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Introduction
The increasing frequency and severity of vari-

ous disruptions and incidents from man-made activi-
ties and casual events to transboundary cyber-attacks 
and natural disasters demand a dynamic, time-aware 
approach to critical infrastructure resilience manage-
ment based on system functioning life-cycle conceptu-
al models accounting temporal aspects of its resilience 
and performance. Life-cycle temporal modeling of the 
critical infrastructure resilience is urgently needed for 
enhancing the efficiency of decision-making under 
situational control of the system critical entities and 
functions. Temporal models should not be optional for 
resilience management processes. They are critical for 
preventing temporal risks and collapse in multi-hazard 
environments, where critical infrastructures exist and 
operate, as well as for optimizing limited types of re-
sources (time, money, labor, etc.) and future-proofing 
policies against unknown and unforeseen disruptions. 
Without temporal models, we are blind to the dynam-
ics of threats and failures. With them, we can design 

resilient infrastructure systems that bend, but do not 
fail. Besides, the application of formalized life-cycle 
temporal models within the resilience management is 
conditioned by such reasons as high demands of pro-
active adaptation to escalating threats; the aging rapid-
ity of critical infrastructure systems is faster than these 
systems are upgraded; regulatory and insurance pres-
sures at government level that strictly require resilience 
timelines for critical entities (time-to-recover/time-to-
adapt metrics); cascading effects and failures that are 
time-dependent, but not discounted and supported in 
static models missing temporal phase transitions; deci-
sion support system requirements of consistent, com-
plete and time-structured data for the resilience predic-
tive maintenance and adaptive control; economic costs 
of ignoring system resilience timelines which leads to 
confusion of when and where to invest in upgrades 
and redundancy to minimize disruption costs and po-
tential losses. Thus, resilience cycle temporal models 
prioritize time limits to timely operational and strate-
gic decision-making under prognostic and health man-
agement of the critical infrastructure system. They are 
used to regulate scheduling terms of system resilience 
audits, maintenance and support within the all phases 
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of its life-cycle, and in analysis of system performance 
function (resilience triangle curve) as well.

Therefore, engineering and further exploration 
of resilience cycle temporal models of the critical in-
frastructure systems is an essential research problem 
which is in some way complex, interdisciplinary and 
needs deeper studying and formal reasoning. The effi-
cient solving of this problem is practically important, 
because resilience is inherently dynamic, evolving 
over time in response to impact of various nature de-
structive factors, recovery actions, and environmental 
shifts. By embedding temporal models into state-of-
the-art resilience frameworks, it is possible to build 
critical infrastructure systems that not only survive 
disruptions, but adapt and thrive in the face of current, 
interconnected threats. Temporal models shift resil-
ience control from reactive “firefighting” to proactive, 
data-driven risk management strategy adequate and 
well-suitable in atypical regimes of system operating 
depended on increasingly volatile ambient conditions.

In this study we make an attempt to summarize 
and design resilience cycle conceptual models with 
focus on resilience temporal aspects by formalizing 
backbone phases of the system adaptive cycle (a dy-
namic map of resilience) while accounting for system-
ic constraints for the purpose of critical entities and in-
frastructure systems efficient situational management, 
as well as to level existing contradictions and bridge 
the gaps in theory and practice in this field of research. 
This study is a logical continuation of the earlier re-
search works [1-3], where a general framework for 
analysis of resilience capacity models and evaluation 
of control actions aimed at maintaining system prop-
erties (robustness, flexibility, fragility, redundancy, 
recoverability, resourcefulness, rapidity, etc.) in the 
range of its adaptative capabilities under various op-
erating conditions and critical-case scenarios of poten-
tially adverse events, has been developed.

At first sight, this study is primarily theoreti-
cal in nature as it may seem. Though, basically, our 
findings make a contribution to the development 
of a formal apparatus for the general theory of re-
silience management of complex dynamic systems, 
specifically by engineering conceptual models that 
concretize and detail the conceptualization and for-
malization of critical infrastructure resilience, taking 
into account the temporal and organizational aspects 
of the situational management cycle of the resilient 
functioning of this class of systems. This enables im-
proved validity and efficiency of decision-making via 
analysis and modeling of initiating event propagation 
processes/scenarios, as well as the automated choice 
of facilities and assets relevant to the current situa-
tion for maintaining system resilience based on these 

models. A comparative analysis of developments 
proposed with existing approaches, as well as ex-
perimental validation of the theoretical assumptions 
and formulations in solving real-world problems (by 
the example of real critical entities or infrastructures 
operating in mining industry sector of Murmansk re-
gion, Russian Federation) are beyond the scope of 
this work and will be the next stage of our further 
research on the issues discussed here.

1. Accepted definitions and assumptions

There is no universally and commonly accept-
ed definition of critical infrastructures. The works [4, 
5] discuss and review difference in understanding of 
critical infrastructures and its definitions that mostly 
emphasize the contributing role of infrastructure to so-
ciety or the potentially debilitating effect in the case of 
disruption. In [4] it is asserted that infrastructure sys-
tems that represent a significant public investment and 
where even minor disruptions can degrade the perfor-
mance of global systems and cause significant societal 
damage can be called critical infrastructures. At once, 
such infrastructure systems (i.e., a set of facilities pro-
viding vital services necessary for a society to function) 
are considered as critical, if its malfunctioning threat-
ens the security, economy, lifestyle or public health of 
a city, region or even a state. On the other hand, critical 
infrastructures are often interpreted as systems, whose 
incapacity or destruction would have a debilitation 
impact on the defense and economic security, or iden-
tified as those physical and information technology 
facilities, networks, services and assets that, if disrupt-
ed or destroyed, would have a serious impact on the 
health, safety, security or economic well-being of citi-
zens or the effective functioning of governments, first 
of all, in EU-countries [4]. Meanwhile, it is difficult 
to define, what types of entities/infrastructure systems 
are critical. The critical infrastructure sectors (energy, 
transport, healthcare, banking, water, industry, space, 
food, etc.), decided by each country, government or 
organization, depends on their own contexts and pri-
orities. The classification of critical infrastructure sys-
tems is not the chief aim of our study and is mentioned 
here without further discussion. It is an independent 
research problem that requires deeper focus, detached 
elaboration and scientific substantiation.

