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Введение

Различные преобразования цифровых изо-
бражений, наряду с методами их анализа, являют-
ся ключевыми компонентами области цифровой 
обработки изображений (далее – ЦОИ). Преобра-
зование изображений определяется как трансфор-
мация одного изображения в другое, обладающее 
некоторыми желаемыми свойствами. Под анали-
зом изображений понимается класс задач, направ-
ленных на получение качественных или количе-
ственных суждений о характеристиках входного 
изображения или же его содержания. Минималь-

ным структурным элементом любого цифрового 
изображения является пиксель (англ. picture cell). 
Все высокоуровневые объекты, представленные 
на изображении, описываются тем или иным на-
бором пикселей, сгруппированных по некоторым 
признакам.

Обе указанные компоненты базируются на 
использовании некоторого множества низкоуров-
невых методов обработки изображений, или, как 
их еще называют, примитивов. К ним относятся, 
например, методы математической морфологии, 
локальные усредняющие фильтры, интегральное 
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преобразование Хафа и знаменитое преобразова-
ние Фурье. Эти примитивы изложены практически 
в любом пособии по ЦОИ, включая классические 
учебники [1,2].

Неудивительно, что их оптимизации посвя-
щено множество трудов. При этом необходимо 
отличать один способ оптимизации от другого. 
Повысить быстродействие методов можно, напри-
мер, за счет использования таких аппаратных воз-
можностей, как многопоточная обработка (англ. 
multithreading), применение специализированных 
процессорных SIMD-инструкций (англ. single 
instruction, multiple data), которые отлично себя 
зарекомендовали именно в вопросах обработки 
изображений [3,4] или же специализированных 
графических ускорителей.

В данной работе нас интересует группа мето-
дов, которые условно можно отнести к дисципли-
не комбинаторной оптимизации. Так, уже в 1984 
году в замечательной книге под редакцией Т.С. 
Хуанга [5], были тщательно проанализированы и 
описаны такие методы, как быстрое транспониро-
вание двумерных массивов, алгоритм Винограда 
для дискретного преобразования Фурье, алгоритм 
быстрой медианной фильтрации. При этом опти-
мизацией данных методов продолжают заниматься 
и сейчас. Так, например, в статье [6] предложены 
очередные улучшения для алгоритма медианной 
фильтрации. Изыскания в области оптимизации 
вычисления преобразования Хафа послужили 
фундаментом для формирования целой научной 
школы [7], которая активно внедряет данный при-
митив в различных прикладных задачах.

Несмотря на это, общий вопрос оптимизации 
классов алгоритмов выглядит недостаточно осве-
щенным. Поэтому в данной работе вводится новый 
формализм структурных преобразований изображе-
ний (далее – СПИ). Структурным преобразованием 
изображений будем называть применение выбран-
ной ассоциативной операции (например, сложение) 
к выделенному набору пикселей. Через этот форма-
лизм оказывается удобно выразить примитивы, пе-
речисленные выше. Таким образом, СПИ становят-
ся важной общей низкоуровневой частью обработки 
изображений для многих прикладных областей. 
Для каждого структурного преобразования можно 
определить его сложность: количество применений 
операции, требуемое для его вычисления. Быстрым 
структурным преобразованием изображений (да-
лее – БСПИ) будем называть структурное преоб-
разование, обладающее уменьшенной сложностью 
относительно алгоритма, независимо применяюще-
го заданную операцию для каждого подмножества 
пикселей исходного СПИ.

Далее в Разделе 1 приведена формализация 
ключевых понятий, в Разделе 2 показаны различ-
ные примеры структурных преобразований. В 
Разделе 3 перечислены общие методы их оптими-
зации. В Разделе 4 рассмотрено их применение 
в системах обработки изображений документов, 
чтения штриховых кодов и компьютерной томо-
графии.

1. Аппарат структурных преобразований 
изображений

Назовем двумерным растром R прямое про-
изведение , а  –  
ограниченным растром с размерами . 
Цифровое изображение – это дискретная функ-
ция , заданная на ограниченном 
растре . Область значений V определяет-
ся прямым произведением элементов кортежа 

, где  – каналы изображения, а 
ci – количество цветов канала. Пиксель – упорядо-
ченная пара , состоящая из позиции эле-
мента растра  и соответствующего ему 
значения пикселя . Для обозначения значе-
ния яркости пикселя изображения  в позиции 
растра  используется краткая запись . 
Таким образом,  и .

Рассмотрим произвольный растр  и мно-
жество определенных на нем цифровых изображе-
ний . Паттерном πm будем назы-
вать выделенное упорядоченное множество позиций 
элементов растра , а величину 
m – его размером. Булеан паттернов на растре  
обозначим . Для определенности зафиксируем 
порядок перечисления множества позиций элемен-
тов растра как лексикографическое упорядочение по 
его координатам. На рис. 1,a приведен пример пат-
терна , заданного на 
растре . Как видно из рисунка, паттерн не обя-
зательно должен быть связным.

 
а)                                  б)                                в)

Рис. 1. Иллюстрация паттерна: а – 
 на ; б – его приложе-

ние  к изображению-примеру ;  
в – его приложение  к изображению-приме-
ру . Серым цветом выделены элементы 

паттерна
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Отметим, что для паттерна значения пиксе-
лей, соответствующих позициям растра, не опре-
делены вплоть до момента указания конкретного 
изображения. Упорядоченное множество значений 
пикселей  будем называть 
приложением паттерна πm к изображению I. Два 
различных приложения одного паттерна  к изо-
бражению  проиллюстрированы рис. 
1,б,в. Таким образом, паттерн определяет «геоме-
трическую составляющую», но есть еще и яркост-
ная, задействующая элементы растра.

Пусть на множестве значений V определена алге-
браическая ассоциативная бинарная операция ○ с ней-
тральным элементом ε. Тогда алгебраическая структура 

 является моноидом [8]. В данной работе ин-
терес представляют следующие два специализирован-
ных вида моноидов: коммутативные моноиды; груп-
пы (моноиды, где каждый элемент имеет обратный). 
Рассмотрим операцию . 
Вычисление данной операции будем называть редук-
цией паттерна. Отметим, что эта операция определя-
ет только шаблон вычислений, конкретное значение 
может быть получено только при приложении паттер-
на к изображению . В таком случае будем обозна-
чать редукцию символом . На рис. 1,б показа-
ны значения всех пикселей данного изображения. Для 
него выполняется , , 

.
Структурным преобразованием  изобра-

жений  с алгебраической структу-
рой  на конечном множестве паттернов 

 будем называть 
задачу вычисления n совместных редукций по эле-
ментам множества :

         (1)

Обозначим через  алгоритм вычисле-
ния задачи структурного преобразования, задан-
ного системой (1), с использованием только опе-
рации ○. Сложностью алгоритма  назовем 
число операций ○, требуемое для вычисления всех 
его совместных редукций. Например, сложность 
алгоритма , вычисляющего систему (1) мето-
дом «грубой силы», определяется соотношением 

, где  оз-
начает количество операций ○ в редукции одного 
паттерна. Очевидно, что в ряде случаев эта слож-
ность может быть снижена за счет переиспользова-
ния общих подмножеств. 

