mon-
itor Kubernetes environments. However, it focuses
primarily on log-based events and lacks integration
with lightweight metrics collection systems like Pro-
metheus [10].

Recent studies have also addressed anomaly
detection in containerized environments through re-
al-time performance analysis. Chang et al. [11] de-
veloped a Kubernetes-based monitoring platform to
dynamically provision cloud resources, emphasizing
the critical role of performance metrics in identifying
threats. However, these methods often rely on pre-
trained models or rigid rule sets, which lack the adapt-
ability to handle new or emerging attack vectors.

Despite these advancements, existing solutions
still present several limitations. Most frameworks fail to
incorporate user feedback to improve model accuracy,
relying instead on static detection mechanisms. Addi-
tionally, the complexity and dynamic nature of Kuber-
netes clusters pose challenges in effectively identifying
anomalies across diverse workloads and configurations.
This research addresses these gaps by proposing a feed-
back-driven anomaly detection framework that adapts
to new threats through continuous learning. By combin-
ing real-time metrics with user feedback, the framework
offers a more robust and adaptive approach to securing
Kubernetes environments.

2. System Architecture and Methodology

The proposed framework introduces a novel
approach to Kubernetes security by integrating re-
al-time anomaly detection with a feedback-driven
machine learning model. The framework consists
of two primary components: the Feedback Applica-
tion and the Model Agent. Together, these compo-
nents form a robust system capable of dynamically
adapting to emerging threats in Kubernetes environ-
ments. Figure 1 illustrates the overall architecture of
our proposed monitoring and detection system.

2.1. Feedback Application

The Feedback Application provides an intuitive inter-
face for administrators and security personnel to contribute
valuable insights into detected anomalies. Its primary goal
is to enhance detection accuracy through continuous user
interaction and feedback. Key features include:

e User-Friendly Interface: Simplifies feedback
submission with an intuitive web form.

¢ Precise Timestamp Input: Ensures accurate iden-
tification of anomaly occurrences.

¢ Comprehensive Feedback Options: Allows users
to classify anomalies as true positives, false posi-
tives, true negatives, or false negatives, along with
additional contextual information.

Built using Flask, a lightweight Python web
framework [12], the application follows a streamlined
workflow:

1. Feedback Submission: Users provide feedback
via the web form, including timestamps, anomaly
classifications, and other details (Figure 2).

Metrics Collection AgentHMetrics Collection AgentHMetrics Collection Agent

Fig. 1. The architecture of the proposed monitoring and detection system
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Fig. 2. The feedback application interface

2. Data Processing: The application processes
the submitted data and forwards it to the Model
Agent.

3. Model Enhancement: The Model Agent stores
and uses this feedback for retraining the anomaly
detection model.

This workflow ensures that the system rapidly
adapts to new threats while continuously refining its
detection capabilities.

2.2. Model Agent

The Model Agent serves as the core of the frame-
work, responsible for real-time anomaly detection and
adaptive learning. It integrates seamlessly with Kuber-
netes to collect metrics, detect anomalies, and generate
alerts. Key functionalities include:

* Real-Time Detection: Utilizes pre-trained ma-
chine learning models for rapid anomaly identifi-
cation.

¢ Adaptive Learning: Continuously retrains models
based on user feedback.

*  Metrics Integration: Scrapes data directly from
Kubernetes nodes and applications using Pro-
metheus.

The Model Agent workflow is divided into
four critical stages (Figure 3):

1. Metrics Collection: Gathers performance data
from Kubernetes clusters, such as CPU usage,
memory utilization, and network traffic.

2. Anomaly Detection: Pre-processed metrics are
analyzed using machine learning models to detect
anomalies in real time.

3. Alert Generation: Alerts are triggered via Pro-
metheus Alertmanager, notifying administrators of
detected anomalies.

4. Feedback Integration: User feedback from the
Feedback Application is incorporated to retrain and
refine the ML models.
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Fig. 3. The workflow of real-time anomaly detection,
from data collection to feedback integration

This iterative process allows the framework to
evolve continuously, maintaining its relevance against
new and emerging threats.

2.3. Metrics Collection, Anomaly Detection,

and Alert Generation

The Model Agent collects metrics at both node
and application levels. Table 1 outlines the key metrics
monitored:

Collected metrics are preprocessed and analyzed
in real-time by the ML models. Upon detecting anom-
alies, the Model Agent generates detailed alerts con-
taining:
¢ Specific anomaly details.
¢ Relevant metrics that triggered the alert.

e Precise timestamps of detection.

These alerts are forwarded to Prometheus Alert-
manager, which initiates response protocols to miti-
gate potential threats.

2.4, Feedback Integration and Model Re-

training

User feedback is a cornerstone of the frame-
work’s adaptability. The feedback includes detailed
classifications (true positives, false positives, etc.) that
are instrumental in retraining the ML models. The re-
training process involves:

1. Incorporating Feedback: Adding user-provided
data to the training dataset.
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Tab. 1

Key metrics used for monitoring

Metric
CPU Usage
Memory Usage
Network Traffic
Disk 1/0
HTTP Requests

2. Model Refinement: Updating the ML model to
improve accuracy and reduce false positives.

3. Deployment: Deploying the retrained model back
into the Model Agent for real-time detection.

This feedback loop ensures the framework re-
mains resilient and effective against evolving security
threats in Kubernetes environments.

