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Abstract. The study is mainly aimed at developing models, methods and information technologies for
problem monitoring and interpretable decision-making support in the field of critical infrastructure systems
management in order to ensure their resilient operation under hazardous natural and man-made impacts.
For the unified formalized representation of the information structure, processes and problems of ensuring
the safety and stability of the studied class of systems, conceptual models of the critical infrastructures
functioning life-cycle accounting the temporal aspects of their dynamics management and based on
the principals of the state-of-the-art resilience concept of complex systems, have been designed. The
models provide a formal basis for the simulation, automation and coordination of the infrastructure system
resilience management processes at the stages of their life-cycle in order to generate and analyze possible
scenarios for the occurrence of triggering events and potential threats associated with them. In practice,
the proposed models can be implemented as an applied ontology of critical infrastructure resilience, which
can find applications for situational management systems and preventive safety analytics of critical entities.
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Introduction

The increasing frequency and severity of vari-
ous disruptions and incidents from man-made activi-
ties and casual events to transboundary cyber-attacks
and natural disasters demand a dynamic, time-aware
approach to critical infrastructure resilience manage-
ment based on system functioning life-cycle conceptu-
al models accounting temporal aspects of its resilience
and performance. Life-cycle temporal modeling of the
critical infrastructure resilience is urgently needed for
enhancing the efficiency of decision-making under
situational control of the system critical entities and
functions. Temporal models should not be optional for
resilience management processes. They are critical for
preventing temporal risks and collapse in multi-hazard
environments, where critical infrastructures exist and
operate, as well as for optimizing limited types of re-
sources (time, money, labor, etc.) and future-proofing
policies against unknown and unforeseen disruptions.
Without temporal models, we are blind to the dynam-
ics of threats and failures. With them, we can design
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resilient infrastructure systems that bend, but do not
fail. Besides, the application of formalized life-cycle
temporal models within the resilience management is
conditioned by such reasons as high demands of pro-
active adaptation to escalating threats; the aging rapid-
ity of critical infrastructure systems is faster than these
systems are upgraded; regulatory and insurance pres-
sures at government level that strictly require resilience
timelines for critical entities (time-to-recover/time-to-
adapt metrics); cascading effects and failures that are
time-dependent, but not discounted and supported in
static models missing temporal phase transitions; deci-
sion support system requirements of consistent, com-
plete and time-structured data for the resilience predic-
tive maintenance and adaptive control; economic costs
of ignoring system resilience timelines which leads to
confusion of when and where to invest in upgrades
and redundancy to minimize disruption costs and po-
tential losses. Thus, resilience cycle temporal models
prioritize time limits to timely operational and strate-
gic decision-making under prognostic and health man-
agement of the critical infrastructure system. They are
used to regulate scheduling terms of system resilience
audits, maintenance and support within the all phases
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of its life-cycle, and in analysis of system performance
function (resilience triangle curve) as well.

Therefore, engineering and further exploration
of resilience cycle temporal models of the critical in-
frastructure systems is an essential research problem
which is in some way complex, interdisciplinary and
needs deeper studying and formal reasoning. The effi-
cient solving of this problem is practically important,
because resilience is inherently dynamic, evolving
over time in response to impact of various nature de-
structive factors, recovery actions, and environmental
shifts. By embedding temporal models into state-of-
the-art resilience frameworks, it is possible to build
critical infrastructure systems that not only survive
disruptions, but adapt and thrive in the face of current,
interconnected threats. Temporal models shift resil-
ience control from reactive “firefighting” to proactive,
data-driven risk management strategy adequate and
well-suitable in atypical regimes of system operating
depended on increasingly volatile ambient conditions.

In this study we make an attempt to summarize
and design resilience cycle conceptual models with
focus on resilience temporal aspects by formalizing
backbone phases of the system adaptive cycle (a dy-
namic map of resilience) while accounting for system-
ic constraints for the purpose of critical entities and in-
frastructure systems efficient situational management,
as well as to level existing contradictions and bridge
the gaps in theory and practice in this field of research.
This study is a logical continuation of the earlier re-
search works [1-3], where a general framework for
analysis of resilience capacity models and evaluation
of control actions aimed at maintaining system prop-
erties (robustness, flexibility, fragility, redundancy,
recoverability, resourcefulness, rapidity, etc.) in the
range of its adaptative capabilities under various op-
erating conditions and critical-case scenarios of poten-
tially adverse events, has been developed.

At first sight, this study is primarily theoreti-
cal in nature as it may seem. Though, basically, our
findings make a contribution to the development
of a formal apparatus for the general theory of re-
silience management of complex dynamic systems,
specifically by engineering conceptual models that
concretize and detail the conceptualization and for-
malization of critical infrastructure resilience, taking
into account the temporal and organizational aspects
of the situational management cycle of the resilient
functioning of this class of systems. This enables im-
proved validity and efficiency of decision-making via
analysis and modeling of initiating event propagation
processes/scenarios, as well as the automated choice
of facilities and assets relevant to the current situa-
tion for maintaining system resilience based on these
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models. A comparative analysis of developments
proposed with existing approaches, as well as ex-
perimental validation of the theoretical assumptions
and formulations in solving real-world problems (by
the example of real critical entities or infrastructures
operating in mining industry sector of Murmansk re-
gion, Russian Federation) are beyond the scope of
this work and will be the next stage of our further
research on the issues discussed here.

1. Accepted definitions and assumptions

There is no universally and commonly accept-
ed definition of critical infrastructures. The works [4,
5] discuss and review difference in understanding of
critical infrastructures and its definitions that mostly
emphasize the contributing role of infrastructure to so-
ciety or the potentially debilitating effect in the case of
disruption. In [4] it is asserted that infrastructure sys-
tems that represent a significant public investment and
where even minor disruptions can degrade the perfor-
mance of global systems and cause significant societal
damage can be called critical infrastructures. At once,
such infrastructure systems (i.e., a set of facilities pro-
viding vital services necessary for a society to function)
are considered as critical, if its malfunctioning threat-
ens the security, economy, lifestyle or public health of
a city, region or even a state. On the other hand, critical
infrastructures are often interpreted as systems, whose
incapacity or destruction would have a debilitation
impact on the defense and economic security, or iden-
tified as those physical and information technology
facilities, networks, services and assets that, if disrupt-
ed or destroyed, would have a serious impact on the
health, safety, security or economic well-being of citi-
zens or the effective functioning of governments, first
of all, in EU-countries [4]. Meanwhile, it is difficult
to define, what types of entities/infrastructure systems
are critical. The critical infrastructure sectors (energy,
transport, healthcare, banking, water, industry, space,
food, etc.), decided by each country, government or
organization, depends on their own contexts and pri-
orities. The classification of critical infrastructure sys-
tems is not the chief aim of our study and is mentioned
here without further discussion. It is an independent
research problem that requires deeper focus, detached
elaboration and scientific substantiation.