The complexity of modern critical infrastructures 
as “systems-of-systems” makes it virtual impossible 
to foresee and prevent all possible adverse scenarios 
[6]. In addition, the critical infrastructures are under 
dynamic stress due to operational conditions that can 
significantly affect the reliability, safety and resilient 
functioning of their components, the system configura-
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tion, and consequently, the functionality/performance 
of components [4]. Thus, the study [7] relying on these 
facts postulates just critical infrastructure protection is 
not enough. Over time, such deliberate reasoning by 
reputable studies has led to a paradigm shift towards 
critical infrastructure resilience, i.e., from protection 
to genuine resilience. Subsequently, this also led to 
a new focus shift from resilience and protection of 
critical infrastructure sectors to the level of concrete 
critical infrastructure facilities, operators or entities, 
without clearly articulating this as such [8, 9].

Similarly, the term “resilience” is difficult to de-
fine, because of its very wide use. In the field of crit-
ical infrastructures, resilience still has no generally 
accepted definition. Etymologically, resilience comes 
from the Latin (resilio, resiliere), which means a return 
and the ability to resume [4]. Over time, a series of 
interpretations of resilience has been presented. The 
studies [5, 10, 11] considers the evolution of resilience 
term meaning with the last decades of development of 
this concept that was originally introduced as a persis-
tent ability to absorb change and disturbance and still 
maintain the same state variables [12]. Later, it was 
refined as the ability of a system to anticipate, prepare 
for, and adapt to changing conditions and withstand, 
respond to, and recover rapidly from disruption. The 
main amendment proposed afterward was the inclu-
sion of the ability to comprehend risks (current and 
emerging), leading to the definition of resilience as 
the ability to understand risks, anticipate, prepare for, 
and adapt to changing conditions and withstand, re-
spond to, and recover rapidly from disruption. Then, 
the study [10] adopted the elaborated definition of the 
resilience of an infrastructure system and stated it in 
the following formulation: the resilience of an infra-
structure is the ability to understand and anticipate the 
risks, including new/emerging risks, threatening the 
critical functionality of the infrastructure, prepare for 
anticipated or unexpected disruptive events (so-called 
“black swans” [13]), optimally absorb/withstand their 
impacts, respond and recover from them, and adapt/
transform the infrastructure or its operation based on 
lessons learned, thus improving the infrastructure an-
ti-fragility [10]. According to the latest ISO/TS 31050 
“Guidance for Managing Emerging Risks to Enhance 
Resilience” [14], resilience is defined similar to [10] 
as the ability of a system to anticipate possible adverse 
scenarios/events representing threats and leading to 
possible disruptions, to prepare for these events, to 
withstand/absorb their impacts, to recover from dis-
ruptions caused by them and to transform/adapt to the 
new, changed conditions, after the event. This defini-
tion has become approximately conventional for the 
most foreign resilience studies. In our research works, 

we also abide by the given definition of infrastructure 
resilience and apply it to critical entities and region-
al infrastructures systems. Discussed definitions al-
low analyzing the behavior of a critical infrastructure 
system exposed to an adverse event over a scenario 
timeline and simultaneously assessing the function-
ality of a critical infrastructure system over the resil-
ience cycle as notionally shown in Fig. 1. While the 
decomposition over the time-axis, i.e., defining the 
temporal phases of the resilience cycle, may be trivial, 
decomposition over the functionality axis is non-triv-
ial as functionality might have different dimensions 
and metrics [10]. Resilience captures five phases in 
the resilience cycle associated with system capabili-
ties: understand risks, anticipate/prepare, absorb/with-
stand, respond/recover and adapt/transform. These are 
the main attributes (capacities) of system resilience, 
reflected in [3, 15]. Even so, some relevant resilience 
studies (e.g., [16-18]) argue that resilience per se is 
very multidisciplinary and has little orthodoxy in its 
conceptualization, operationalization and application, 
and, therefore, becomes problematic when trying to 
measure it using heterogeneous system performance 
indicators within the all temporal phases of the resil-
ience cycle.

2. Materials and methods

The background of this on-going, in some way, 
pilot study comprises pioneer research works and port-
folio materials contributed to the development of the 
classical and modern theory of stability and safety of 
complex dynamic systems, general theory of reliabil-
ity control and risk management, as well as to solv-
ing fundamental problems in the field of engineering 
models, methods and technologies for situational 
management information support of critical entities 
and infrastructures. First of all, there are such domes-
tic systemic researches as: [19] in the field of situa-
tional management; [20] in the field of critical infra-
structure protection; [21] in the field of risk analysis of 
socio-economic systems; [22, 23] in the field of mode-
ling stability in control systems; [24, 25] in the field of 
adaptive control systems; [26, 27] in the field of stud-
ying the influence of human factor and its accounting 
in management of large-scale systems; [28, 29] in the 
field of system dynamics and agent-based modeling; 
[30] in the field of interdisciplinary research.

Conceptually, resilience can be modeled through 
the change in system performance or functionality over 
time. Therefore, based on the reputable studies of criti-
cal infrastructure resilience [31-33], the resilience cycle/
scenario presents with four temporal stages [4] covering 
the five main phases [15] (Fig. 1) mentioned above.
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The temporal model of system resilience is a 
framework that examines how a system’s ability to 
withstand, adapt to, and recover from disruptions and 
trigger-adverse events evolves over time. It empha-
sizes the dynamic nature of resilience, recognizing 
that systems face varying multiple threats and under-
go changes in their capacity to maintain functionali-
ty under influencing situational factors. Unlike static 
models that treat resilience as a fixed system proper-
ty, the temporal models acknowledge that resilience 
is time-sensitive and influenced by evolving threats, 
system states, and recovery processes. This class of 
models provides both analysis of the system resilience 
dynamic characteristics and allows for such temporal 
aspects of resilience management as:
– � temporal stages of resilience cycle such as pre-

event/disruption (resistance, preparation, early 
warning), during event/disruption (absorption, ad-
aptation), post-event/disruption (recovery, evolu-
tion), and next event/disruption preparation (learn-
ing, improvement); 

– � time-dependent factors such as response time (how 
quickly a system reacts to disruptions), recovery du-
ration (the time needed to return to normal or a new 
stable state), adaptation rate (how fast the system 
learns and improves resilience);

– � dynamic feedback loops [34], i.e., systems may 
enter feedback cycles where past disruptions in-
form future resilience strategies (e.g., learning 
from failures).