2.5. Evaluation Metrics

To evaluate the effectiveness of the proposed
framework, several metrics were used to measure its
accuracy, adaptability, and overall performance:

1. Detection Accuracy: The percentage of correctly
detected anomalies compared to the total number
of anomalies identified.

2. False Positive Rate: The proportion of false alarms
generated by the system relative to the total number
of detections.

3. Retraining Impact: The degree of improvement in
model performance after incorporating user feed-
back and retraining the model.

These metrics provide a comprehensive under-
standing of the framework’s ability to detect threats
and adapt over time.

2.6. Experimental Setup and Simulated

Attacks

The framework was implemented in a controlled
Kubernetes environment to validate its effectiveness.
The experimental setup consisted of the following
components:
¢ Kubernetes Cluster: Multiple nodes running

containerized applications, simulating a dynamic
cloud-native infrastructure.

* Prometheus and Alertmanager: Used for metrics
collection and alert generation.

* Feedback Application: Enabled administrators
to provide detailed feedback on detected anom-
alies.

¢ Simulated DoS Attacks: A range of attack scenar-
ios were created to test the framework’s detection
and adaptation capabilities.

To thoroughly evaluate the framework, the fol-
lowing types of Denial-of-Service (DoS) attacks were
simulated:
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Description

Measures the CPU utilization of the node and applications.
Measures the memory consumption of the node and applications.
Monitors the amount of data being transmitted and received.
Tracks the input/output operations on the disk.

Counts the number of HTTP requests handled by the applications.

1. Network-Based Attacks: Targeted the network
layer to congest traffic and deny service access to
legitimate users.

2. Application-Based Attacks: Generated abnormal
CPU and memory utilization, overloading system
resources.

3. Mixed Attacks: Combined network and applica-
tion-level attack vectors to mimic sophisticated re-
al-world scenarios.

These simulations allowed for comprehensive
testing of the framework’s ability to identify and re-
spond to a variety of security threats.

3. Result and Discussion

The experiments conducted in a simulated Ku-
bernetes environment demonstrated the effectiveness
of the proposed framework in addressing key securi-
ty challenges. By integrating real-time anomaly de-
tection with feedback-driven machine learning, the
framework achieved high accuracy and adaptability in
detecting and mitigating threats (Fig. 4).

Detection Events and Response Events

=== === Detection Events == Response Events

0 20 40 60

Time (minutes)

Fig. 4. The timeline of real-time detection and re-
sponse, showcasing the framework’s effectiveness

Key Findings:

1. High Detection Accuracy: The machine learn-
ing models achieved a significant improvement in
anomaly detection after incorporating user feed-
back. The detection accuracy increased from an
initial 85% to 95% post-retraining, showcasing the

Tpyabl NCA PAH. Tom 75. 1/2025



Enhancing Kubernetes Security with Feedback-Driven Machine Learning Models

framework’s ability to adapt to new and emerging
threats.

2. Reduced False Positives: The false positive rate
decreased from 10% to 3%, a critical improvement
that minimizes unnecessary alerts and enhances the
system’s reliability.

3. Adaptive Learning: User feedback was instru-
mental in refining the ML models, resulting in a
continuous feedback loop that improved detection
accuracy and reduced the occurrence of false neg-
atives. Each retraining cycle incorporated new in-
sights, ensuring the system remained robust against
evolving attack patterns.

Impact of Feedback on Model Performance
The feedback mechanism played a pivotal role in
enhancing the framework’s performance. User-provid-
ed feedback allowed the system to:
* Distinguish between true and false anomalies more
effectively.
* Reduce the rate of false alarms by learning from
contextual data.
e Adapt to the peculiarities of specific Kubernetes
environments, ensuring tailored security measures.
For example, feedback on false positives helped
refine the model’s threshold settings, while data on
previously undetected threats enabled the system to
adjust its anomaly detection parameters. This itera-
tive improvement process ensured that the framework
stayed relevant and efficient in dynamic cloud-native
infrastructures.

Performance Metrics

The framework’s performance metrics highlight
its operational success:
* Initial Detection Accuracy: 85%
* Post-Retraining Detection Accuracy: 95%
» False Positive Rate: Reduced from 10% to 3%
e Retraining Interval: Weekly

These metrics validate the effectiveness of the
proposed system in maintaining high accuracy while
adapting to the ever-changing nature of Kubernetes
environments.

Comparison with Existing Solutions

Unlike traditional anomaly detection methods
that rely on static rules or pre-trained models, the pro-
posed framework:

e Incorporates real-time feedback to dynamically
adapt to new threats.

e Utilizes lightweight metrics collection tools, such
as Prometheus, to ensure seamless integration with
Kubernetes environments.

* Reduces false positives more effectively, providing
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more actionable insights for administrators.