В ряде задач обработки изображений воз-
никает необходимость рассматривать семейство 
паттернов, которое может быть порождено одним 
выделенным образцом (будем называть его по-
рождающим) и его многочисленными сдвигами 
на растре. Пусть  – вектор смещения. 
Определим тогда операцию сдвига паттерна  на 
вектор S:

Теперь, когда все необходимые определения 
введены, рассмотрим несколько конкретных при-
меров СПИ.

2. Примеры структурных преобразований 
изображений

Покажем, что примитивы обработки изо-
бражений могут быть сформулированы как зада-
чи вычисления структурного их преобразования. 
Начнем с вычисления параллельной проекции изо-
бражения. На растре  i-строке или j-столбцу 
соответствует прямолинейный паттерн, который 
обозначим  и , соответственно. Мате-
матическое выражение для вычисления проекции 
по одной строке или одному столбцу изображений 

 совпадает с вычислением операции суммы 
над множеством яркостных значений пикселей. 
Пример проекции проиллюстрирован рис. 2.

Рис. 2. Паттерн-столбец  для вертикальной 
проекции (выделен светло-серым цветом); вектор 

сдвига  (выделен стрелками); сдвиг паттер-
на  (выделен темно-серым цветом).

Таким образом, возникает два структурных 
преобразования, задаваемых следующим набором 
редукций: 

 (2)

Данное преобразование выразимо с использо-
ванием порождающего паттерна и операции сдви-
га. Для этого достаточно одного порождающего 
паттерна πM для вертикального и πN для горизон-
тального направлений. Все остальные паттерны 
получаются путем сдвига данных паттернов вдоль 
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соответствующей оси на множество допустимых 
значений. Допустимым называется сдвиг, при ко-
тором пересечение паттерна с растром является 
непустым множеством. Тогда структурное пре-
образование определяется следующим набором 
редукций: , 

.
Покажем, что вычисление ПХ для прямых 

также является задачей вычисления СПИ. Для 
построения Хаф-образа для прямых требуется 
вычислить суммарную яркость пикселей вдоль 
множества дискретных прямых, пересекающих 
растр . Таким образом, в данном случае речь 
идет об использовании алгебраической структуры 

.
Рассмотрим прямую  на двумерной 

плоскости, задаваемую двумя параметрами. Как 
известно, соответствующая ей дискретная пря-
мая может быть задана множеством способов. В 
работе Р. Клетте и А. Розенфельда [9] проведен 
качественный обзор различных способов подоб-
ных представлений, а также детально проана-
лизированы их свойства. Далее воспользуемся 
одним из предложенных в указанной работе спо-
собом дискретизации прямых. «Ближайшей» дис-
кретной прямой к  будем называть паттерн 

, где ,  
а  – это операция округления до ближайшего 
целого. Такой паттерн является 8-связной непри-
водимой цепочкой [9]. Обозначим множество ука-
занных паттернов . Заметим, что «преиму-
щественно» вертикальные прямые не могут быть 
описаны подобным образом, поскольку в таком 
случае паттерны не будут являться упомянутыми 
8-связными неприводимыми цепочками. Поэтому 
по аналогии определим соответствующее множе-
ство паттернов для «преимущественно» верти-
кальных прямых: 
.

Рассмотрим множество всех «ближайших» 
дискретных прямых, пересекающих растр: 

.

Согласно работе [10] для квадратного изо-
бражения со стороной K количество «ближайших» 
дискретных прямых можно оценить следующим 
образом: . Структурное преобразо-
вание для множества  задается так: 

.         (3)

 Наконец, рассмотрим множество паттернов
. Тогда задача вычисления преобразо-

вания Хафа для прямых это просто задача вычис-
ления структурного преобразования .

Теперь рассмотрим аппарат математической 
морфологии, в котором используются алгебраи-
ческие структуры с операциями, отличными от 
суммирования. Для структур  и 

 и паттерна π произвольной фор-
мы вычислительную задачу естественно фор-
мулировать с помощью рассмотренной ранее 
операции сдвига. При морфологической филь-
трации требуется вычислить значение бинарной 
операции по позициям паттерна π с его сдвигом в 
каждую допустимую позицию растра. Сдвиг яв-
ляется допустимым, если после его применения 
пересечение паттерна с растром оказывается не 
пусто, то есть 

.

Согласно определению из источни-
ка [2], дилатация изображения I с паттерном 

 в позиции 
растра  обозначается как  и за-
писывается следующим образом: 

 (4)

Эрозия изображения обозначается как  
и определяется по аналогии с (4) с заменой опера-
ции max на min.

Переводя формулу дилатации (4) на «язык» 
СПИ для одной позиции растра непосредственно 
получаем  (и  для 
эрозии, соответственно).

В итоге вычисления структурного преобразова-
ния для морфологических фильтров по типу «эрозия» 
и «дилатация» записываются следующим образом: 

 (5)

Наконец, рассмотрим, как построение ин-
тегрального изображения и его последующее ис-
пользование вписываются в рамки аппарата струк-
турных преобразований изображений. Построение 
интегрального изображения само по себе является 
структурным преобразованием, что напрямую сле-
дует из формулы: 

.             (6)

Однако куда более важным оказывается его 
последующее использование при синтезе быстрых 
методов анализа изображений. В частности, оно 
является неотъемлемым «ингредиентом» метода 
П. Виолы и М. Джонса [11] и применяется в нем 
для эффективного вычисления признаков Хаара. 
Напомним, что значением признака Хаара явля-
ется разность между суммами яркости пикселей 
в двух регионах, которые на типовых признаках с 
рис. 3 обозначены черным и белым цветом, соот-
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ветственно. Очевидно, что каждый из указанных 
признаков Хаара может быть рассмотрен в каче-
стве порождающего паттерна. 