Pre-disruption phase is characterized as a peri-
od of time from the occurrence of a triggering event 
to the beginning of the system degradation (loss of 
functionality). At this stage the system builds robust-
ness through redundancy, diversity, and proactive 
measures. During disruption phase represents the 
time interval from the beginning of the system degra-
dation to the maximum loss of its functionality, i.e., 
when the system absorbs shocks, minimizes degra-
dation, or adapts to continue functioning. Post-dis-
ruption phase is a part of system functioning timing 
loop when the system restores functionality and may 
improve resilience for future disruptions, i.e., a time 
period from the maximum degradation of the sys-
tem performance to the functionality returning to the 
level of the pre-event stage or recovering to an ide-
al state, structure or property which can be worse or 
better than the original ones. Next disruption prepa-
ration phase is a period of time from the functionality 
returning to the level of the pre-event stage to the 
occurrence of the new triggering event/shock on the 
system or its components [4]. This stage in the for-
mer scenario is related to the pre-event stage in the 
next scenario [2]. Following [2, 4], it is worth noting 
that the ability of improvement may affect different 
subsequent cycle phases and scenarios, as well as 
that the system performance in each scenario should 
improve at least in one stage compared to previous 
scenarios, thanks to the ability of a system to adapt 
and learn from the experience.

Fig. 1. Mapping the dynamics of critical infrastructure functionality level over temporal phases of the resilience 
cycle and possible outcomes when the system is exposed to an adverse event

(adopted from [3])
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Temporal modeling of system resilience cycle 
requires addressing both broad conceptual founda-
tions and domain-specific technical needs. The overall 
requirements for system resilience temporal models 
engineering, derived from recent research [35-38], are 
shortlisted below.

General requirements such as dynamic threat 
handling, adaptive capacity and flexibility, standard-
ized frameworks, systemic and contextual representa-
tion, verification and validation should  apply across 
domains and ensure resilience models are holistic, 
adaptable, and actionable. Models must account for 
unpredictable disruptions (e.g., cyber-attacks, climate 
extremes, etc.) by integrating probabilistic or scenar-
io-based approaches, and multi-hazard interactions 
to addressing cascading failures and compound dis-
ruptions (e.g., earthquakes triggering infrastructure 
collapse) through interdependency mapping. Models 
should reproduce graceful degradation of the system 
when it maintain partial functionality during disrup-
tions and recover iteratively, and support post-disrup-
tion learning mechanisms that must be formalized to 
improve future system resilience and its adaptation 
(e.g., updating protocols, hardening infrastructure) to 
the recent operating conditions. Models must account 
unified quantifiable metrics (e.g., downtime, recovery 
time, performance retention, etc.) to compare resil-
ience across systems, and align with existing safety 
standards like ISO 31000 [39]. Integration with com-
plementary risk analysis/management frameworks 
to provide compliance and interoperability of the re-
silience conceptual models is quite important here. 
Models should examine critical infrastructures as 
system-of-systems and account interactions between 
subsystems (critical entities) to analyze and detect un-
intended cascading effects. As well, resilience cycle 
conceptual models must incorporate socio-technical 
factors (e.g., territory specificity, critical entities den-
sity, actor/operator behavior characteristics, etc.) that 
influence overall resilience, and should focus on ap-
plication of the state-based formal analysis methods 
(e.g., probabilistic POMDPs) to verify model correct-
ness while enabling system adaptability under disrup-
tions or critical events.

Specific requirements address technical and op-
erational nuances in temporal modeling of the system 
resilience such as temporal granularity, human-in-
the-loop considerations, dynamic risk assessment, 
resilience quantification, domain-specific adaptations. 
Temporal granularity implies integration of time-vary-
ing data to capture dynamic vulnerabilities, and differ-
entiation between immediate stabilization (minutes), 
short-term repairs (hours), and long-term upgrades 
(months), i.e., phased recovery modeling when man-

aging the system resilience. Accounting of human fac-
tor, i.e., human response times and behavioral dynam-
ics when modeling the resilience management cycle is 
needed to simulation of panic, trust, or coordination 
shifts during disruptions and critical events to refine 
joint action plans and system control programs, and 
quantification of manual intervention delays with un-
certainty bounds. For the dynamic risk assessment and 
resilience quantification GIS-based spatial-temporal 
risk maps and fuzzy logic can be efficiently used to 
model risk variations of system functionality losses 
and cost-benefit tradeoffs. Combining of the risk con-
tinuous monitoring and system resilience cycle mod-
eling provide a basis for the early warning and imple-
mentation of risk adaptive controls when real-time 
potential threat tracing. Temporal models built on re-
silience performance-based metrics and using stochas-
tic dynamic programming serve for the optimization 
of facility and resource allocation to balance redun-
dancy and recovery budgets under system resilience 
maintenance phased process. To ensure validity resil-
ience temporal models should surely take into consid-
eration context and domain-specific adaptations. This 
is especially important for critical infrastructure sys-
tems when modeling their resilience and assessing the 
efficacy of applying preventive measures under sys-
tem performance characteristics fluctuations. Critical 
infrastructures are high-dimensional scalable systems 
that extremely required avoid bias in their resilient 
operating. Resilience temporal models are in some 
way intended to prioritization of system self-healing 
phases and evaluation of the relevant fail-safe modes 
for system functioning within these temporal phases. 
The discussed requirements are partially or completely 
allowed for some well-known formalized conceptual 
models of system resilience like the “SyRes Model” 
(Systemic Resilience Model) [40], GRAM (General 
Resilience Assessment Model) [41], Resilience Con-
tracts [42] and others used widely for practical issues.

Nevertheless, there are some contradictions re-
vealing in theory and practice of resilience cycle tem-
poral modeling and dynamics control that in tote affect 
on the overall efficiency of resilience management 
systems engineered. In turn, the effectiveness of pre-
ventive and reactive countermeasures applied to mit-
igate and eliminate risks of the system functionality 
losses under adverse events and disruptions depend on 
resolving of these discordances. Generally, the con-
tradictions between resilience conceptual frameworks 
and real practices arise from divergent theoretical 
concepts and assumptions, differing interdisciplinary 
interpretations and perspectives, practical constraints, 
evolving threat landscapes, and the inherent complex-
ity of large-scale dynamic systems.
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Traditional resilience models (e.g., engineering 
resilience) emphasize a system’s ability to return to a 
pre-disruption equilibrium, often quantified by metrics 
like recovery time or redundancy. In terms of practical 
challenges, multidimensional systems, such as critical 
infrastructure systems, face dynamic, adaptive threats 
(e.g., triggering events, dependent cascading failures, 
cyber-attacks, etc.) that require continuous adaptation 
rather than static recovery. Thereat, static models fail 
to account for systems that must evolve into new sta-
ble states (e.g., socio-ecological resilience) or operate 
under persistent adversarial conditions.