The complexity of modern critical infrastructures
as “systems-of-systems” makes it virtual impossible
to foresee and prevent all possible adverse scenarios
[6]. In addition, the critical infrastructures are under
dynamic stress due to operational conditions that can
significantly affect the reliability, safety and resilient
functioning of their components, the system configura-
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tion, and consequently, the functionality/performance
of components [4]. Thus, the study [7] relying on these
facts postulates just critical infrastructure protection is
not enough. Over time, such deliberate reasoning by
reputable studies has led to a paradigm shift towards
critical infrastructure resilience, i.e., from protection
to genuine resilience. Subsequently, this also led to
a new focus shift from resilience and protection of
critical infrastructure sectors to the level of concrete
critical infrastructure facilities, operators or entities,
without clearly articulating this as such [8, 9].
Similarly, the term “resilience” is difficult to de-
fine, because of its very wide use. In the field of crit-
ical infrastructures, resilience still has no generally
accepted definition. Etymologically, resilience comes
from the Latin (resilio, resiliere), which means a return
and the ability to resume [4]. Over time, a series of
interpretations of resilience has been presented. The
studies [5, 10, 11] considers the evolution of resilience
term meaning with the last decades of development of
this concept that was originally introduced as a persis-
tent ability to absorb change and disturbance and still
maintain the same state variables [12]. Later, it was
refined as the ability of a system to anticipate, prepare
for, and adapt to changing conditions and withstand,
respond to, and recover rapidly from disruption. The
main amendment proposed afterward was the inclu-
sion of the ability to comprehend risks (current and
emerging), leading to the definition of resilience as
the ability to understand risks, anticipate, prepare for,
and adapt to changing conditions and withstand, re-
spond to, and recover rapidly from disruption. Then,
the study [10] adopted the elaborated definition of the
resilience of an infrastructure system and stated it in
the following formulation: the resilience of an infra-
structure is the ability to understand and anticipate the
risks, including new/emerging risks, threatening the
critical functionality of the infrastructure, prepare for
anticipated or unexpected disruptive events (so-called
“black swans” [13]), optimally absorb/withstand their
impacts, respond and recover from them, and adapt/
transform the infrastructure or its operation based on
lessons learned, thus improving the infrastructure an-
ti-fragility [10]. According to the latest ISO/TS 31050
“Guidance for Managing Emerging Risks to Enhance
Resilience” [14], resilience is defined similar to [10]
as the ability of a system to anticipate possible adverse
scenarios/events representing threats and leading to
possible disruptions, to prepare for these events, to
withstand/absorb their impacts, to recover from dis-
ruptions caused by them and to transform/adapt to the
new, changed conditions, after the event. This defini-
tion has become approximately conventional for the
most foreign resilience studies. In our research works,
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we also abide by the given definition of infrastructure
resilience and apply it to critical entities and region-
al infrastructures systems. Discussed definitions al-
low analyzing the behavior of a critical infrastructure
system exposed to an adverse event over a scenario
timeline and simultaneously assessing the function-
ality of a critical infrastructure system over the resil-
ience cycle as notionally shown in Fig. 1. While the
decomposition over the time-axis, i.e., defining the
temporal phases of the resilience cycle, may be trivial,
decomposition over the functionality axis is non-triv-
ial as functionality might have different dimensions
and metrics [10]. Resilience captures five phases in
the resilience cycle associated with system capabili-
ties: understand risks, anticipate/prepare, absorb/with-
stand, respond/recover and adapt/transform. These are
the main attributes (capacities) of system resilience,
reflected in [3, 15]. Even so, some relevant resilience
studies (e.g., [16-18]) argue that resilience per se is
very multidisciplinary and has little orthodoxy in its
conceptualization, operationalization and application,
and, therefore, becomes problematic when trying to
measure it using heterogeneous system performance
indicators within the all temporal phases of the resil-
ience cycle.

2. Materials and methods

The background of this on-going, in some way,
pilot study comprises pioneer research works and port-
folio materials contributed to the development of the
classical and modern theory of stability and safety of
complex dynamic systems, general theory of reliabil-
ity control and risk management, as well as to solv-
ing fundamental problems in the field of engineering
models, methods and technologies for situational
management information support of critical entities
and infrastructures. First of all, there are such domes-
tic systemic researches as: [19] in the field of situa-
tional management; [20] in the field of critical infra-
structure protection; [21] in the field of risk analysis of
socio-economic systems; [22, 23] in the field of mode-
ling stability in control systems; [24, 25] in the field of
adaptive control systems; [26, 27] in the field of stud-
ying the influence of human factor and its accounting
in management of large-scale systems; [28, 29] in the
field of system dynamics and agent-based modeling;
[30] in the field of interdisciplinary research.

Conceptually, resilience can be modeled through
the change in system performance or functionality over
time. Therefore, based on the reputable studies of criti-
cal infrastructure resilience [31-33], the resilience cycle/
scenario presents with four temporal stages [4] covering
the five main phases [15] (Fig. 1) mentioned above.
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The temporal model of system resilience is a
framework that examines how a system’s ability to
withstand, adapt to, and recover from disruptions and
trigger-adverse events evolves over time. It empha-
sizes the dynamic nature of resilience, recognizing
that systems face varying multiple threats and under-
go changes in their capacity to maintain functionali-
ty under influencing situational factors. Unlike static
models that treat resilience as a fixed system proper-
ty, the temporal models acknowledge that resilience
is time-sensitive and influenced by evolving threats,
system states, and recovery processes. This class of
models provides both analysis of the system resilience
dynamic characteristics and allows for such temporal
aspects of resilience management as:

— temporal stages of resilience cycle such as pre-
event/disruption (resistance, preparation, early
warning), during event/disruption (absorption, ad-
aptation), post-event/disruption (recovery, evolu-
tion), and next event/disruption preparation (learn-
ing, improvement);

— time-dependent factors such as response time (how
quickly a system reacts to disruptions), recovery du-
ration (the time needed to return to normal or a new
stable state), adaptation rate (how fast the system
learns and improves resilience);

— dynamic feedback loops [34], i.e., systems may
enter feedback cycles where past disruptions in-
form future resilience strategies (e.g., learning

from failures).

