EDN: XQCEYD
Стр. 66-74.
Литература
1. Alcaín E., Fernández P.R., Nieto R., Montemayor A.S., Vilas J., Galiana-Bordera A., Martinez-Girones P.M., Prieto-de-la-Lastra,C., Rodriguez-Vila B., Bonet M., Rodriguez-Sanchez C. Hardware Architectures for Real-Time Medical Imaging // Electronics, 10(24): 3118, 2021. doi:10.3390/electronics10243118. ISSN 2079-9292.
2. Nagornov N.N., Lyakhov P.A., Valueva M.V., Bergerman M.V. RNS-Based FPGA Accelerators for High-Quality 3D Medical Image Wavelet Processing Using Scaled Filter Coefficients // IEEE Access, 10: 19215–19231, 2022. doi:10.1109/ACCESS.2022.3151361. ISSN 2169-3536.
3. Huffmire T., Brotherton B., Sherwood T., Kastner R., Levin T., Nguyen T.D., Irvine C. Managing Security in FPGA-Based Embedded Systems // IEEE Design & Test of Computers, 25 (6): 590–598, 2008. doi:10.1109/MDT.2008.166.
4. Babaei A., Schiele G., Zohner M. Reconfigurable Security Architecture (RESA) Based on PUF for FPGA-Based IoT Devices // Sensors, 22(15): 5577, 2022. doi:10.3390/s22155577. ISSN 1424-8220.
5. Simpson P.A. FPGA Design, Best Practices for Team Based Reuse, 2nd edition. Switzerland: Springer International Publishing AG, 2015. ISBN 978-3-319-17924-7.
6. Как работает FPGA? : RUVDS.com, habr. URL: https://habr.com/ru/companies/ruvds/articles/736060/. Дата публикации: 18.05.2023.
7. Fang J., Mulder Y.T.B., Hidders J. et al. In-memory database acceleration on FPGAs: a survey. The VLDB Journal 29, 33–59, 2020. https://doi.org/10.1007/s00778-019-00581-w.
8. Волков Д., Николаенко А. На пути к «железным» СУБД // Открытые системы. СУБД, №02, 2019 : OSP. URL: https://www.osp.ru/os/2019/02/13054946. Дата публикации: 19.05.2019.
9. Chen S., Chen Y., Wang Z., Qin W., Zhang J., Nand H., Zhang J., Li J., Zhang X., Liang X., Xu M. Efficient sequencing data compression and FPGA acceleration based on a two-step framework. Front. Genet., 14: 1260531, 2023. doi: 10.3389/fgene.2023.1260531.
10. Lu A., Fang Z. SQL2FPGA: Automatic Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms. 2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Marina Del Rey, CA, USA, 184-194, 2023. doi: 10.1109/FCCM57271.2023.00028.
11. Owaida M., Sidler D., Kara K., Alonso G. Centaur: A Framework for Hybrid CPU-FPGA Databases. 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, CA, 211-218, 2017. doi: 10.1109/FCCM.2017.37.
12. Wei X. Sailfish: Exploring Heterogeneous Query Acceleration on Discrete CPU-FPGA Architecture. IEEE 39th International Conference on Data Engineering Workshops (ICDEW), Anaheim, CA, USA, 198-204, 2023. doi: 10.1109/ICDEW58674.2023.00036.
13. Хасанов В. Ускорение обработки данных 1С на FPGA-ускорителях Xilinx Alveo : rutube. URL: https://rutube.ru/video/c246d709685406649e-5730c23a95e416/. Дата публикации: 2021.
14. Oikawa S. Operating System Framework for Transparent Execution on a CPU and FPGA. 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA), Kanazawa, Japan, 97-101, 2021. doi: 10.1109/SERA51205.2021.9509041.
15. Amazon throws SSDs, FPGAs, Nitro chips at Redshift with “AQUA” : TheStack. URL: https://www.thestack.technology/aws-aqua-redshift-ga/. Дата публикации: 15.04.2021.
16. Intelligent self-processing for the era of big data. SmartSSD : Samsung. URL: https://semiconductor.samsung.com/emea/ssd/smart-ssd/ (дата обращения: 26.04.2025).
17. SmartSSD® Computational Storage Drive : AMD. URL: https://www.amd.com/content/dam/xilinx/publications/product-briefs/xilinx-smartssd-computational-storage-drive-product-brief.pdf (дата обращения: 26.04.2025).
18. Samsung представила SmartSSD второго поколения на базе процессоров AMD : overclockers. URL: https://overclockers.ru/blog/TechRanch/show/71223/samsung-predstavila-smartssd-vtorogo-pokoleniya-na-baze-processorov-amd. Дата публикации: 22.07.2022.
19. Feng J., Li Z., Chen Q. Towards Exploratory Query Optimization for Template-Based SQL Workloads. 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, Netherlands, 151-164, 2024. doi: 10.1109/ICDE60146.2024.00019.
20. Chen T., Gao J., Tu Y., Xu M. GLO: Towards Generalized Learned Query Optimization. 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, Netherlands, 4843-4855, 2024. doi: 10.1109/ICDE60146.2024.00368.
21. Fang J. Database Acceleration on FPGAs. Dissertation (TU Delft), Delft University of Technology, 2019. https://doi.org/10.4233/uuid:84dfc577-ca6f-43ea-9b24-4dc160c103f5.
22. Практическое применение сервера с FPGA. Блог компании Selectel : habr. URL: https://habr.com/ru/companies/selectel/articles/565190/. Дата публикации: 10.07.2021.