Another contradiction lies in accepted terminol-
ogy. Resilience is often conflated with robustness or 
adaptive capacity, treating them as interchangeable. 
Robustness focuses on resisting degradation without 
structural change, while resilience involves adaptation 
and recovery, i.e., evolving in response to disruptions. 
Thereat, distinct definitions for resilience (adaptation) 
and robustness (resistance) are critical for design of ef-
fective resilience management models and methodolo-
gies. Robustness-centric models prioritize redundancy 
and hardening to withstand known threats, assuming 
static system boundaries whereas adaptive models em-
phasize dynamic reconfiguration, learning, and flexi-
bility to address unforeseen challenges. Practitioners 
often design systems for robustness (e.g., redundant 
components) but neglect adaptive mechanisms (e.g., 
self-healing algorithms), leading to brittle systems un-
der novel threats. Thus, designing for robustness can 
reduce adaptability (e.g., over-engineered systems be-
come brittle), while excessive adaptability may com-
promise stability.  

At the same time, definitions of resilience oscil-
late between preventive measures (avoiding disrup-
tions) and reactive recovery (post-disruption restora-
tion). Proactive approaches (e.g., threat anticipation, 
redundancy, etc.) aim to eliminate exposure to risks, 
whereas reactive approaches focus on rapid recovery 
and adaptation after disruptions. Therefore, proactive 
strategies require significant upfront investment and 
may fail against “unknown unknowns”, while reac-
tive methods risk high downtime costs. Besides, in-
vestment in preventive measures often overshadows 
adaptive capacity, leaving systems vulnerable to “un-
known unknowns”. Traditional risk management theo-
ry prioritizes preventing disruptions (e.g., redundancy, 
hardening), while in the key practices emerging threats 
make prevention in a way insufficient, necessitating 
adaptive strategies based on real-time reconfiguration, 
dynamic reasoning, machine learning, etc.

Resilience is quantified using technical metrics 
(recovery time, MTTR, etc.), but depends on qualita-
tive factors like trust and human behavior. Engineer-

ing models prioritize measurable parameters (redun-
dancy levels, fault tolerance, system order, etc.). while 
socio-technical systems require intangible factors such 
as community trust, organizational culture, and cogni-
tive flexibility, which resist quantification. At the same 
time, the scarcity and heterogeneity of system control 
and status data hinder universal metrics. Meanwhile, 
over-reliance on standardized metrics may overlook 
systemic vulnerabilities rooted in human or ecologi-
cal interdependencies. Thus, the push for standardized 
metrics to resilience quantification clashes with con-
text-specific resilience requirements. The way out is to 
develop models using flexible context-aware metrics 
that balance generality and specificity (e.g., hybrid 
flow/information-based analyses). A holistic view to 
system resilience modeling requires integrating cy-
ber, physical, temporal, spatial, and human aspects 
into a cohesive whole. Most models are fragmentary 
or restricted and focus on isolated resilience domains 
without addressing interdependencies between critical 
entities. Cross-domain integration fosters interdisci-
plinary collaboration to address interdependencies in 
critical infrastructure systems.

Human behavior introduces variability (e.g., de-
lays, errors, etc.) that is rarely quantified in resilience 
models. For example, manual recovery actions in in-
dustrial systems are often based on historical data, but 
lack real-time adaptability. Integration of human var-
iability into resilience models via probabilistic frame-
works, for example, by using Bayesian networks, to 
build adequate automated resilience management sys-
tems is an urgent practical issue. Human operators are 
often modeled as rational actors, who enhance resil-
ience through adaptive decision-making. So, Over-re-
liance on automation risks ignoring human adaptabil-
ity, while under-reliance introduces unpredictability.

Most resilience models often assume predictable 
events/disruptions, yet real-world systems face cha-
otic, stochastic environments and unexpected, utterly 
original situations. Traditional control theory relies on 
predefined failure modes and recovery protocols, while 
complex dynamic systems like critical infrastructures, 
socio-economic or natural-industrial ones exhibit non-
linear behaviors, hidden states, and cascading failures 
that defy prediction. Therefore, the implementation of 
automatic recovery mechanisms in such class of sys-
tems leads to ineffective responses.

The agenda involves also a problem of relevant 
control mechanisms implementation in designed re-
silience models depending on types and structural 
features of systems managed and maintained. This 
problem domain considers precisely centralized and 
decentralized control in the large-scale multi-level sys-
tems. Centralized systems offer streamlined resilience 
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control, but lack adaptability, while decentralized ones 
enhance flexibility at the cost of coordination. Central-
ized resilience control models with monolithic archi-
tectures simplify system resilience management, but 
at the same time are vulnerable to single points of fail-
ure. On the other hand, decentralized resilience man-
agement models improve system resilience through 
redundancy, but require robust coordination mecha-
nisms to support network-centric control. For all that, 
achieving connectedness without centralization re-
mains a challenge in dynamic large-scale systems. 

Resilience often demands redundancy and di-
versity, but these introduce complexity that can un-
dermine manageability. Redundancy-driven models 
enhance fault tolerance, but increase maintenance 
overhead.  Contrariwise, simplicity-focused models 
prioritize modularity and loose coupling to reduce 
failure propagation. Thus, balancing redundancy with 
simplicity is critical – excessive complexity can create 
new failure modes (e.g., complex interdependencies in 
network-centric systems, critical infrastructures, etc.).

At once, traditional models of system resilience 
emphasize learning from failures, while emerging par-
adigms advocate learning from successes. So, Safety-I 
framework [43] focuses on the root-cause analysis of 
errors to prevent risk recurrence. On the other hand, 
Safety-II concept [43] prioritizes understanding every-
day successes to build adaptive capacity as a basis of 
resilience engineering. As a result, overemphasis on er-
rors may foster punitive cultures, whereas success-cen-
tric approaches risk complacency toward latent risks. 

To resume, the considered fundamental discord-
ances and nuances can be mostly handled by com-
bining existing resilience design and management 
methodologies with developing innovative situational 
conceptual models of complex dynamic systems and, 
first of all, critical entities and infrastructure systems, 
for their resilience and safety preventive analytics. The 
main contradictions revealed highlight the need for 
resilience formal hybrid models and unified adaptive 
frameworks that attempt to bridge theoretical rigor 
and practical complexity, ensuring complex systems 
can withstand both predictable and emergent threats, 
as well as to integrate robustness with adaptability, re-
silience quantitative metrics with qualitative insights, 
and centralized oversight with decentralized autono-
my while accounting for systemic constraints.