Рис. 3. Примеры типовых признаков Хаара

Для вычисления признаков Хаара с помощью 
формулы [12]

 (7)

требуется не только операция сложения, но и 
вычитания, то есть алгебраическая структура 

 в таком случае должна быть груп-
пой. Тогда если для F обозначить «черные» по-
зиции паттерна как π+, а «белые» позиции – как 
π–, то соответствующее значение признака при-
менительно к позиции  на изображении I 
оказывается равно . Та-
ким образом, вычисление структурных преобра-
зований отдельно для «черных» и отдельно для 
«белых» позиций позволяет решить искомую за-
дачу вычисления всех требуемых признаков во 
всех положениях.

3. Методы ускорения структурных 
преобразований изображений

В данной работе предлагается три метода оп-
тимизации структурных преобразований изобра-
жений, обозначаемых далее Sa, Sx

, Sc, которые мы 
последовательно рассмотрим в трех следующих 
подразделах.

3.1. Алгоритмическая оптимизация  
вычислений
В первую очередь рассмотрим алгоритми-

ческую оптимизацию вычислений Sa. Напом-
ним, что по определению СПИ вычисляется за 

 операций. Очевидно, что 
данная оценка не может быть уменьшена, если на 
множестве его редукций нет каких-либо общих 
подвыражений. Такому случаю соответствует, на-
пример, вычисление параллельных проекций изо-
бражения на координатные оси. Однако для многих 
других задач обработки изображений соответству-
ющие им СПИ имеют довольно много общих под-
выражений [5]. Для примера наличия в СПИ под-
выражений рассмотрим морфологический фильтр 
типа «эрозия» размера 3 × 3, при вычислении кото-

рого используется алгебраическая структура вида 
S = (V, min). На рис. 4 проиллюстрирован случай, 
когда при вычислении значения такого фильтра в 
соседних позициях число общих подвыражений 
оказывается существенным.

Рис. 4. Визуализация общего подмножества пиксе-
лей для приложений паттерна  в позициях  
и  (отмечены кругами). Приложения паттерна в 

позициях отмечены серым цветом

Обратите внимание на приложение прямо-
угольного паттерна π3×3 к позициям растра  
и . Обозначим соответствующие множества 
значений пикселей  и , соот-
ветственно. Для них . Очевидно, 
что и в том, и в другом случае возникает необходи-
мость вычислять минимум на множестве значений 
пикселей . Тем самым 
для данных двух элементов достаточно следую-
щих редукций:

        (8)

Тогда , что 
в сумме дает 11 применений операции минимума 
против исходных 16.

Выявление, подсчет и последующее переис-
пользование общих подвыражений является важ-
ной стратегией алгоритмической оптимизации 
при вычислении СПИ. В литературе известен не 
один пример использования подобной техники в 
частных случаях. Так, для рассматриваемого выше 
морфологического фильтра известен алгоритм, ко-
торый позволяет вычислять требуемые значения 
минимума или максимума на прямоугольном пат-
терне всего за 6 операций независимо от размера 
самого паттерна. Речь идет об алгоритме, впервые 
предложенном в работе М. ван Херка [13], а годом 
позже независимо опубликованным Й. Гилом и М. 
Верманом [14]. Данный алгоритм прекрасно под-
дается распараллеливанию и хорошо ложится на 
современные специализированные процессорные 
инструкции [3]. С его помощью стало доступно 
применение морфологических фильтров большой 
площади, что оказалось существенным для выде-
ления ряда графических примитивов [15].
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В качестве примера способа алгоритмической 
оптимизации с использованием алгебраической 
структуры S = (V, +) можно упомянуть применение 
интегрального изображения. С его помощью мо-
гут быть эффективно реализованы множественные 
фильтры обработки изображений. Например, клас-
сический усредняющий фильтр по прямоугольному 
окну есть не что иное, как вычисление суммы по 
этому окну с последующим делением на количество 
элементов. Поскольку эти операции выполняются 
для каждого пикселя, то прямоугольные окна, как 
и в методах морфологической фильтрации, суще-
ственно пересекаются. При наличии интегрального 
изображения каждая сумма может быть вычислена 
за четыре операции независимо от размера окна, что 
существенно быстрее наивного подхода. Этот подход 
широко используется при решении задачи бинариза-
ции изображений [16-18].

3.2. Приближение множества паттернов,  
снижающее вычислительную сложность
Рассматрим способ построения БСПИ, опира-

ющийся на аппроксимацию исходного множества 
паттернов другим набором паттернов S

x
. Такая ап-

проксимация зачастую оказывается полезна, если для 
предлагаемого взамен набора известны вычислитель-
но более эффективные методы.

В качестве примера для алгебраической 
структуры S = (V, +) рассмотрим ускорение вы-
числения преобразования Хафа. В 1992 году за ав-
торством М. Брейди и В. Ёна [19] был опублико-
ван алгоритм, осуществляющий вычисление ПХ 
для N2 прямых за  суммаций вместо 
стандартных . К сожалению, в свое время 
этот алгоритм не получил широкого распростра-
нения и поэтому неоднократно переизобретался, 
как минимум, В. Гётцем и Х. Дрюкмюллером 
[20] и С.М. Карпенко и Д.П. Николаевым [21]. 
В настоящее время данный способ вычисления 
Хаф-образа известен как быстрое преобразова-
ние Хафа (далее – БПХ). Предпосылкой к суще-
ственному снижению числа суммаций в рамках 
данного алгоритма является наличие общих под-
сумм, возникающих при аппроксимации прямых 
дискретными паттернами специального вида, так 
называемых «диадических паттернов». На рис. 5 
приведен пример таких паттернов  с наклоном, 
изменяющимся в диапазоне [0,7].

Рис. 5. «Преимущественно вертикальные» порож-
дающие паттерны  с наклонами  

(слева-направо)

На рис. 6 продемонстрировано соотношение 
между указанными множествами и диапазонами 
углов.

Рис. 6. Связь между диапазонами углов и множе-
ствами порождающих паттернов 

Теперь приведем пример аппроксимации исход-
ного множества паттернов другим набором паттернов 
для алгебраической структуры S = (V, min). В морфо-
логической фильтрации изображений зачастую вме-
сто более подходящего по смыслу прикладной задачи 
«круглого» паттерна используется его грубая аппрок-
симация в виде квадрата или прямоугольника. Связа-
но это, как правило, именно с наличием упомянутого 
ранее вычислительно эффективного алгоритма ван 
Херка для прямоугольных паттернов (Раздел 3.1). 
Например, в популярной работе по нормализации 
изображений К. Хе [22] при оценке «темного канала» 
используется именно квадратный паттерн, также как 
и в недавней работе И.А. Куниной, посвященной раз-
личению изображений цифровой копии документа и 
его оригинала [23].

