Applied aspects in informatics
Risk management and safety
System analysis in medicine and biology
N.A. Magnitskii On the transition to chaos in one model of population dynamics
N.A. Magnitskii On the transition to chaos in one model of population dynamics

An analytical and numerical analysis of the transition to chaos was carried out in the model proposed by A.D. Bazykin for the dynamics of the number of interacting populations of a predator and two prey. The conditions for the creation of a periodic solution as a result of the Andronov-Hopf bifurcation are found. It is shown numerically that the transition to chaos in the system of differential equations describing the dynamics of interacting populations is carried out in full accordance with the Feigenbaum-Sharkovsky-Magnitskii universal bifurcation theory (FShM) through subharmonic and homoclinic bifurcation cascades of stable limit cycles.

Keywords: population dynamics, predator-prey model, bifurcation cascades, FShM theory, attractors, chaos.

PP. 71-74.

DOI: 10.14357/20790279200208

1. Bazykin A.D. Matematicheskaya biofizika vzaimodeystvuyushchikh populyatsiy. M., Nauka, 1985, 165 P
2. Riznichenko G.Y. Matematicheskiye modeli v biofizike i ekologii. Moskva-Izhevsk, IKI,2003,184 P
3. Magnitskii N.A., Sidorov S.V. New methods for chaotic dynamics (monograph). Singapore: World Scientific, 2006. 363 P
4. Magnitskii N.A. Teoriya dinamicheskogo khaosa. M.: Lenand, 2011, 320 P
5. Magnitskii N.A. Universality of Transition to Chaos in All Kinds of Nonlinear Differential Equations. Chapter in Nonlinearity, Bifurcation and Chaos - Theory and Applications. INTECH, 2012.P.133- 174.
6. Evstigneev N. M.,Magnitskii N.A. Numerical analysis of laminar-turbulent bifurcation scenarios in Kelvin-Helmholtz and Rayleigh-Taylor instabilities for compressible flow. Chapter in Turbulence. INTECH,2017.P.29-59.
7. Magnitskii N.A. Bifurcation Theory of Dynamical Chaos. Chapter in Chaos Theory. INTECH, 2018, P. 197-215.

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".