-
FL (%)

Pre-disruption phase is characterized as a peri-
od of time from the occurrence of a triggering event
to the beginning of the system degradation (loss of
functionality). At this stage the system builds robust-
ness through redundancy, diversity, and proactive
measures. During disruption phase represents the
time interval from the beginning of the system degra-
dation to the maximum loss of its functionality, i.e.,
when the system absorbs shocks, minimizes degra-
dation, or adapts to continue functioning. Post-dis-
ruption phase is a part of system functioning timing
loop when the system restores functionality and may
improve resilience for future disruptions, i.e., a time
period from the maximum degradation of the sys-
tem performance to the functionality returning to the
level of the pre-event stage or recovering to an ide-
al state, structure or property which can be worse or
better than the original ones. Next disruption prepa-
ration phase is a period of time from the functionality
returning to the level of the pre-event stage to the
occurrence of the new triggering event/shock on the
system or its components [4]. This stage in the for-
mer scenario is related to the pre-event stage in the
next scenario [2]. Following [2, 4], it is worth noting
that the ability of improvement may affect different
subsequent cycle phases and scenarios, as well as
that the system performance in each scenario should
improve at least in one stage compared to previous
scenarios, thanks to the ability of a system to adapt
and learn from the experience.
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Fig. 1. Mapping the dynamics of critical infrastructure functionality level over temporal phases of the resilience
cycle and possible outcomes when the system is exposed to an adverse event
(adopted from [3])
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Temporal modeling of system resilience cycle
requires addressing both broad conceptual founda-
tions and domain-specific technical needs. The overall
requirements for system resilience temporal models
engineering, derived from recent research [35-38], are
shortlisted below.

General requirements such as dynamic threat
handling, adaptive capacity and flexibility, standard-
ized frameworks, systemic and contextual representa-
tion, verification and validation should apply across
domains and ensure resilience models are holistic,
adaptable, and actionable. Models must account for
unpredictable disruptions (e.g., cyber-attacks, climate
extremes, etc.) by integrating probabilistic or scenar-
io-based approaches, and multi-hazard interactions
to addressing cascading failures and compound dis-
ruptions (e.g., earthquakes triggering infrastructure
collapse) through interdependency mapping. Models
should reproduce graceful degradation of the system
when it maintain partial functionality during disrup-
tions and recover iteratively, and support post-disrup-
tion learning mechanisms that must be formalized to
improve future system resilience and its adaptation
(e.g., updating protocols, hardening infrastructure) to
the recent operating conditions. Models must account
unified quantifiable metrics (e.g., downtime, recovery
time, performance retention, etc.) to compare resil-
ience across systems, and align with existing safety
standards like ISO 31000 [39]. Integration with com-
plementary risk analysis/management frameworks
to provide compliance and interoperability of the re-
silience conceptual models is quite important here.
Models should examine critical infrastructures as
system-of-systems and account interactions between
subsystems (critical entities) to analyze and detect un-
intended cascading effects. As well, resilience cycle
conceptual models must incorporate socio-technical
factors (e.g., territory specificity, critical entities den-
sity, actor/operator behavior characteristics, etc.) that
influence overall resilience, and should focus on ap-
plication of the state-based formal analysis methods
(e.g., probabilistic POMDPs) to verify model correct-
ness while enabling system adaptability under disrup-
tions or critical events.

Specific requirements address technical and op-
erational nuances in temporal modeling of the system
resilience such as temporal granularity, human-in-
the-loop considerations, dynamic risk assessment,
resilience quantification, domain-specific adaptations.
Temporal granularity implies integration of time-vary-
ing data to capture dynamic vulnerabilities, and differ-
entiation between immediate stabilization (minutes),
short-term repairs (hours), and long-term upgrades
(months), i.e., phased recovery modeling when man-
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aging the system resilience. Accounting of human fac-
tor, i.e., human response times and behavioral dynam-
ics when modeling the resilience management cycle is
needed to simulation of panic, trust, or coordination
shifts during disruptions and critical events to refine
joint action plans and system control programs, and
quantification of manual intervention delays with un-
certainty bounds. For the dynamic risk assessment and
resilience quantification GIS-based spatial-temporal
risk maps and fuzzy logic can be efficiently used to
model risk variations of system functionality losses
and cost-benefit tradeoffs. Combining of the risk con-
tinuous monitoring and system resilience cycle mod-
eling provide a basis for the early warning and imple-
mentation of risk adaptive controls when real-time
potential threat tracing. Temporal models built on re-
silience performance-based metrics and using stochas-
tic dynamic programming serve for the optimization
of facility and resource allocation to balance redun-
dancy and recovery budgets under system resilience
maintenance phased process. To ensure validity resil-
ience temporal models should surely take into consid-
eration context and domain-specific adaptations. This
is especially important for critical infrastructure sys-
tems when modeling their resilience and assessing the
efficacy of applying preventive measures under sys-
tem performance characteristics fluctuations. Critical
infrastructures are high-dimensional scalable systems
that extremely required avoid bias in their resilient
operating. Resilience temporal models are in some
way intended to prioritization of system self-healing
phases and evaluation of the relevant fail-safe modes
for system functioning within these temporal phases.
The discussed requirements are partially or completely
allowed for some well-known formalized conceptual
models of system resilience like the “SyRes Model”
(Systemic Resilience Model) [40], GRAM (General
Resilience Assessment Model) [41], Resilience Con-
tracts [42] and others used widely for practical issues.

Nevertheless, there are some contradictions re-
vealing in theory and practice of resilience cycle tem-
poral modeling and dynamics control that in tote affect
on the overall efficiency of resilience management
systems engineered. In turn, the effectiveness of pre-
ventive and reactive countermeasures applied to mit-
igate and eliminate risks of the system functionality
losses under adverse events and disruptions depend on
resolving of these discordances. Generally, the con-
tradictions between resilience conceptual frameworks
and real practices arise from divergent theoretical
concepts and assumptions, differing interdisciplinary
interpretations and perspectives, practical constraints,
evolving threat landscapes, and the inherent complex-
ity of large-scale dynamic systems.
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Traditional resilience models (e.g., engineering
resilience) emphasize a system’s ability to return to a
pre-disruption equilibrium, often quantified by metrics
like recovery time or redundancy. In terms of practical
challenges, multidimensional systems, such as critical
infrastructure systems, face dynamic, adaptive threats
(e.g., triggering events, dependent cascading failures,
cyber-attacks, etc.) that require continuous adaptation
rather than static recovery. Thereat, static models fail
to account for systems that must evolve into new sta-
ble states (e.g., socio-ecological resilience) or operate
under persistent adversarial conditions.