Итак, показано, как путем замены одного 
множества паттернов на другой задача вычисления 
СПИ сводится к такой, что для нее известен более 
быстрый алгоритм. Это позволяет добиться повы-
шения быстродействия алгоритмов обработки изо-
бражений.

3.3. Аналитическое упрощение  
композиции СПИ
В задачах обработки изображений, где исполь-

зуется морфологическая фильтрация, часто требу-
ется применить не один фильтр, а сразу несколько. 
При этом может оказаться, что при вычислении 
итогового значения возникнет частичное пересе-
чение по операциям. Тогда возникает потребность 
в упрощении композиции структурных преобразо-
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ваний Sc. Рассмотрим, например, применение мор-
фологических фильтров, которые прекрасно разо-
браны в работе [24], с нетривиальным паттерном. 
Необходимость в подобной фильтрации возникает 
при поиске примитивов вида «стыков» или «угол-
ков» (англ. junction). Эти примитивы используются 
при решении таких важных прикладных задач, как 
детектирование таблиц на изображении документа 
и точное определение решетки знакомест [25]. В 
таком случае в каждом пикселе изображения тре-
буется вычислять значения с использованием на-
бора паттернов , которые показа-
ны на рис. 7.

Рис. 7. Паттерны «стыков» или «уголков»

Для каждого из них, на подобии признаков 
Хаара, требуется определить разницу между мак-
симальной интенсивностью по «черным» позици-
ям π+ и минимальной интенсивностью по «белым» 
позициям π–:

   (9)

Продемонстрируем способ вычисления дан-
ных величин с использованием аппарата СПИ. 
Обозначим значение пикселя изображения в пози-
ции  как x

1
 , x

2
 и так далее. Иногда для 

краткости будем опускать обозначение операции, 
если она уже указана в левой части, а также име-
на переменных, если они все одинаковы в рамках 
одной редукции. Тогда в каждом пикселе изобра-
жения необходимо вычислить два СПИ (10). После 
того как они посчитаны, искомые величины без 
труда вычисляются по формуле (9):

 (10) 

Рассмотрим подробнее вычисление . 
Для одной позиции растра  требуется приме-
нить 8 операций. Однако если ввести два допол-

нительных паттерна t
1
 и t

2
, то можно сократить 

количество операций до 6. В случае  ситуа-
ция становится еще нагляднее. В исходной версии 
требуется вычислить 4×5 = 20 операций. При этом 
поднабор  встречается в каждой ре-
дукции и предварительное вычисление миниму-
ма на нем позволяет преобразовать  в  
и снизить количество необходимых операций до 
11. Таким образом, в рамках данного примера для 
каждого пикселя вместо 28 операций взятия мини-
мума достаточно применить всего 17 (11).

  (11)

4. Примеры замен СПИ на БСПИ в 
прикладных задачах обработки изображений

Рассмотрим, где и как используется замена 
СПИ на их быстрые аналоги, как они задейство-
ваны в такой важной прикладной сфере, как рас-
познавание изображений документов. Для даль-
нейшего изложения требуется общее понимание 
организации систем распознавания изображений 
документов (далее – СРИД). Эта тема достаточно 
полно раскрыта в публикациях [26,27].

По функциональному признаку СРИД 
обычно подразделяется на следующие модули: 

 – ввода изображения;  – нормализации и 
оценки качества изображения;  – идентифика-
ции типа документа и установления его внутрен-
ней системы координат;  – распознавания 
реквизитов;  – пост-обработки реквизитов и 
контроля заполнения документа;  – экспорта 
результатов обработки.

Модуль распознавания реквизитов  обыч-
но состоит из нескольких частей, каждая из кото-
рых отвечает за решение задачи распознавания 
конкретного вида реквизитов. Наиболее распро-
страненные задачи:  – распознавание 
машинописных текстовых фрагментов;  – 
распознавание рукопечатных/рукописных фраг-
ментов;  – распознавание отметок выбора и 
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специальных пометок;  – чтение штриховых и 
матричных кодов.

Задачи распознавания текстовых фрагментов 
(как , так и ), как правило, подразде-
ляются на три основных подзадачи:  – 
нормализация изображения текстового фрагмента;  

 – сегментация текстового фрагмента на 
символы;  – распознавание отдельных сим-
волов.

Еще в 2014 году авторитетный греческий уче-
ный В. Гатос перечислил основные примитивы 
обработки изображений, которые задействованы 
при решении многих из приведенных выше задач 
в СРИД [28]. Это перечисление включает скелети-
зацию, анализ компонент связности, сглаживание 
длин серий, дистанционное преобразование, анализ 
проекций изображений ( ), методы математиче-
ской морфологии ( ) и, конечно же, преобразо-
вание Хафа ( ). С точки зрения авторов, наиболее 
важными являются три последних метода. Кроме 
того, важным видится еще один – метод интегриро-
вания изображений , который делает практически 
применимыми многие алгоритмы (см. Раздел 2). 

Связи между модулями, выявленными задача-
ми, методами их решений и СПИ проиллюстриро-
ваны рис. 8. Из рисунка видно, как именно методы 
решения задач в рамках распознавания изображе-
ний документов задействуют примитивы обработ-
ки изображений, которые были нами выражены на 
языке структурных преобразований изображений. 
Тем самым их оптимизация позволяет улучшить 
работу всей СРИД.

Теперь рассмотрим переход от СПИ к БСПИ 
на примере решения задачи точной локализации 

опорных решеток полей заполнения в анкетах, 
предложенного в статье [25].

В данной работе алгоритм состоит из следую-
щего набора шагов:
• � определить угол наклона зоны интереса на до-

кументе и довернуть ее; 
• � определить положение горизонтальных опор-

ных линий; 
• � определить положение вертикальных опорных 

элементов; 
• � скорректировать положение горизонтальных 

линий для каждой ячейки. 
В основе данных этапов лежит вычисление 

того или иного СПИ. Так, на первом этапе вместо 
классического ПХ, который является СПИ, можно 
использовать алгоритм определения угла накло-
на на базе анализа БПХ-образа, который является 
БСПИ, полученным с помощью стратегии S

x
 (см. 