¢ These advancements position the framework as a
robust and scalable solution for Kubernetes secu-
rity.

Limitations and Areas for Improvement
While the proposed framework demonstrates
significant advantages, some limitations remain:

¢ Dependency on Feedback Quality: The system’s
performance heavily relies on the accuracy and
timeliness of user feedback. Inconsistent or de-
layed feedback can impact retraining effectiveness.

* Resource Intensity: Retraining machine learning
models at frequent intervals can be resource-inten-
sive, potentially affecting system performance in
high-load environments.

e Scalability Challenges: As Kubernetes clusters
grow in size and complexity, the framework may
require additional optimization to maintain its per-
formance across distributed nodes.

These limitations present opportunities for fur-
ther research and refinement, as outlined in the future
work section.

Conclusion

This research introduces a novel framework
to enhance Kubernetes security through real-time
anomaly detection and feedback-driven machine
learning. By integrating a Feedback Application
and a Model Agent, the framework achieves high
detection accuracy, reduces false positives, and
dynamically adapts to evolving threats. Unlike
traditional static approaches, the proposed system
incorporates user feedback to refine its machine
learning models, ensuring continuous improvement
in detecting and mitigating security anomalies. The
experimental results validate the framework’s effec-
tiveness in addressing Kubernetes-specific security
challenges. Detection accuracy improved from 85%
to 95% following model retraining, while the false
positive rate was significantly reduced from 10% to
3%. These results highlight the potential of combin-
ing real-time monitoring with adaptive learning to
safeguard cloud-native environments. The proposed
framework offers a practical and scalable solution
for Kubernetes security, with real-world applicabil-
ity demonstrated through its deployment in a simu-
lated environment. By leveraging lightweight tools
like Prometheus and integrating user feedback, the
system provides robust, actionable insights to ad-
ministrators. This research lays the groundwork for
future advancements in securing dynamic and dis-
tributed Kubernetes clusters.
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VYayumenne 6e3onmacHoctd Kubernetes ¢ ncmonb3oBanueM Mojesieii MAIIMHHOTO 00y4YeHUsI
¢ 00paTHOM CBSA3bIO

INagup Japsui
VYuausepcurer UTMO, Canxkr-IlerepOypr, Poccus

Annoranus. Kubernetes ctain ocHOBOI OpkecTpanny KOHTEHHEPOB B COBPEMEHHOM 00auyHo# cpere, obecrie-
YyBas HENPEB30HICHHYI0O MacIITa0MPyeMOCTh U THOKOCTh. OJHAKO €ro pacTyluas MOIMyJIsSpHOCTh IpHUBETa K
MOSIBJICHHIO CEPhE3HBIX MpobieM ¢ 0€30MacHOCThIO, 0COOEHHO B MPENOTBPAIIEHUH aTaK THUIa «OTKa3 B 00ciy-
xuBaHum» (DoS). B maHHOM HccnenoBaHUM MpeACcTaBieH MHHOBALMOHHBIA CEMUCIOWHBIA (HpeMBOpPK IS
yinydureHus 6e3onacHocty Kubernetes 3a cueT HCTIOIB30BaHUS MOZETICH MAIIMHHOTO 00y4eHHs AJIsl OOHapyxe-
HUS aHOMAJIMH B PeabHOM BPEMEHH U ¢ 00paTHOM CBs3b10. DpelfMBOPK BKIIOYAET JBA KIIIOUEBBIX KOMIIOHEHTA:
MIPUIOKEHUE AJIST OOpaTHOMN CBSI3M, KOTOPOE (DHKCHPYET MONb30BATEIBCKUM BBOJ JISI HOBBIIICHUS TOUHOCTH
OOHApY>KCHMS, U MOJCIBHBIN areHT, OTBEYAIOIUil 32 cOOp JaHHBIX B pealbHOM BPEMEHH, OOHapyXEeHUE aHO-
MaJMid ¥ ajantuBHOe nepeolydenue moaeseid. OObequHsIsI METPUKH B PeajbHOM BPEMEHH C MOJIb30BATEIbCKOM
00paTHON CBA3BIO, CUCTEMA JUHAMHUYECKH aJalTUPYETCs] K BOSHUKAIOIIUM yrpo3aM, 00ecIeunBasi Hale)KHYIO
3amuty Kubernetes. OxcriepuMeHTaIbHbBIE PE3YNBTAThl JEMOHCTPUPYIOT 3¢ (EKTUBHOCTE (hpeHMBOpPKA B TOCTH-
KEHUH BBICOKON TOYHOCTH 00HApY KeHUS aHOMaINH, CHIDKEHUH YHCIIa JIOKHBIX CpadaThIBAaHUM U MOAJICPKAHUY
aIalITUBHOCTH B AMHAMUYHOM 00JIadHOM HH(pacTpyKType.

KuroueBble cioBa: OezomacHoCcTh Kubernetes, mooenu MauuHHo20 00yueHus, obyuerue ¢ 0Opamuoll ce:a3bio,
MOHUMOPUHZ 8 peanbHOM epemenu, amaku DosS.
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