Another contradiction lies in accepted terminol-
ogy. Resilience is often conflated with robustness or
adaptive capacity, treating them as interchangeable.
Robustness focuses on resisting degradation without
structural change, while resilience involves adaptation
and recovery, i.e., evolving in response to disruptions.
Thereat, distinct definitions for resilience (adaptation)
and robustness (resistance) are critical for design of ef-
fective resilience management models and methodolo-
gies. Robustness-centric models prioritize redundancy
and hardening to withstand known threats, assuming
static system boundaries whereas adaptive models em-
phasize dynamic reconfiguration, learning, and flexi-
bility to address unforeseen challenges. Practitioners
often design systems for robustness (e.g., redundant
components) but neglect adaptive mechanisms (e.g.,
self-healing algorithms), leading to brittle systems un-
der novel threats. Thus, designing for robustness can
reduce adaptability (e.g., over-engineered systems be-
come brittle), while excessive adaptability may com-
promise stability.

At the same time, definitions of resilience oscil-
late between preventive measures (avoiding disrup-
tions) and reactive recovery (post-disruption restora-
tion). Proactive approaches (e.g., threat anticipation,
redundancy, etc.) aim to eliminate exposure to risks,
whereas reactive approaches focus on rapid recovery
and adaptation after disruptions. Therefore, proactive
strategies require significant upfront investment and
may fail against “unknown unknowns”, while reac-
tive methods risk high downtime costs. Besides, in-
vestment in preventive measures often overshadows
adaptive capacity, leaving systems vulnerable to “un-
known unknowns”. Traditional risk management theo-
ry prioritizes preventing disruptions (e.g., redundancy,
hardening), while in the key practices emerging threats
make prevention in a way insufficient, necessitating
adaptive strategies based on real-time reconfiguration,
dynamic reasoning, machine learning, etc.

Resilience is quantified using technical metrics
(recovery time, MTTR, etc.), but depends on qualita-
tive factors like trust and human behavior. Engineer-
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ing models prioritize measurable parameters (redun-
dancy levels, fault tolerance, system order, etc.). while
socio-technical systems require intangible factors such
as community trust, organizational culture, and cogni-
tive flexibility, which resist quantification. At the same
time, the scarcity and heterogeneity of system control
and status data hinder universal metrics. Meanwhile,
over-reliance on standardized metrics may overlook
systemic vulnerabilities rooted in human or ecologi-
cal interdependencies. Thus, the push for standardized
metrics to resilience quantification clashes with con-
text-specific resilience requirements. The way out is to
develop models using flexible context-aware metrics
that balance generality and specificity (e.g., hybrid
flow/information-based analyses). A holistic view to
system resilience modeling requires integrating cy-
ber, physical, temporal, spatial, and human aspects
into a cohesive whole. Most models are fragmentary
or restricted and focus on isolated resilience domains
without addressing interdependencies between critical
entities. Cross-domain integration fosters interdisci-
plinary collaboration to address interdependencies in
critical infrastructure systems.

Human behavior introduces variability (e.g., de-
lays, errors, etc.) that is rarely quantified in resilience
models. For example, manual recovery actions in in-
dustrial systems are often based on historical data, but
lack real-time adaptability. Integration of human var-
iability into resilience models via probabilistic frame-
works, for example, by using Bayesian networks, to
build adequate automated resilience management sys-
tems is an urgent practical issue. Human operators are
often modeled as rational actors, who enhance resil-
ience through adaptive decision-making. So, Over-re-
liance on automation risks ignoring human adaptabil-
ity, while under-reliance introduces unpredictability.

Most resilience models often assume predictable
events/disruptions, yet real-world systems face cha-
otic, stochastic environments and unexpected, utterly
original situations. Traditional control theory relies on
predefined failure modes and recovery protocols, while
complex dynamic systems like critical infrastructures,
socio-economic or natural-industrial ones exhibit non-
linear behaviors, hidden states, and cascading failures
that defy prediction. Therefore, the implementation of
automatic recovery mechanisms in such class of sys-
tems leads to ineffective responses.

The agenda involves also a problem of relevant
control mechanisms implementation in designed re-
silience models depending on types and structural
features of systems managed and maintained. This
problem domain considers precisely centralized and
decentralized control in the large-scale multi-level sys-
tems. Centralized systems offer streamlined resilience

61



YnpaeneHue puckamm u 6e3onacHOCTbiO

A.V. Masloboev

control, but lack adaptability, while decentralized ones
enhance flexibility at the cost of coordination. Central-
ized resilience control models with monolithic archi-
tectures simplify system resilience management, but
at the same time are vulnerable to single points of fail-
ure. On the other hand, decentralized resilience man-
agement models improve system resilience through
redundancy, but require robust coordination mecha-
nisms to support network-centric control. For all that,
achieving connectedness without centralization re-
mains a challenge in dynamic large-scale systems.

Resilience often demands redundancy and di-
versity, but these introduce complexity that can un-
dermine manageability. Redundancy-driven models
enhance fault tolerance, but increase maintenance
overhead. Contrariwise, simplicity-focused models
prioritize modularity and loose coupling to reduce
failure propagation. Thus, balancing redundancy with
simplicity is critical — excessive complexity can create
new failure modes (e.g., complex interdependencies in
network-centric systems, critical infrastructures, etc.).

At once, traditional models of system resilience
emphasize learning from failures, while emerging par-
adigms advocate learning from successes. So, Safety-I
framework [43] focuses on the root-cause analysis of
errors to prevent risk recurrence. On the other hand,
Safety-1I concept [43] prioritizes understanding every-
day successes to build adaptive capacity as a basis of
resilience engineering. As a result, overemphasis on er-
rors may foster punitive cultures, whereas success-cen-
tric approaches risk complacency toward latent risks.

To resume, the considered fundamental discord-
ances and nuances can be mostly handled by com-
bining existing resilience design and management
methodologies with developing innovative situational
conceptual models of complex dynamic systems and,
first of all, critical entities and infrastructure systems,
for their resilience and safety preventive analytics. The
main contradictions revealed highlight the need for
resilience formal hybrid models and unified adaptive
frameworks that attempt to bridge theoretical rigor
and practical complexity, ensuring complex systems
can withstand both predictable and emergent threats,
as well as to integrate robustness with adaptability, re-
silience quantitative metrics with qualitative insights,
and centralized oversight with decentralized autono-
my while accounting for systemic constraints.

System resilience temporal modeling encom-
passes diverse methodologies tailored to address
dynamic threats, adaptive capacity, and recovery
processes. Among the variety of the state-of-the-art
methodologies for conceptual and dynamic models
engineering of the complex system resilience account-
ing the temporal aspects of the life-cycle of its resilient
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functioning, the following well-known frameworks

are the most popular with a practical view:

— Network analysis approaches such as QtAC (Quan-
tifying the Adaptive Cycle) method proposed by
[44] and flow-based ascendency analysis method
[45]. QtAC uses information transfer between sys-
tem components to model resilience, overcoming
data limitations in traditional flow-based analy-
sis. It aligns with the Adaptive Cycle Model [46]
(growth, conservation, release, and reorientation)
to assess complex socio-economic systems. Flow-
based ascendency analysis method measures mate-
rial/energy flows in ecosystems or socio-econom-
ic systems, quantifying resilience via metrics like
redundancy or ascendency. QtAC is ideal for so-
cio-economic systems with incomplete data, while
flow-based methods suit ecosystems with measura-
ble resource exchanges.