Раздел 3.2). Вопросы точности и увеличения про-
изводительности при такой замене детально рас-
смотрены в работе [29]. Для выделения горизон-
тальных линий и вертикальных элементов можно 
воспользоваться стыками, которые описаны в Раз-
деле 3.3. Определение положения горизонтальных 
опорных линий может быть проведено с помощью 
морфологической фильтрации, которая может быть 
оптимизирована с помощью подвыражений, то есть 
с помощью стратегии Sa, описанной в Разделе 3.1.

Переход от СПИ к БСПИ также крайне ва-
жен в задачах чтения штрихкодов. Поскольку их 
распознавание должно производиться в том числе 
на вычислительно слабых устройствах, к исполь-
зуемым алгоритмам применяются повышенные 
требования к скорости работы. Так как преобра-

Рис. 8. Схема связи модулей (первая линия), задач обработки изображений (вторая линия)  
и методов решения данных задач (третья линия)
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зование Хафа позволяет извлекать информацию о 
прямолинейных отрезках, которые часто содержат-
ся в символах штрихкодов согласно особенностям 
их формирования, то его вычисление регулярно 
используется для последующего анализа, согласо-
ванного с особенностями спецификации символик 
[30–32]. Поэтому его замена на вычислительно 
более эффективное БПХ позволяет существенно 
ускорить данный этап, в том числе на мобильных 
устройствах. Так, например, алгоритм Брейди-Ёна 
используется в работе [33] для точной локализации 
штрихкода символики PDF417 в наведенной зоне 
интереса, которая совершается с помощью инфор-
мации о столбчатой структуре этого «сложенного 
в стопку» кода, а в работе [34] для устойчивого 
определения сторон в шаблонах наведения Aztec 
Code-символики. Пример для применения страте-
гии Sa в штриховом кодировании привести также 
не сложно – она является важным элементом вы-
числительно эффективного генеративного рас-
познавания матричных символик фиксированной 
размерности. Образец такой задачи представлен в 
работе [35]. Ее характерной особенностью являет-
ся то, что паттерны, по которым производится сум-
мирование, не отличаются локальной связностью. 

БСПИ также активно внедряются вместо 
СПИ в области вычислительной томографии, в ко-
торой они используются в операторах прямого и 
обратного проецирования, являющихся наиболее 
вычислительно затратной компонентой почти всех 
томографических схем. Так, например, в работе А. 
Долматовой [36] впервые предложен способ уско-
рения метода «свертки и обратного проецирования» 
для двумерной томографической реконструкции. 
Ключевым моментом предложенного метода явля-
ется применение БПХ для приближенного вычисле-
ния обратного дискретного преобразования Радона 
с интерполяционным пересчетом проекционных 
данных в координаты параметров s-t. Стоит отме-
тить, что алгоритмически вычисление обратного 
преобразования сводится к транспонированию изо-
бражения и применению прямого БПХ. Предложен-
ная оптимизация позволила достичь асимптотиче-
ского ускорения томографической реконструкции 
изображений с  до  с несуще-
ственной потерей точности. Позже метод был также 
обобщен на трехмерный случай [37], принципиаль-
ный для конусно-круговой схемы сканирования в 
компьютерной томографии. 

Заключение

В работе введен формализм структурных пре-
образований изображений. Несмотря на то, что 

этот формализм относительно прост, он является 
чрезвычайно полезным на практике и открывает 
большие возможности для улучшений, поскольку 
множество ключевых методов анализа и преоб-
разований ЦОИ сводятся к вычислению того или 
иного СПИ или же их композиции.

Сложность вычисления СПИ «по его опреде-
лению» часто оказывается неоправданно неэффек-
тивна, поэтому поиск более оптимальных методов 
является важной задачей. В работе выделено три 
общих метода ускорения вычисления СПИ, то есть 
построения быстрых СПИ:
• � алгоритмическая оптимизация; 
• � приближение множества паттернов, снижаю-

щее вычислительную сложность; 
• � аналитическое упрощение композиции СПИ. 

Предложенный аппарат был успешно апроби-
рован в рамках задачи обработки изображений до-
кументов, где он позволил повысить одну из важ-
нейших характеристик СРИД, а именно – скорость 
ее работы при фиксированном вычислителе.

Отдельный интерес вызывает комбинирова-
ние БСПИ с методами обучения искусственных 
нейронных сетей. Например, БПХ в качестве слоя 
ИНС используется в архитектуре HoughNet [38], 
подходящей как для детекции документов, так и 
для обработки дорожных сцен.

Выбор задач, рассмотренных в данной работе, 
обусловлен практическими интересами авторов, од-
нако не исчерпывается ими. Предложенный аппарат 
применим в иных доменах и прикладных системах 
обработки изображений. Его использование явля-
ется перспективным с точки зрения масштабной 
оптимизации таких систем, идентификации и ката-
логизации новых СПИ и БСПИ, что в свою очередь 
закладывает фундамент для совершенствования как 
алгоритмических, так и нейросетевых методов об-
работки и анализа изображений.

Литература

1. � Яне Б. Цифровая обработка изображений. М.: 
Техносфера. 2007. С. 584.

2. � Gonzalez R.C., Woods R.E., Masters B.R. Digital 
image processing, third edition. 14. 029901.

3. � Limonova E., Terekhin A., Nikolaev D., Arlazarov 
V. Fast implementation of morphological 
filtering using ARM NEON extension. // IJAER. 
2016;11(24):11675–11680.

4. � Zekri A.S. Enhancing the matrix transpose 
operation using intel AVX instruction set extension. 
// International Journal of Computer Science & 
Information Technology (IJCSIT). 2014;6(3):67–
78. DOI: 10.5121/ijcsit.2014.6305.



83Труды ИСА РАН. Том 75. 4/2025

Формализм структурных преобразований изображений и методы их оптимизации

5. � Хуанг Т.С. (ред.). Быстрые алгоритмы в цифро-
вой обработке изображений. М.: Радио и связь. 
1984. С. 224.

6. � Weiss B. Fast isotropic median filtering. // 
SIGGRAPH Conference Papers ‘25: Proceedings 
of the Special Interest Group on Computer 
Graphics and Interactive Techniques Conference 
Conference Papers. 2025;(137):1–10. DOI: 
10.1145/3721238.3730763.

7. � Bezmaternykh P.V., Nikolaev D.P., Arlazarov V.L. 
High-performance digital image processing. // 
Pattern Recognit. Image Anal. 2023;33(4):743–
755. DOI: 10.1134/S1054661823040090.

8. � Винберг Э.Б. Курс алгебры. М.: МЦНМО. 2014. 
С. 290.