System resilience temporal modeling encom-
passes diverse methodologies tailored to address 
dynamic threats, adaptive capacity, and recovery 
processes. Among the variety of the state-of-the-art 
methodologies for conceptual and dynamic models 
engineering of the complex system resilience account-
ing the temporal aspects of the life-cycle of its resilient 

functioning, the following well-known frameworks 
are the most popular with a practical view:
– � Network analysis approaches such as QtAC (Quan-

tifying the Adaptive Cycle) method proposed by 
[44] and flow-based ascendency analysis method 
[45]. QtAC uses information transfer between sys-
tem components to model resilience, overcoming 
data limitations in traditional flow-based analy-
sis. It aligns with the Adaptive Cycle Model [46] 
(growth, conservation, release, and reorientation) 
to assess complex socio-economic systems. Flow-
based ascendency analysis method measures mate-
rial/energy flows in ecosystems or socio-econom-
ic systems, quantifying resilience via metrics like 
redundancy or ascendency. QtAC is ideal for so-
cio-economic systems with incomplete data, while 
flow-based methods suit ecosystems with measura-
ble resource exchanges.

– � Spatial-Temporal modeling frameworks such as 
combined GIS-FuzzyLogic method [47], which in-
tegrates spatial data with temporal risk assessments 
using fuzzy logic and D-ANP (DEMATEL-based 
Analytic Network Process) weighting [48] for ana-
lyzing causal relationships and handling interde-
pendencies and feedback in complex systems when 
managing its resilience, and transportation mode-
ling approach, which is helpful to evaluate system 
resilience  using metrics like redundancy, diversi-
ty, and recovery time across modes (roadways, air, 
rail, etc.) under natural or man-made disasters. GIS-
based models are optimal for urban resilience plan-
ning, while transportation models prioritize critical 
infrastructure redundancy and mostly underempha-
size socio-behavioral dynamics (human-centric fac-
tors). This gap is highlighted in transport systems 
resilience studies. 

– � Probabilistic and stochastic methods such as Mark-
ov process approach [49], which is very suitable 
to model the resilience of multi-state dynamic sys-
tems with state transitions (resistance, absorption, 
recovery, adaptation) using infinitesimal generator 
matrices, and resilience flexible contracts approach 
[42] for building resilience “by design” within the 
formal, state-based contractual frameworks, which 
combine POMDPs (Partially Observable Markov 
Decision Processes) [50] for verification and adapt-
ability to withstand and recover from disruptions, 
as well as provide proactively identifying potential 
risks, defining clear performance expectations un-
der disruptive conditions, and including clauses that 
enable flexibility and adaptation. Markov models 
suit energy systems (power grids, nuclear plants, 
etc.), while resilience contracts are ideal for safe-
ty-critical systems like autonomous vehicles. Prob-
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abilistic models need empirical validation to ensure 
accuracy in multi-state systems.

– � Data-driven an AI-based methods such as digital 
twins with deep learning framework [51], which 
combines real-time simulations with convolutional 
neural networks or long short-term memory neural 
networks for predictive fault detection and system 
performance optimization, and machine learning 
(Random Forest / Support Vector Machine), which 
is useful to assess building seismic resilience using 
factors like topography, geology, and structural integ-
rity. Digital twins are directly aimed at optimization 
of industrial systems resilience, while machine learn-
ing methods aid post-disaster critical entities assess-
ments. Digital twins and AI methods show promise, 
but require scalable computational resources.  

– � Performance-based methods such as resilience tri-
angle and multi-component frameworks [52] meas-
ure system functionality loss over time and combine 
robustness, rapidity, and recovery metrics. Triangles 
suit infrastructure downtime analysis, while mul-
ti-component metrics are better for adaptive sys-
tems like aviation. Despite advances, metrics like 
the resilience triangle lack universal adoption, ne-
cessitating frameworks like axiomatic design.

– � Simulation methods like system dynamics and 
agent-based modeling [53]. System dynamics mod-
els system resilience as a continuous feedback-driv-
en process using stocks, flows, and feedback loops 
to capture system-wide behavior over time. Rooted 
in control theory, it emphasizes nonlinear interac-
tions and delayed responses across system resilience 
cycle temporal phases. System dynamics is well-ap-
plicable in the fields of critical infrastructure degra-
dation and long-term climate adaptation modeling, 
international struggle and policy trade-offs analysis, 
sustainable development and global security, or-

ganizational and ecological resilience management. 
Agent-based modeling treats resilience as an emer-
gent property of heterogeneous agents (individuals, 
organizations) adapting to disruptions through local 
interactions. Grounded in complex adaptive sys-
tems theory, agent-based approach is suitable both 
to safety and resilience control problem-solving 
specifically when simulating crowd behavior dur-
ing disasters, supply chain reconfiguration, urban 
and regional resilience planning, or post-disruption 
adaptive learning.

– � Other formal methods like axiomatic design process 
approach [54], which decomposes resilience re-
quirements into quantifiable parameters for critical 
infrastructure systems and provides clear alignment 
with system requirements, and hybrid information 
fusion framework [55], which is focused on mul-
ti-dimensional resilience and addresses physical and 
social factors when managing system resilience. For 
instance, axiomatic design standardizes power grid 
resilience, while hybrid fusion combines geologi-
cal, architectural, and social indicators for commu-
nity resilience to aid community-level planning.

The pictorial view of the system resilience tempo-
ral cycle conceptual models evolved and built on the ba-
sis of the summarized methods is represented in Fig. 2.

Thus, for domain-specific applications (e.g., nu-
clear safety, cyber-security, urban seismic resilience, 
regional security, etc.), practitioners should prioritize 
methods aligning with control data availability, spec-
ificity of the control object and its critical functions, 
and system complexity.

3. Results and Discussion

Most of the relevant frameworks and methodolo-
gies for resilience cycle analysis (e.g., [4, 7, 15, 17, 56, 

Fig. 2. The evolving of adaptive cycle, systemic resilience and resilience triangle models to resilience framework 
based on Ignatyev adaptation maximum phenomenon (combined from [2, 40, 46, 52])
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57]) reviewed are based on indicators (quantitative, 
semi-quantitative or qualitative criteria), simulation 
and expert judgments. Four resilience capabilities, i.e. 
resistive, absorptive, restorative and adaptive, are the 
target objectives of these approaches and are closely 
related with the different stages of typical resilience 
cycle. In the last decade, comprehensive analysis of 
these resilience capabilities has been carried out by a 
great number of reputable studies, but the lion’s share 
of them was promoted abroad. In our homeland, the 
resilience management support of critical infrastruc-
tures is a quite new and challenging field of research, 
intersecting with pioneering safety, reliability and sit-
uational control fundamentals [3].