— Spatial-Temporal modeling frameworks such as
combined GIS-FuzzylLogic method [47], which in-
tegrates spatial data with temporal risk assessments
using fuzzy logic and D-ANP (DEMATEL-based
Analytic Network Process) weighting [48] for ana-
lyzing causal relationships and handling interde-
pendencies and feedback in complex systems when
managing its resilience, and transportation mode-
ling approach, which is helpful to evaluate system
resilience using metrics like redundancy, diversi-
ty, and recovery time across modes (roadways, air,
rail, etc.) under natural or man-made disasters. GIS-
based models are optimal for urban resilience plan-
ning, while transportation models prioritize critical
infrastructure redundancy and mostly underempha-
size socio-behavioral dynamics (human-centric fac-
tors). This gap is highlighted in transport systems
resilience studies.

— Probabilistic and stochastic methods such as Mark-
ov process approach [49], which is very suitable
to model the resilience of multi-state dynamic sys-
tems with state transitions (resistance, absorption,
recovery, adaptation) using infinitesimal generator
matrices, and resilience flexible contracts approach
[42] for building resilience “by design” within the
formal, state-based contractual frameworks, which
combine POMDPs (Partially Observable Markov
Decision Processes) [50] for verification and adapt-
ability to withstand and recover from disruptions,
as well as provide proactively identifying potential
risks, defining clear performance expectations un-
der disruptive conditions, and including clauses that
enable flexibility and adaptation. Markov models
suit energy systems (power grids, nuclear plants,
etc.), while resilience contracts are ideal for safe-
ty-critical systems like autonomous vehicles. Prob-
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abilistic models need empirical validation to ensure
accuracy in multi-state systems.

Data-driven an Al-based methods such as digital
twins with deep learning framework [51], which
combines real-time simulations with convolutional
neural networks or long short-term memory neural
networks for predictive fault detection and system
performance optimization, and machine learning
(Random Forest / Support Vector Machine), which
is useful to assess building seismic resilience using
factors like topography, geology, and structural integ-
rity. Digital twins are directly aimed at optimization
of industrial systems resilience, while machine learn-
ing methods aid post-disaster critical entities assess-
ments. Digital twins and Al methods show promise,
but require scalable computational resources.
Performance-based methods such as resilience tri-
angle and multi-component frameworks [52] meas-
ure system functionality loss over time and combine
robustness, rapidity, and recovery metrics. Triangles
suit infrastructure downtime analysis, while mul-
ti-component metrics are better for adaptive sys-
tems like aviation. Despite advances, metrics like
the resilience triangle lack universal adoption, ne-
cessitating frameworks like axiomatic design.
Simulation methods like system dynamics and
agent-based modeling [53]. System dynamics mod-
els system resilience as a continuous feedback-driv-
en process using stocks, flows, and feedback loops
to capture system-wide behavior over time. Rooted
in control theory, it emphasizes nonlinear interac-
tions and delayed responses across system resilience
cycle temporal phases. System dynamics is well-ap-
plicable in the fields of critical infrastructure degra-
dation and long-term climate adaptation modeling,
international struggle and policy trade-offs analysis,
sustainable development and global security, or-
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ganizational and ecological resilience management.
Agent-based modeling treats resilience as an emer-
gent property of heterogeneous agents (individuals,
organizations) adapting to disruptions through local
interactions. Grounded in complex adaptive sys-
tems theory, agent-based approach is suitable both
to safety and resilience control problem-solving
specifically when simulating crowd behavior dur-
ing disasters, supply chain reconfiguration, urban
and regional resilience planning, or post-disruption
adaptive learning.

— Other formal methods like axiomatic design process
approach [54], which decomposes resilience re-
quirements into quantifiable parameters for critical
infrastructure systems and provides clear alignment
with system requirements, and hybrid information
fusion framework [55], which is focused on mul-
ti-dimensional resilience and addresses physical and
social factors when managing system resilience. For
instance, axiomatic design standardizes power grid
resilience, while hybrid fusion combines geologi-
cal, architectural, and social indicators for commu-
nity resilience to aid community-level planning.

The pictorial view of the system resilience tempo-
ral cycle conceptual models evolved and built on the ba-

sis of the summarized methods is represented in Fig. 2.

Thus, for domain-specific applications (e.g., nu-
clear safety, cyber-security, urban seismic resilience,
regional security, etc.), practitioners should prioritize
methods aligning with control data availability, spec-
ificity of the control object and its critical functions,
and system complexity.

3. Results and Discussion

Most of the relevant frameworks and methodolo-
gies for resilience cycle analysis (e.g., [4, 7, 15, 17, 56,
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Fig. 2. The evolving of adaptive cycle, systemic resilience and resilience triangle models to resilience framework
based on Ignatyev adaptation maximum phenomenon (combined from [2, 40, 46, 52])
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57]) reviewed are based on indicators (quantitative,
semi-quantitative or qualitative criteria), simulation
and expert judgments. Four resilience capabilities, i.e.
resistive, absorptive, restorative and adaptive, are the
target objectives of these approaches and are closely
related with the different stages of typical resilience
cycle. In the last decade, comprehensive analysis of
these resilience capabilities has been carried out by a
great number of reputable studies, but the lion’s share
of them was promoted abroad. In our homeland, the
resilience management support of critical infrastruc-
tures is a quite new and challenging field of research,
intersecting with pioneering safety, reliability and sit-
uational control fundamentals [3].

The main difference between foreign and Rus-
sian studies and practices in the field of critical infra-
structure resilience management consist in the fact that
Russian approaches are mostly focused on pre-event
and during disruption measures (prevention and ab-
sorption phases, respectively) for the resilience main-
tenance, while the foreign methodologies concentrate
on the post-event measures along with that, and en-
close the coping of recovery and adaptation phases as
well. At the same time, both ways are complementa-
ry and accompanying within the specific case studies
of infrastructure resilience issues, notably, resilience
estimation and control problems of critical entities or
assets.