9. � Klette R., Rosenfeld A. Digital straightness – 
a review. // Discrete Applied Mathematics. 
2004;139(1-3):197–230. DOI: 10.1016/j.
dam.2002.12.001.

10. � Koplowitz J., Lindenbaum M., Bruckstein A. The 
number of digital straight lines on an NxN grid. 
// IEEE Transactions on Information Theory. 
1990;36(1):192–197. DOI: 10.1109/18.50392.

11. � Viola P., Jones M. Robust real-time object 
detection. // International Journal of Computer 
Vision – IJCV. 2001;57(2).

12. � Crow F.C. Summed-area tables for texture 
mapping. // In Proceedings of the 11th annual 
conference on Computer graphics and interactive 
techniques – SIGGRAPH 84. ACM Press. 1984. 
Р. 207-212. DOI: 10.1145/800031.808600.

13. � Van Herk M. A fast algorithm for local minimum 
and maximum filters on rectangular and 
octagonal kernels. // Pattern Recognition Letters. 
1992;13(7):517–521. DOI: 10.1016/0167-
8655(92)90069-C.

14. � Gil J., Werman M. Computing 2-d min, 
median, and max filters. // IEEE Transactions 
on Pattern Analysis and Machine Intelligence. 
1993;15(5):504–507.

15. � Слугин Д.Г., Арлазаров В.В. Поиск текстовых 
полей документа с помощью методов обработ-
ки изображений // Труды ИСА РАН. 2017. Т. 
67. № 4. С. 65–73.

16. � Bradley D., Roth G. Adaptive thresholding 
using the integral image. // Journal of 
Graphics Tools. 2007;12(2):13–21. DOI: 
10.1080/2151237x.2007.10129236.

17. � Shafait F., Keysers D., Breuel T. Efficient 
implementation of local adaptive thresholding 
techniques using integral images // In Document 
Recognition and Retrieval XV. 2008;6815:317–
322. International Society for Optics and 
Photonics, SPIE. DOI: 10.1117/12.767755.

18. � Samorodova O.A., Samorodov A.V. Fast 
implementation of the Niblack binarization 
algorithm for microscope image segmentation. 
// Pattern Recognition and Image Analysis. 
2016;26(3):548–551. DOI: 10.1134/
s1054661816030020.

19. � Brady M.L., Yong W. Fast parallel discrete 
approximation algorithms for the radon 
transform. // In Proceedings of the Fourth Annual 
ACM Symposium on Parallel Algorithms and 
Architectures, SPAA ‘92. 1992. P. 91–99. ACM. 
DOI: 10.1145/140901.140911.

20. � Gotz W.A., Druckmuller H.J. A fast digital Radon 
transform – an efficient means for evaluating 
the hough transform // Pattern Recognition. 
1995;28:1985-1992.

21. � Карпенко С.М., Николаев Д.П., Николаев П.П., 
Постников В.В. Быстрое преобразование Хафа 
с управляемой робастностью // In IEEE AIS’04, 
CAD-2004. 2004. Т. 2. С. 303–309.

22. � He K., Sun J., Tang X. Single image haze removal 
using dark channel prior. // In 2009 IEEE 
Conference on Computer Vision and Pattern 
Recognition. 2009. Р. 1956–1963. DOI: 10.1109/
CVPR.2009.5206515.

23. � Kunina I.A., Sher A.V., Nikolaev D.P. Screen 
recapture detection based on color-texture analysis 
of document boundary regions // Computer 
Optics. 2022.

24. � Пытьев Ю.П., Чуличков А.И. Методы морфо-
логического анализа изображений. М.: ФИЗ-
МАТЛИТ. 2010. С. 336.

25. � Куроптев А.В., Николаев Д.П., Постников В.В. 
Точная локализация опорных решеток полей 
заполнения в анкетах методами динамиче-
ского программирования и морфологической 
фильтрации. // Труды ИСА РАН. 2013. Т. 63. № 
3. С. 111–116.

26. � Bulatov K.B., Bezmaternykh P.V., Nikolaev D.P., 
Arlazarov V.V. Towards a unified framework for 
identity documents analysis and recognition. // 
Computer Optics. 2022;46(3):436–454. DOI: 
10.18287/2412-6179-CO-1024.

27. � Арлазаров В.В., Постников В.В., Шоломов Д.Л. 
Cognitive forms – система массового ввода 
структурированных документов. // Труды ИСА 
РАН. 2002. Т. 1. С. 35–46.

28. � Gatos B.G. Imaging techniques in document 
analysis processes. // In Handbook of Document 
Image Processing and Recognition. 2014. Р. 
73–131. Springer London. DOI: 10.1007/978-0-
85729-859-1_4.

29. � Безматерных П.В. Нормализация изображе-
ния текста с помощью быстрого преобразова-



84 Труды ИСА РАН. Том 75. 4/2025

Распознавание образов М.С. Мехова, П.В. Безматерных

ния Хафа // ИТиВС. 2024. Т. 4. С. 3-16. DOI: 
10.14357/20718632240401.

30. � Muniz R. A robust software barcode reader 
using the Hough transform // Proceedings 
1999 International Conference on Information 
Intelligence and Systems. 1999. Р. 313–319. DOI: 
10.1109/ICIIS.1999.810282.

31. � Szentandrási I., Herout A., Dubská M. Fast 
detection and recognition of QR codes in 
high-resolution images. // In Proceedings of 
the 28th Spring Conference on Computer 
Graphics (SCCG ‘12). 2012. Р. 129–136. DOI: 
10.1145/2448531.2448548.

32. � Zamberletti A., Gallo I., Albertini S., Noce L. 
Neural 1D Barcode Detection Using the Hough 
Transform // IPSJ Transactions on Computer 
Vision and Applications. 2014;7:1-9. DOI: 
10.2197/ipsjtcva.7.1.

33. � Mitrofanov D.G., Zlobin P.K., Shemiakina 
Y.A., Bezmaternykh P.V. Precise localization of 
PDF417 code based on fast hough transform // 
Vestnik YuUrGU «Vychislitelnaya matematika i 
informatika». 2024;13(4):19-34. DOI: 10.14529/
cmse240402.

34. � Martynov S.I., Bezmaternykh P.V. Aztec core 
symbol detection method based on connected 

components extraction and contour signature 
analysis. // ICMV 2019. Society of Photo-Optical 
Instrumentation Engineers (SPIE). 2020. P. 11433. 
DOI: 10.1117/12.2559183.