The main difference between foreign and Rus-
sian studies and practices in the field of critical infra-
structure resilience management consist in the fact that 
Russian approaches are mostly focused on pre-event 
and during disruption measures (prevention and ab-
sorption phases, respectively) for the resilience main-
tenance, while the foreign methodologies concentrate 
on the post-event measures along with that, and en-
close the coping of recovery and adaptation phases as 
well. At the same time, both ways are complementa-
ry and accompanying within the specific case studies 
of infrastructure resilience issues, notably, resilience 
estimation and control problems of critical entities or 
assets.

The overall resilience cycle/scenario is decom-
posed over five temporal phases which can be con-
ceptualized by means of categorized performance 
indicators (system resilience capabilities such as sen-
sitivity, anticipatory ability, resistivity, absorbabili-
ty, responsiveness, recoverability, adaptability) that, 
in turn, can have values, providing the possibility to 
quantitatively or qualitatively describe each stage of 
the resilience cycle. In fact, some of these indices are 
poorly formalizeable, quantifiable and manageable [3, 
57]. Verbal analysis of decisions [58] is an effective 
approach to meet the problems of resilience multic-
riteria assessment and optimization. As noted in [3], 
defining the critical functionality of an infrastructure 
system enables to precisely and quantitatively define 
and construct the system resilience curve in scenario 
time and analyze the main characteristic points of its 
performance level in discrete or continuous time. The 
resilience curve can be used to monitor the critical 
infrastructure functionality level dynamics and to ex-
press the physical meaning of such system properties 
as reliability, robustness, vulnerability, capacity, rapid-
ity, etc., during all phases of resilience cycle schemat-
ically illustrated in Fig. 1.

The notations used in Fig. 1 are as follows [3]: 
FL(t) is a system performance function indicating 

functionality level of the critical infrastructure at a 
particular time; 0t  is a time before the disruptive event 
or a starting point of the simulating scenario; 1t  is a 
time at which the adverse event occurs; 2t  is a time at 
which the critical infrastructure reaches the minimum 
performance level, i.e. a starting point of its function-
ality loss; 3t  is a time at which the critical infrastruc-
ture starts to recover; 4t  is a time at which the critical 
infrastructure reaches the initial functionality level or 
a starting point of a new steady-state level, but with 
lesser performance ( 44 ′= tt ); 5t  is a time at which 
the scenario ends or at which the critical infrastructure 
increases its functionality via adapting, transforming 
and learning ( 55 ′= tt ), or, in the worst case, the sys-
tem shows a permanent loss of functionality ( 55 ′′= tt ).

According to [2, 3, 57], the resilience cycle con-
sists of interconnected time-dependent phases mod-
eled as a continuous iterative (multi-cycle) process. 
The following temporal phases, each with distinct dy-
namic characteristics, formal representation and con-
trol actions, are commonly assigned and distinguished 
(see Fig. 1) [3, 57]:

Phase 1 Understand risks is applicable prior to 
an adverse event and emphasizes emerging risks and 
includes their early identification and monitoring; e.g. 
what could the “adverse event” be?

Phase 2 Anticipate/prepare is also applicable be-
fore the occurrence of an adverse event and includes 
planning and proactive adaptation strategies.

Phase 3 Absorb/withstand comes into action dur-
ing the initial phase of the event and shall include the 
vulnerability analysis and the possible cascading/rip-
ple effects; e.g. “how steep” is the absorption curve, 
and “how deep” down will it go.

Phase 4 Respond/recover is related to getting the 
adverse event under control as soon as possible, influ-
encing the “how long” will it last, question. Further, it 
includes the post-event recovery; e.g. “how steep up” 
is the recovery curve for normalization of the func-
tionality.

Phase 5 Adapt/transform/learn encompass all 
kinds of improvements made on the system and its 
environment; e.g. affecting “how well” the system is 
adapted after the event, and whether it is more resilient 
and “sustainable”. The activities in this phase also lead 
to preparation for future events and hence, this resil-
ience curve also exhibits a reoccurring cycle.

The resilience ( )tCIR  of a critical infrastructure 
system at time t  can be modeled as a function:

( ) ( ) ( ) ( ) ( ) ( )( )tDtStttAftCIR ,,,, τα= ,       (1)

where ( )tA  is an absorption capacity, i.e., system abil-
ity to maintain function during disruption event; ( )tα  
is an adaptation capacity, i.e., system ability to trans-
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form/adjust structure and behavior over time; ( ) 1−tτ  is 
a recovery rate, i.e., system rapidity of post-disruption 
restoration; ( )tS  is a system state at time t , ( ) nRtS ∈  
(an n -dimensional state vector representing key sys-
tem variables, e.g., performance, capacity or func-
tionality); ( )tSScrit ∈  is a critical threshold (collapse 
may occur if ( ) critStS < ​, i.e., system failure). ( )tD  
is a time-varying stochastic or deterministic distur-
bance (disruptions), i.e., external shocks or stressors; 

( )tDDthresh ∈  is a stress-test limit of the system.
The system performance is defined by a function:

nRTSFL →×: ,                       (2)

where performance function FL(s(t),t) mapping sys-
tem state to functionality level and represents the per-
formance level of a critical infrastructure system at 
time Tt ∈ .

The resilience curve is given by FL(s(t))  over 
time, with resilience metrics derived from this curve. 
Let FL

0
(t) be a nominal performance under normal op-

erating conditions.
Thus, temporal phases of the resilience cycle can 

be formally written as dynamical equations:
(a) Pre-disruption phase ( 10 ttt <≤ ) when the system 
prepares (redundancy arrangement ( )tr , hardening 
investments ( )th , preventive-treatment, etc.) for po-
tential adverse events, and the resilience is proactive 
(baseline resilience):

, (3)

where ​ baseRob  is inherent robustness; hr cc ,  are effi-
cacy coefficients; ( )tr , ( )th  are the control variables; 
δ  is a natural decay rate (e.g., infrastructure aging, 
etc.).

The chief goal of this phase is to maximize pre-
event system robustness.
(b) Disruption phase ( 21 ttt ≤≤ ) when a disturbance 

( )tD  occurs, degrading system state ( )tS .
During disruption system absorption and adapta-

tion dynamics can be formulated as:

, (4)

where Dγ  is vulnerability to disturbance coefficient; 
αγ  is absorption efficiency; FLmax is a maximum pos-

sible system performance.
The chief goal of this phase is to minimize per-

formance loss of a system during disruption.
(c) Recovery phase ( 43 ttt ≤≤ ), including downtime 
period 32 ttt <<  (disrupted system state), when the 
system restores functionality, possibly to a new equi-
librium:

, (5)

where τ  is a recovery time constant; repair rate 1−τ  
and adaptive upgrades ( )tm  are control variables; mγ  
is marginal gain from upgrades; ( )tη  – noise or sto-
chastic improvements.