The overall resilience cycle/scenario is decom-
posed over five temporal phases which can be con-
ceptualized by means of categorized performance
indicators (system resilience capabilities such as sen-
sitivity, anticipatory ability, resistivity, absorbabili-
ty, responsiveness, recoverability, adaptability) that,
in turn, can have values, providing the possibility to
quantitatively or qualitatively describe each stage of
the resilience cycle. In fact, some of these indices are
poorly formalizeable, quantifiable and manageable [3,
57]. Verbal analysis of decisions [58] is an effective
approach to meet the problems of resilience multic-
riteria assessment and optimization. As noted in [3],
defining the critical functionality of an infrastructure
system enables to precisely and quantitatively define
and construct the system resilience curve in scenario
time and analyze the main characteristic points of its
performance level in discrete or continuous time. The
resilience curve can be used to monitor the critical
infrastructure functionality level dynamics and to ex-
press the physical meaning of such system properties
as reliability, robustness, vulnerability, capacity, rapid-
ity, etc., during all phases of resilience cycle schemat-
ically illustrated in Fig. 1.

The notations used in Fig. 1 are as follows [3]:
FL(¢) is a system performance function indicating
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functionality level of the critical infrastructure at a
particular time; f, is a time before the disruptive event
or a starting point of the simulating scenario; Z; is a
time at which the adverse event occurs; £, is a time at
which the critical infrastructure reaches the minimum
performance level, i.e. a starting point of its function-
ality loss; 75 is a time at which the critical infrastruc-
ture starts to recover; f, is a time at which the critical
infrastructure reaches the initial functionality level or
a starting point of a new steady-state level, but with
lesser performance (f, =1%,); t5 is a time at which
the scenario ends or at which the critical infrastructure
increases its functionality via adapting, transforming
and learning (#; =ty ), or, in the worst case, the sys-
tem shows a permanent loss of functionality (#; =5 ).

According to [2, 3, 57], the resilience cycle con-
sists of interconnected time-dependent phases mod-
eled as a continuous iterative (multi-cycle) process.
The following temporal phases, each with distinct dy-
namic characteristics, formal representation and con-
trol actions, are commonly assigned and distinguished
(see Fig. 1) [3, 571:

Phase 1 Understand risks is applicable prior to
an adverse event and emphasizes emerging risks and
includes their early identification and monitoring; e.g.
what could the “adverse event” be?

Phase 2 Anticipate/prepare is also applicable be-
fore the occurrence of an adverse event and includes
planning and proactive adaptation strategies.

Phase 3 Absorb/withstand comes into action dur-
ing the initial phase of the event and shall include the
vulnerability analysis and the possible cascading/rip-
ple effects; e.g. “how steep” is the absorption curve,
and “how deep” down will it go.

Phase 4 Respond/recover is related to getting the
adverse event under control as soon as possible, influ-
encing the “how long” will it last, question. Further, it
includes the post-event recovery; e.g. “how steep up”
is the recovery curve for normalization of the func-
tionality.

Phase 5 Adapt/transform/learn encompass all
kinds of improvements made on the system and its
environment; e.g. affecting “how well” the system is
adapted after the event, and whether it is more resilient
and “sustainable”. The activities in this phase also lead
to preparation for future events and hence, this resil-
ience curve also exhibits a reoccurring cycle.

The resilience CIR (t) of a critical infrastructure
system at time { can be modeled as a function:

CIR ()= f( Ale) ale) #(e). (). D) ). (1)

where A(t) is an absorption capacity, i.e., system abil-
ity to maintain function during disruption event; a(t)
is an adaptation capacity, i.e., system ability to trans-

Tpyast VICA PAH. Tom 75. 4/2025



Temporal conceptual models of resilience cycle for managing critical infrastructure systems

form/adjust structure and behavior over time; r(t)_l is
a recovery rate, i.e., system rapidity of post-disruption
restoration; S(¢) is a system state at time ¢, S(t)e R"
(an n-dimensional state vector representing key sys-
tem variables, e.g., performance, capacity or func-
tionality); S, € S(¢) is a critical threshold (collapse
may occur if S(£)<S,,, i.e., system failure). D(¢)
is a time-varying stochastic or deterministic distur-
bance (disruptions), i.e., external shocks or stressors;
D, .., € D(tS) is a stress-test limit of the system.

The system performance is defined by a function:

E :SxT—>R", 2)

where performance function FL(s(f),f) mapping sys-
tem state to functionality level and represents the per-
formance level of a critical infrastructure system at
time teT .

The resilience curve is given by FL(s(f)) over
time, with resilience metrics derived from this curve.
Let FL () be a nominal performance under normal op-
erating conditions.

Thus, temporal phases of the resilience cycle can

be formally written as dynamical equations:
(a) Pre-disruption phase (t,<t<t) when the system
prepares (redundancy arrangement 7(f), hardening
investments A(¢), preventive-treatment, etc.) for po-
tential adverse events, and the resilience is proactive
(baseline resilience):

LD _ g r1(s(0)) Rob,..) =0 1)~ 5(0h )
where Rob,,, is inherent robustness; c,,c, are effi-

cacy coeflicients; r(z‘), h(t) are the control variables;
O is a natural decay rate (e.g., infrastructure aging,
etc.).

The chief goal of this phase is to maximize pre-
event system robustness.
(b) Disruption phase (t,<t<t,) when a disturbance
D(t) occurs, degrading system state .S (t) .

During disruption system absorption and adapta-
tion dynamics can be formulated as:

LD D)+ )L, - FLEO).
dt ot prm
where 7, is vulnerability to disturbance coefficient;
7. 1s absorption efficiency; FL  is a maximum pos-
sible system performance.
The chief goal of this phase is to minimize per-
formance loss of a system during disruption.
(c) Recovery phase (t,<t<t,), including downtime
period ¢, <<, (disrupted system state), when the
system restores functionality, possibly to a new equi-
librium:

w - %(Fnget — FL(s(0)))+ 7, m(c) +

n(t). (5)
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where 7 is a recovery time constant; repair rate 7
and adaptive upgrades m(t) are control variables; ¥,
is marginal gain from upgrades; 77(¢) — noise or sto-
chastic improvements.