35. � Безматерных П.В., Вылегжанин Д.В., Глади-
лин С.А., Николаев Д.П. Генеративное распоз-
навание двумерных штрихкодов. // ИИиПР. 
2010. Т. 4. С. 63–69.

36. � Долматова А.В., Николаев Д.П. Ускорение 
свертки и обратного проецирования при ре-
конструкции томографических изображений // 
Сенсорные системы. 2020. Т. 34. № 1. С. 64–71. 
DOI: 10.31857/S0235009220010072.

37. � Bulatov K., Chukalina M., Kutukova K., Kohan 
V., Ingacheva A., Buzmakov A., Arlazarov V.V., 
Zschech E. Monitored tomographic reconstruction 
- An advanced tool to study the 3D morphology of 
nanomaterials // Nanomaterials. 2021;11(10):1-
12. DOI: 10.3390/nano11102524.

38. � Sheshkus A., Ingacheva A., Arlazarov V., Nikolaev 
D. HoughNet: neural network architecture for 
vanishing points detection // In ICDAR 2019. 
2020;(8978201):844–849. The Institute of 
Electrical and Electronics Engineers (IEEE).

Мехова Мария Сергеевна. Национальный исследовательский технологический университет «МИ-
СИС», г. Москва, Россия. Студентка. Институт проблем передачи информации им. А.А. Харкевича Рос-
сийской академии наук, г. Москва, Россия. Стажер-исследователь. ООО «Смарт Энджинс Сервис», г. 
Москва, Россия. Лаборант-программист. Область научных интересов: обработка изображений, компью-
терная томография. E-mail: m.mehova@smartengines.com (Ответственная за переписку).
Безматерных Павел Владимирович. Федеральный исследовательский центр «Информатика и управ-
ление» Российской академии наук, г. Москва, Россия. Программист первой категории. ООО «Смарт Эн-
джинс Сервис», г. Москва, Россия. Научный сотрудник-программист. Область научных интересов: обра-
ботка изображений, распознавание штрихкодов, анализ документов. E-mail: bezmpavel@gmail.com



85Труды ИСА РАН. Том 75. 4/2025

Формализм структурных преобразований изображений и методы их оптимизации

References
1. � Yane B. Digital Image Processing. M.: Technosfera. 

2007. P. 584.
2. � Gonzalez R.C., Woods R.E., Masters B.R. Digital 

image processing, third edition. 14. 029901.
3. � Limonova E., Terekhin A., Nikolaev D., Arlazarov 

V. Fast implementation of morphological 
filtering using ARM NEON extension. // IJAER. 
2016;11(24):11675–11680.

4. � Zekri A.S. Enhancing the matrix transpose 
operation using intel AVX instruction set extension. 
// International Journal of Computer Science & 
Information Technology (IJCSIT). 2014;6(3):67–
78. DOI: 10.5121/ijcsit.2014.6305.

5. � Huang T.S. (ed.). Fast Algorithms in Digital Image 
Processing. Moscow: Radio i svyaz. 1984. P. 224.

6. � Weiss B. Fast isotropic median filtering. // 
SIGGRAPH Conference Papers ‘25: Proceedings 
of the Special Interest Group on Computer 
Graphics and Interactive Techniques Conference 
Conference Papers. 2025;(137):1–10. DOI: 
10.1145/3721238.3730763.

7. � Bezmaternykh P.V., Nikolaev D.P., Arlazarov V.L. 
High-performance digital image processing. // 
Pattern Recognit. Image Anal. 2023;33(4):743–
755. DOI: 10.1134/S1054661823040090.

8. � Vinberg E.B. Algebra course. Moscow: MCNMO. 
2019. P. 290.

9. � Klette R., Rosenfeld A. Digital straightness – a review. 
// Discrete Applied Mathematics. 2004;139(1-
3):197–230. DOI: 10.1016/j.dam.2002.12.001.

10. � Koplowitz J., Lindenbaum M., Bruckstein A. The 
number of digital straight lines on an NxN grid. 

// IEEE Transactions on Information Theory. 
1990;36(1):192–197. DOI: 10.1109/18.50392.

11. � Viola P., Jones M. Robust real-time object 
detection. // International Journal of Computer 
Vision – IJCV. 2001;57(2).

12. � Crow F.C. Summed-area tables for texture 
mapping. // In Proceedings of the 11th annual 
conference on Computer graphics and interactive 
techniques - SIGGRAPH 84. ACM Press. 
1984;207-212. DOI: 10.1145/800031.808600.

13. � van Herk M. A fast algorithm for local minimum 
and maximum filters on rectangular and 
octagonal kernels. // Pattern Recognition Letters. 
1992;13(7):517–521. DOI: 10.1016/0167-
8655(92)90069-C.

14. � Gil J., Werman M. Computing 2-d min, 
median, and max filters. // IEEE Transactions 
on Pattern Analysis and Machine Intelligence. 
1993;15(5):504–507.

15. � Slugin D.G., Arlazarov V.V. Text fields extraction 
based on image processing. // Trudy ISA RAN. 
2017;67(4):65–73.

16. � Bradley D., Roth G. Adaptive thresholding 
using the integral image. // Journal of 
Graphics Tools. 2007;12(2):13–21. DOI: 
10.1080/2151237x.2007.10129236.

17. � Shafait F., Keysers D., Breuel T. Efficient 
implementation of local adaptive thresholding 
techniques using integral images. // In Document 
Recognition and Retrieval XV, 2008;6815:317–
322. International Society for Optics and 
Photonics, SPIE. DOI: 10.1117/12.767755.

A formal approach to image structural transformations and optimization
M.S. MehovaI,III,IV, P.V. BezmaternykhI,II

I Smart Engines Service LLC, Moscow, Russia
II Federal Research Center «Computer Science and Control», Russian Academy of 
Sciences, Moscow, Russia
III National University of Science and Technology «MISIS», Moscow, Russia
IV Institute for Information Transmission Problems, Russian Academy of Sciences, 
Moscow, Russia

Abstract. Low-level image processing methods and their transformations are crucial across many diverse fields. 
Although many studies have examined their optimization in particular cases, a thorough, systematic approach 
remains unavailable. This paper introduces a formal structural image transformation approach to address this 
issue. It offers a unified way to express various image processing methods and transformations, analyze their 
computational complexity, and identify ways for their computation acceleration. This paper describes three 
optimization techniques that convert structural image transformations to faster versions, decreasing their 
complexity relative to the independent calculation of each element of the initial transformation. Finally, it 
explores the application of these methods to tasks like automated document image processing, barcode reading, 
and computed tomography. 
Keywords: image processing, combinatorial optimization, automatic document image processing.
DOI: 10.14357/20790279250409   EDN: YUDLHH



86 Труды ИСА РАН. Том 75. 4/2025

Распознавание образов М.С. Мехова, П.В. Безматерных

18. � Samorodova O.A., Samorodov A.V. Fast 
implementation of the Niblack binarization 
algorithm for microscope image segmentation 
// Pattern Recognition and Image Analysis. 
2016;26(3):548–551. DOI: 10.1134/
s1054661816030020.