The chief goal of this phase is to restore system 
functionality level.
(d) Adaptation phase ( 54 ttt ≤< ) when the system im-
proves its performance through transformation and 
post-disruption learning:

.     (6)

The chief goal of this phase is to update resil-
ience strategies via learning. For this purpose, the 
knowledge integration and policy updates control var-
iables may be used.

Total resilience over scenario time [ ]50 , tt  can be 
quantified as the integral of performance retention:

,       (7)

where FLnominal is the nominal (undisturbed) system 
performance, i.e., baseline (optimal) state ( )tS ; ( )tC  
is cost of control actions, specifically, ( )tr  and ( )tm ; 
λ  is cost-performance tradeoff parameter.

Time-discounted resilience management aims 
to find and implement optimal resilience ensur-
ing policies (designing optimal contingency plan) 

( ) ( ) ( ) ( ){ }tmtuthtr ***** ,,,=π  that maximize ( )tCIR  
while minimizing cost over time period [ ]50 , tt :

 

 (8)

subject to:
– � state constraints: ( ) critStS ≥ ;
– � resilience capacity constraints: ( ) max0 CIRtCIR ≤≤ ;
– � budget constraint: 

;

– � control constraints: 
( ) ( ) ( ) ( ) MtmUtuHthRtr ∈∈∈∈ ,,, ;

– � tochastic disruptions: ( ) ~tD  Poison process or 
Markov point process,

where ( )tu  is a control variable for resource alloca-
tion; β  is a penalty for prolonged downtime; ( ) 2tC  
is a cost of control actions; Tw are the weights pri-
oritizing critical infrastructure sectors; totalB  is a total 
budget (investments in preventive and reactive meas-
ures) to maintain and support the system resilience or 
improvement of its functionality level under disrup-
tive conditions.

For uncertain environments, model ( )tD  and 
( )tα  as stochastic processes (e.g., Markov chains or 
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Wiener processes), leading to a resilience stochastic 
differential equation:

,            (9)

where tW  is a Wiener process, and µ , σ  encode drift 
or diffusion terms.

System resilience can be maximized by dynami-
cally tuning its capabilities ( )tA , ( )tα , and ( )tτ .

The generic resilience cycle model emphasizes 
seamless transitions between phases and considers 
also interactions between different resilience cycles. 
The transition between phases is determined by spe-
cific conditions:

Preparedness to Absorption occurs when disrup-
tion happens at time 1t , ( ) threshDtD > .

Absorption to Recovery occurs when system  
 
stabilizes at ( )321 tttt ±+= , where   
 
or max

1 abstt τ≥− , and ( ) 0=tD  for t∆ .
Recovery to Adaptation occurs when sys-

tem performance reaches acceptable level: 
 or max

1 recabstt ττ ≥−− .
Adaptation to Preparedness occurs when sys-

tem transformation and adaptation is complete or new  
 
cycle begins:  or Ttt +≥ 0 , and  
 

( ) maxCIRtCIR = or learntt τ+≥ 5 , where learnτ is time 
period of system experience gathering from lessons 
learned. 

For systems experiencing multiple disruptions, 
the formulations (1)-(8) are extended to account for 
learning across the cycles. Let ( ) ( )ts i  denote the sys-
tem state during the i -th resilience cycle/scenario. 
The evolution of resilience capabilities across the cy-
cles is given by:

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )iiiiiiii TtkTtsts ++=++
00

1
0

1 ,φ , (10)

where φ  captures how learning in one cycle influenc-
es initial conditions in the next cycle.

The learning rate across cycles can be quantified 
as:

,                (11)

where 
 
is the resilience  

 
loss under each cycle/scenario.

For multiple disruptions occurring over time 
( ) ( ) ( ){ }nn TDTDTD ,,...,,,, 2211 , the system performance 

trajectory follows:

 
,      (12)

where ϕi captures the proportional performance impact 
from disruption ii as a function of time since the dis-
ruption and current system state.

In this case, system adaptation capacity can be 
approximated as:

, 

where αc  is the adaptation cost function.
Proposed formalization aligns with Holling’s 

ecological resilience and Bruneau’s seismic resilience 
frameworks [5, 12], but to a greater extent fit to engi-
neered and socio-technical infrastructure systems.

Principally, the formalized models of the tempo-
ral-phased resilience cycle considered can be used in 
two different ways as illustrated in [57], for the analy-
sis and measuring the system resilience:
1) � Treatment of the resilience cycle indirectly, as a 

conceptual model where indicators are used to 
measure the resilience in each phase indirectly, i.e. 
without considering the curve describing function-
ality of the system by means of the resilience curve.

2) � Modeling the shape of the resilience curve FL(t) 
directly and looking for “macro-indicators” (e.g. 
maximum loss of functionality, downtime, etc.), 
when the event is described as an exact scenario, 
and the time may be referred to as scenario time. 

Moreover, the using potential of the proposed 
formalisms written in specific a manner can be extend-
ed with mathematical formulations given in [3] and 
[59]. Analyzing the formal models (1)-(12) it is worth 
to highlight that resilience of critical infrastructure 
systems must be considered as the diversity of future 
pathways accessible to a system rather than focusing 
on stability or recovery rate.

Conclusion

In fine, it should be noted that designing and 
implementing formal conceptual models of critical 
infrastructure systems resilience accounting temporal 
aspects of its operation is a complex, interdisciplinary 
problem. There are several key challenges arising in 
developing system resilience temporal models along 
with theoretic, computational, and practical issues and 
potential constraints. Critical infrastructures are non-
linear, interdependent, in some way inertial, and adap-
tive, making it difficult to model their temporal behav-
ior, time lag and phase transitions. Triggering events 
(disruptions) are stochastic in timing, magnitude, and 
duration, while recovery efforts face unpredictable de-
lays, increasing uncertainty in system resilience man-
agement. System resilience is not static. It is time-var-
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ying and evolves due to degradation, adaptation, and 
learning of the system. Some of traditional metrics, 
e.g., time-to-recover or allowable downtime, are over-
simplified. Critical infrastructure systems require re-
al-time monitoring and tracking many state variables 
in the multidimensional attribute spaces, leading to 
the curse of dimensionality. At the same time, most 
critical infrastructure data is coarse-grained, while re-
silience models need high-resolution (more detailed) 
temporal disruption/recovery trajectories. System 
resilience management strategies must adapt on-the-
fly and support real-time decision-making under un-
certainty to provide predictive and adaptive control, 
but most control models are offline (pre-computed) 
without rolling time horizons. In addition, resilience 
maintenance standards and regulations vary by criti-
cal infrastructure sectors (energy, transport, health-
care, etc.), complicating cross-system modeling in 
tote. Not the least of the challenges is the traditional 
over-investing in redundancy and physical protection 
of critical entities may be economically unsustainable, 
while under-investing in critical infrastructure system 
robustness and resilience risks collapse. Without stud-
ying these issues, we risk underestimating dependent 
cascading failures like a cyber-attack collapsing both 
power and healthcare systems.