The chief goal of this phase is to restore system
functionality level.
(d) Adaptation phase (t, <t <1.) when the system im-
proves its performance through transformation and
post-disruption learning:

LD o) (4L, P60 ©
The chief goal of this phase is to update resil-
ience strategies via learning. For this purpose, the
knowledge integration and policy updates control var-
iables may be used.
Total resilience over scenario time [to, t5] can be
quantified as the integral of performance retention:

CIR = : ito I{F Ls(t)) _ iC(t)}dz, (7)

FL

where FL - is the nominal (undisturbed) system
performance, i.e., baseline (optimal) state S (t) C (t)
is cost of control actions, specifically, »(¢) and ml¢);
A is cost-performance tradeoff parameter.
Time-discounted resilience management aims
to find and implement optimal resilience ensur-
ing policies (designing optimal contingency plan)
7 ={r () (e)u(e)m'(c)} that maximize CIR (1)

while minimizing cost over time period |f,,

ﬂw e’ }dt - j wlC(e)fde 3

nominal

nominal

max CIR (t) =

rhu,m

Performance retention Control cost

subject to:
— state constraints: S (t) =S,

— resilience capacity constraints: 0< CIR ()< CIR™;
- budget constraint'

I[w (r(e)+ (t)+ ult) + m(¢)) kt

— Sontrol constraints:

r(t)e R, h(t)e H,u(t)eU,m(t)e M ;
— tochastic disruptions: D\¢)~ Poison process or

Markov point process,
where ulf) is a control variable for resource alloca-
tion; S is a penalty for prolonged downtime; ||C X|
is a cost of control actions; w' are the weights pri-
oritizing critical infrastructure sectors; B, is a total
budget (investments in preventive and reactive meas-
ures) to maintain and support the system resilience or
improvement of its functionality level under disrup-
tive conditions.

For uncertain environments, model D(t) and

a(t) as stochastic processes (e.g., Markov chains or

total
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Wiener processes), leading to a resilience stochastic
differential equation:

ds(¢)= u(S, t)dt + (S, t)aw, 9)

where W, is a Wiener process, and £, o encode drift
or diffusion terms.

System resilience can be maximized by dynami-
cally tuning its capabilities A(t ), a(t), and Té,)

The generic resilience cycle model emphasizes
seamless transitions between phases and considers
also interactions between different resilience cycles.
The transition between phases is determined by spe-
cific conditions:

Preparedness to Absorption occurs when disrup-
tion happens at time ¢, , D(l‘) >D, .-

Absorption to Recovery occurs when system

stabilizes at ¢ =¢ + (12 * tg), where —dFL;:(Z)) <

abs

or t—t, 27" and D(t)=0 for At.

abs
Recovery to Adaptation occurs when sys-
tem performance reaches acceptable level:

FL(s(t),t)> a-FL(t)or t—t,— 7, >7"™.

abs

Adaptation to Preparedness occurs when sys-
tem transformation and adaptation is complete or new

dFL(k(t))
dt

cycle begins: <&y O t2t,+T, and

— “adapt

CIR(t)=CIR™ or t>1t,+1,, , where 7, is time
period of system experience gathering from lessons
learned.

For systems experiencing multiple disruptions,
the formulations (1)-(8) are extended to account for
learning across the cycles. Let S(i)(l) denote the sys-
tem state during the i-th resilience cycle/scenario.
The evolution of resilience capabilities across the cy-
cles is given by:

s<"+1>(t§;'+”)= ¢(S<,~>(t(<;~) + T(») k(”(tg") + T<f>)), (10)

where ¢ captures how learning in one cycle influenc-
es initial conditions in the next cycle.
The learning rate across cycles can be quantified

as:
RLY - RL"™

Alii+1)= TR (an

where RL = | ]‘ [;LO (t)— FL(s(t),t)]dt is the resilience
loss under each]cycle/scenario.

For multiple disruptions occurring over time
{(D T,).(D,,T,).....(D,,T )}, the system performance

171 n> n

trajectory follows:

FLO)= FL ) TT 0 1.500)-

i<t

(12)
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where ¢, captures the proportional performance impact
from disruption ii as a function of time since the dis-
ruption and current system state.

In this case, system adaptation capacity can be

approximated as:

g -1
tl(ﬂu )

AC = (RLY = RL). J)ca(a(t))dt ,

170

i
abs rec

o

where ¢, is the adaptation cost function.

Proposed formalization aligns with Holling’s
ecological resilience and Bruneau’s seismic resilience
frameworks [5, 12], but to a greater extent fit to engi-
neered and socio-technical infrastructure systems.

Principally, the formalized models of the tempo-
ral-phased resilience cycle considered can be used in
two different ways as illustrated in [57], for the analy-
sis and measuring the system resilience:

1) Treatment of the resilience cycle indirectly, as a
conceptual model where indicators are used to
measure the resilience in each phase indirectly, i.e.
without considering the curve describing function-
ality of the system by means of the resilience curve.

2) Modeling the shape of the resilience curve FL(f)
directly and looking for “macro-indicators” (e.g.
maximum loss of functionality, downtime, etc.),
when the event is described as an exact scenario,
and the time may be referred to as scenario time.

Moreover, the using potential of the proposed
formalisms written in specific a manner can be extend-
ed with mathematical formulations given in [3] and
[59]. Analyzing the formal models (1)-(12) it is worth
to highlight that resilience of critical infrastructure
systems must be considered as the diversity of future
pathways accessible to a system rather than focusing
on stability or recovery rate.

Conclusion

In fine, it should be noted that designing and
implementing formal conceptual models of critical
infrastructure systems resilience accounting temporal
aspects of its operation is a complex, interdisciplinary
problem. There are several key challenges arising in
developing system resilience temporal models along
with theoretic, computational, and practical issues and
potential constraints. Critical infrastructures are non-
linear, interdependent, in some way inertial, and adap-
tive, making it difficult to model their temporal behav-
ior, time lag and phase transitions. Triggering events
(disruptions) are stochastic in timing, magnitude, and
duration, while recovery efforts face unpredictable de-
lays, increasing uncertainty in system resilience man-
agement. System resilience is not static. It is time-var-
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ying and evolves due to degradation, adaptation, and
learning of the system. Some of traditional metrics,
e.g., time-to-recover or allowable downtime, are over-
simplified. Critical infrastructure systems require re-
al-time monitoring and tracking many state variables
in the multidimensional attribute spaces, leading to
the curse of dimensionality. At the same time, most
critical infrastructure data is coarse-grained, while re-
silience models need high-resolution (more detailed)
temporal disruption/recovery trajectories. System
resilience management strategies must adapt on-the-
fly and support real-time decision-making under un-
certainty to provide predictive and adaptive control,
but most control models are offline (pre-computed)
without rolling time horizons. In addition, resilience
maintenance standards and regulations vary by criti-
cal infrastructure sectors (energy, transport, health-
care, etc.), complicating cross-system modeling in
tote. Not the least of the challenges is the traditional
over-investing in redundancy and physical protection
of critical entities may be economically unsustainable,
while under-investing in critical infrastructure system
robustness and resilience risks collapse. Without stud-
ying these issues, we risk underestimating dependent
cascading failures like a cyber-attack collapsing both
power and healthcare systems.