19. � Brady M.L., Yong W. Fast parallel discrete 
approximation algorithms for the radon 
transform // In Proceedings of the Fourth Annual 
ACM Symposium on Parallel Algorithms and 
Architectures, SPAA ‘92. 1992. P. 91–99. ACM. 
DOI: 10.1145/140901.140911.

20. � Gotz W.A., Druckmuller H.J. A fast digital Radon 
transform – an efficient means for evaluating 
the hough transform // Pattern Recognition. 
1995;28:1985-1992.

21. � Karpenko S.M., Nikolaev D.П., Nikolaev P.P., 
Postnikov V.V. Bystroe preobrazovanie Hafa s 
upravlyaemoy robastnostyu // In IEEE AIS’04, 
CAD-2004. 2004;2:303–309.

22. � He K., Sun J., Tang X. Single image haze 
removal using dark channel prior // In 2009 IEEE 
Conference on Computer Vision and Pattern 
Recognition. 2009. P. 1956–1963. DOI: 10.1109/
CVPR.2009.5206515.

23. � Kunina I.A., Sher A.V., Nikolaev D.P. Screen 
recapture detection based on color-texture analysis 
of document boundary regions // Computer 
Optics. 2022.

24. � Pytyev U.P., Chulichkov A.I. Methody 
morphologicheskogo analiza izobrazhenyi. M.: 
FIZMATLIT. 2010. P. 336.

25. � Kuroptev A.V., Nikolaev D.P., Postnikov V.V. 
Tochnaya localizacia opornykh reshetok poley 
zapolnenya v anketakh metodami dinamicheskogo 
programmirovaniya i morphologicheskoy filtracii. 
// Trudy ISA RAN. 2013;63(3):111–116.

26. � Bulatov K.B., Bezmaternykh P.V., Nikolaev D.P., 
Arlazarov V.V. Towards a unified framework for 
identity documents analysis and recognition. // 
Computer Optics. 2022;46(3):436–454. DOI: 
10.18287/2412-6179-CO-1024.

27. � Arlazarov V.V., Postnikov V.V., Sholomov D.L. 
Cognitive forms – sistema massovogo vvoda 
structurirovannykh documentov. // Trudy ISA 
RAN. 2002;1:35–46.

28. � Gatos B.G. Imaging techniques in document analysis 
processes. // In Handbook of Document Image Pro-
cessing and Recognition. 2014. P. 73–131. Springer 
London. DOI: 10.1007/978-0-85729-859-1_4.

29. � Bezmaternykh P.V. Text Image Normalization 
Using Fast Hough Transform // ITiVS. 2024;(4):3-
16. DOI: 10.14357/20718632240401.

30. � Muniz R. A robust software barcode reader 
using the Hough transform // Proceedings 
1999 International Conference on Information 
Intelligence and Systems. 1999. P. 313–319. DOI: 
10.1109/ICIIS.1999.810282.

31. � Szentandrási I., Herout A., Dubská M. Fast 
detection and recognition of QR codes in 
high-resolution images // In Proceedings of 
the 28th Spring Conference on Computer 
Graphics (SCCG ‘12). 2012. P. 129–136. DOI: 
10.1145/2448531.2448548.

32. � Zamberletti A., Gallo I., Albertini S., Noce L. 
Neural 1D Barcode Detection Using the Hough 
Transform // IPSJ Transactions on Computer 
Vision and Applications. 2014;7:1-9. DOI: 
10.2197/ipsjtcva.7.1.

33. � Mitrofanov D.G., Zlobin P.K., Shemiakina 
Y.A., Bezmaternykh P.V. Precise localization of 
PDF417 code based on fast hough transform // 
Vestnik YuUrGU «Vychislitelnaya matematika i 
informatika». 2024;13(4):19-34. DOI: 10.14529/
cmse240402.

34. � Martynov S.I., Bezmaternykh P.V. Aztec core 
symbol detection method based on connected 
components extraction and contour signature 
analysis // ICMV 2019. Society of Photo-Optical 
Instrumentation Engineers (SPIE). 2020. P. 11433. 
DOI: 10.1117/12.2559183.

35. � Bezmaternykh P.V., Vylegzhanin D.V., Gladilin 
S.A., Nikolaev D.P. Generativnoe raspoznavanie 
dvumernykh shtrikhkodov // IIiPR. 2010;(4):63–69.

36. � Dolmatova A.V., Nikolaev D.P. Fast filtering and 
back projection for CT image reconstruction 
// Sensornye sistemy. 2020;34(1):64–71. DOI: 
10.31857/S0235009220010072.

37. � Bulatov K., Chukalina M., Kutukova K., Kohan 
V., Ingacheva A., Buzmakov A., Arlazarov V.V., 
Zschech E. Monitored tomographic reconstruction 
- An advanced tool to study the 3D morphology of 
nanomaterials // Nanomaterials. 2021;11(10):1-
12. DOI: 10.3390/nano11102524.

38. � Sheshkus A., Ingacheva A., Arlazarov V., Nikolaev 
D. HoughNet: neural network architecture for 
vanishing points detection // In ICDAR 2019. 
2020;(8978201):844–849. The Institute of 
Electrical and Electronics Engineers (IEEE).



87Труды ИСА РАН. Том 75. 4/2025

Формализм структурных преобразований изображений и методы их оптимизации

Maria S. Mehova. National University of Science and Technology «MISIS», Moscow, Russia. Institute for Information 
Transmission Problems, Russian Academy of Sciences, Moscow, Russia. Smart Engines Service LLC, Moscow, Russia. 
Topics of interest: image processing, computational tomography. E-mail: m.mehova@smartengines.com
Pavel V. Bezmaternykh. Federal Research Center «Computer Science and Control», Russian Academy of 
Sciences, Moscow, Russia. Smart Engines Service LLC, Moscow, Russia. Topics of interest: image processing, 
barcode recognition, document image analysis. E-mail: bezmpavel@gmail.com