Situational conceptual models of system resil-
ience manipulating spatial-temporal aspects provide 
groundbreaking advances in both theoretical founda-
tions and practical resilience management. Conceptual 
models of system resilience cycle as a unified frame-
works for dynamic resilience temporal modeling for-
malize time-varying disruptions, including cascading 
correlated failures (risks), and move beyond static 
“resilience triangles” to expanded time-explicit mod-
els integrating absorption (instantaneous robustness), 
adaptation (real-time adjustments), recovery (time-
to-restore), and evolution (long-term learning). These 
models transform resilience from a reactive concept 
to a proactive, quantifiable science. Theoretically, they 
enable a rigorous math of “how systems fail and re-
cover over time”, and, practically, automate synthesis 
of digital shadows, models and twins of the complex 
dynamic systems that bend, but do not break.

The main contributions that distinguish system 
resilience cycle temporal models from traditional 
equilibrium-based deterministic resilience frame-
works lie in the following scope: classical models such 
as static snapshots like “resilience triangles” measure 
only area under recovery curves, while temporal mod-
els take into consideration time-to-absorb (how fast a 
system degrades), recovery acceleration (how adap-
tation shortens downtime), and learning effects (how 
post-disruption upgrades improve future resilience). 

Generally speaking, resilience time-discounted mod-
els are the basis for combining continuous dynamics 
with discrete events to model complex failures that are 
not independent as self-exciting processes as stated 
stochastic resilience theory unlike general reliability 
theory [60].

In this study we have summarized, examined 
and proposed conceptual models of the critical infra-
structures resilience cycle formalizing system opera-
tion temporal phases, when adverse events occurs, and 
written using mathematical formulations from general 
system and control theory subject to peculiarities of 
the state-of-the-art resilience concept and safety sci-
ence. These models fit both to resilience management 
of critical entities and other types of complex dynamic 
systems to a wide extent. The formalized conceptual 
models of the resilience cycle provide a formal basis 
for the further simulation, automation and coordina-
tion of system performance control procedures under 
extreme conditions. It is necessary for the knowledge 
unified formal representation and structuring on the 
various aspects of system resilience management, as 
well as in order to generate and analyze scenarios for 
the preventive analytics of potential threatening and 
emergency situations. These models are distinguished 
by the completeness of conceptual definition of the 
resilience cycle phases and related temporal aspects 
of its management. Conceptual models are defined 
in the form of strict theoretical formalisms. Relations 
that determine the phased structure of the system resil-
ience cycle are defined on the sets of model elements. 
Along the lines of the further research, the practical 
implementation of the designed models will be carried 
out in the form of applied system resilience ontology. 
Such ontology is intended to ensure semantic interop-
erability of heterogeneous elements of the situational 
management information structure at all stages of the 
system resilience maintenance life-cycle.

Resilience temporal models are not just intended 
for its incremental improvements. They redefine con-
tingency plans and analyze how the system prepares 
(proactive hardening), responds (real-time adapta-
tion), and evolves (post-disruption learning) under ac-
tuating multiple threats when managing its resilience. 
Nevertheless, most of known temporal models of sys-
tem resilience have their own typical limitations such 
as scalability, computational complexity, human-in-
the-loop factor, influencing the delay or misinterpret 
adaptive controls of system resilience (unpredictable 
human behavior), validation difficulty, and other do-
main-specific contingencies.

Temporal models of infrastructure system resil-
ience can find applications for such critical domains 
as critical infrastructure protection (power grids, 
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transport networks, water systems, etc.), cybersecurity 
(adaptive cyber-defense, smart manufacturing, etc.), 
disaster response (flood resilience, wildfire manage-
ment, etc.), healthcare (pandemic response, climate 
adaptation, etc.), logistics (resilient supply chains, 
inventory management, etc.), national security (inter-
national conflicts forecasting, terrorism prevention, 
defenses allocation to chokepoints, etc.), and other, 
where proactive, adaptive, and cost-effective situation-
al management is utterly needed. Thereto, the models 
tailored implementation within the decision support 
systems provides several practical benefits such are 
rational choice of faster recovery schedules, evalua-
tion of mitigation scenarios, cost savings, risk reduc-
tion, improved action planning, and enhanced control 
coordination for the safety and resilient operation of 
critical entities (systems).
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Темпоральные концептуальные модели жизненного цикла жизнеспособности динамических 
систем для управления критическими инфраструктурами∗

А.В. Маслобоев
Федеральный исследовательский центр «Кольский научный центр Российской 
академии наук», г. Апатиты, Россия

Аннотация. Исследования направлены на разработку моделей, методов и информационных технологий для 
проблемного мониторинга и поддержки принятия интерпретируемых решений в задачах управления крити-
чески важными инфраструктурными системами с целью обеспечения их устойчивого функционирования в 
условиях неблагоприятных воздействий природного и искусственно инициированного характера. Для едино-
го формализованного представления информационной структуры, процессов и задач обеспечения безопас-
ности и устойчивости исследуемого класса систем разработаны концептуальные модели жизненного цикла 
функционирования критических инфраструктур, учитывающие темпоральные аспекты управления их ди-
намикой и базирующиеся на положениях современной концепции жизнеспособности (resilience) сложных 
систем. Модели обеспечивают формальную основу для имитационного моделирования, автоматизации и 
координации процессов управления жизнеспособностью инфраструктурных систем на этапах их жизнен-
ного цикла с целью генерации и анализа возможных сценариев возникновения инициирующих событий и 
связанных с ними потенциальных угроз. На практике предложенные модели могут быть реализованы в виде 
прикладной онтологии жизнеспособности критических инфраструктур, которая сможет найти применение в 
системах ситуационного управления и превентивной аналитики безопасности критически важных объектов. 
Ключевые слова: концептуальное моделирование, темпоральная модель, жизненный цикл, управление, 
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