Situational conceptual models of system resil-
ience manipulating spatial-temporal aspects provide
groundbreaking advances in both theoretical founda-
tions and practical resilience management. Conceptual
models of system resilience cycle as a unified frame-
works for dynamic resilience temporal modeling for-
malize time-varying disruptions, including cascading
correlated failures (risks), and move beyond static
“resilience triangles” to expanded time-explicit mod-
els integrating absorption (instantaneous robustness),
adaptation (real-time adjustments), recovery (time-
to-restore), and evolution (long-term learning). These
models transform resilience from a reactive concept
to a proactive, quantifiable science. Theoretically, they
enable a rigorous math of “how systems fail and re-
cover over time”, and, practically, automate synthesis
of digital shadows, models and twins of the complex
dynamic systems that bend, but do not break.

The main contributions that distinguish system
resilience cycle temporal models from traditional
equilibrium-based deterministic resilience frame-
works lie in the following scope: classical models such
as static snapshots like “resilience triangles” measure
only area under recovery curves, while temporal mod-
els take into consideration time-to-absorb (how fast a
system degrades), recovery acceleration (how adap-
tation shortens downtime), and learning effects (how
post-disruption upgrades improve future resilience).
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Generally speaking, resilience time-discounted mod-
els are the basis for combining continuous dynamics
with discrete events to model complex failures that are
not independent as self-exciting processes as stated
stochastic resilience theory unlike general reliability
theory [60].

In this study we have summarized, examined
and proposed conceptual models of the critical infra-
structures resilience cycle formalizing system opera-
tion temporal phases, when adverse events occurs, and
written using mathematical formulations from general
system and control theory subject to peculiarities of
the state-of-the-art resilience concept and safety sci-
ence. These models fit both to resilience management
of critical entities and other types of complex dynamic
systems to a wide extent. The formalized conceptual
models of the resilience cycle provide a formal basis
for the further simulation, automation and coordina-
tion of system performance control procedures under
extreme conditions. It is necessary for the knowledge
unified formal representation and structuring on the
various aspects of system resilience management, as
well as in order to generate and analyze scenarios for
the preventive analytics of potential threatening and
emergency situations. These models are distinguished
by the completeness of conceptual definition of the
resilience cycle phases and related temporal aspects
of its management. Conceptual models are defined
in the form of strict theoretical formalisms. Relations
that determine the phased structure of the system resil-
ience cycle are defined on the sets of model elements.
Along the lines of the further research, the practical
implementation of the designed models will be carried
out in the form of applied system resilience ontology.
Such ontology is intended to ensure semantic interop-
erability of heterogeneous elements of the situational
management information structure at all stages of the
system resilience maintenance life-cycle.

Resilience temporal models are not just intended
for its incremental improvements. They redefine con-
tingency plans and analyze how the system prepares
(proactive hardening), responds (real-time adapta-
tion), and evolves (post-disruption learning) under ac-
tuating multiple threats when managing its resilience.
Nevertheless, most of known temporal models of sys-
tem resilience have their own typical limitations such
as scalability, computational complexity, human-in-
the-loop factor, influencing the delay or misinterpret
adaptive controls of system resilience (unpredictable
human behavior), validation difficulty, and other do-
main-specific contingencies.

Temporal models of infrastructure system resil-
ience can find applications for such critical domains
as critical infrastructure protection (power grids,

67



YnpaeneHue puckamm u 6e3onacHOCTbiO

A.V. Masloboev

transport networks, water systems, etc.), cybersecurity
(adaptive cyber-defense, smart manufacturing, etc.),
disaster response (flood resilience, wildfire manage-
ment, etc.), healthcare (pandemic response, climate
adaptation, etc.), logistics (resilient supply chains,
inventory management, etc.), national security (inter-
national conflicts forecasting, terrorism prevention,
defenses allocation to chokepoints, etc.), and other,
where proactive, adaptive, and cost-effective situation-
al management is utterly needed. Thereto, the models
tailored implementation within the decision support
systems provides several practical benefits such are
rational choice of faster recovery schedules, evalua-
tion of mitigation scenarios, cost savings, risk reduc-
tion, improved action planning, and enhanced control
coordination for the safety and resilient operation of
critical entities (systems).
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TemnopajbHble KOHIENTYAJbHbIE MOAETU KU3HEHHOT0 IIMKJIA )KM3HECTTOCOOHOCTH TUHAMUYECKHUX
CHCTeM JJISl ypaBJIeHUus] KpUTHYeCKUMH HHGpacTpyKTypamu®

A.B. Macno6oeB

®DenepanbHbli nccienoBarenbekuil HeHTp «Konbckuit Hayunbiit neHTp Poccuiickoit
aKaJIeMHUH HayK», T. Anatutsl, Poccust

AnHoTanus. VccnenoBanus HanpaBiieHbl Ha pa3paboTKy MoeNei, METOMOB U MH(OPMAIIOHHBIX TEXHOIOTHIA JIIst
MPOOIIEMHOTO MOHUTOPHHTA U TIOICPIKKU TIPUHSTHS UHTEPIIPETUPYEMBIX PEIICHUH B 3a/1a4aX yIIPaBICHUS] KPUTH-
YeCKH BOKHBIMUA HHPPACTPYKTYPHBIMUA CHCTEMAMH C TETIbI0 OOCCIIEUCHUS] MX YCTOWIMBOTO (BYHKITHOHUPOBAHHMS B
YCIIOBUSIX HEONArONPHUSTHBIX BO3/IEHCTBUI PUPOIHOTO ¥ UICKYCCTBEHHO MHUITMMPOBAHHOTO XapakTepa. st eauHo-
ro (hopMaTM30BaHHOTO TPEJICTABICHUS MH(POPMAIIMOHHOM CTPYKTYPHI, TIPOLIECCOB M 33/1a4 o0ecredeHus: Oe3ormac-
HOCTH Y YCTOWYHMBOCTHU UCCIIEYEMOTO KJIacca CUCTEM pa3paboTaHbl KOHIIETITYaIbHBIE MOJICIY KU3HEHHOTO IMKIIa
(DYHKITMOHMPOBAHUS KPUTHUYECKUX MH(PPACTPYKTYp, YUUTHIBAIOIINE TEMITOPAJIHHBIC aCMEKThI YIPABICHUS UX JIU-
HaMUKOW W 0a3MpyrOIIUecs] Ha TIOJIOKEHUSX COBPEMEHHOM KOHIIETIIMYU JKU3HECTIOCOOHOCTH (resilience) CIoKHBIX
cucteM. Monenu o0ecreunBaroT (GOPMATBEHYIO OCHOBY JUISi MIMUTAIIMOHHOTO MOJICIMPOBAHMUSI, aBTOMATHU3aIMA 1
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CBSI3aHHBIX C HUMU TIOTEHIMATIBHBIX YTpo3. Ha nmpakTrke npeyioxeHHbIe MOJIENTH MOTYT ObITh pEeaJIn30BaHbI B BHJIE
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