Динамика макросистем
Д.А. Буров "Моделирование связанного нелинейного уравнения Шрёдингера конечно-разностными методами"
Интеллектуальные системы и технологии
Информационные технологии
Системный анализ в медицине и биологии
Д.А. Буров "Моделирование связанного нелинейного уравнения Шрёдингера конечно-разностными методами"

Аннотация.

В работе освещается численный анализ связанного нелинейного уравнения Шрёдингера в приложении к моделированию поверхностных плазмон-поляритонов. Для решения системы уравнений в частных производных применялись конечно-разностные схемы высоких порядков, в том числе, с использованием схем Паде (компактных разностных производных) и методов Дормана-Принса. Основной акцент сделан на применимости конечно-разностных методов к данной задаче. Рассмотрены различные типы граничных условий (Дирихле, Неймана, периодические). Помимо этого, представлены результаты моделирования, изучено усложнение динамики при изменении одного из системных параметров. Сделан вывод о начальных стадиях перехода к хаотическим режимам.

Ключевые слова:

нелинейное уравнение Шрёдингера, уравнение Гинзбурга-Ландау, поверхностный плазмон-поляритон, метод Кранка-Николсона, компактные разности, схема Паде, устойчивость по фон Нейману, сценарий ФШМ, сценарий Ландау-Хопфа, трехмерный тор, субкритическая бифуркация Хопфа, мультистабильность.

Стр. 18-32.

Полная версия статьи в формате pdf. 

D.A. Burov

"Modelling of coupled nonlinear Schroedinger equation using finite difference methods"

Abstract. This paper presents numerical analysis of coupled nonlinear Schroedinger equation as an application to surface plasmon polariton modelling. High-order finite difference methods are used to solve a system of partial differential equations; methods include Pade schemes (compact finite differences) and Dormand-Prince method. Main emphasis is on the applicability of finite difference methods to this particular problem. Different types of boundary conditions are considered (Dirichlet, Neumann, periodic). Besides, simulation results are also presented, and the rise in dynamics complexity is studied. Initial stages of transition to chaos are discussed.

Keywords: nonlinear Schroedinger equation, Ginzburg-Landau equation, surface plasmon polariton, Crank-Nicolson method, compact finite difference, Pade scheme, von Neumann stability, FSM scenario, Landau-Hopf scenario, three-dimensional torus, subcritical Hopf bifurcation, multistability.

References

1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. “Theory of surface plasmons and surface-plasmon polaritons”. In: Reports on Progress in Physics 70.1 (Jan. 2007), pp. 1–87.
2. D. Maystre. “Survey of Surface Plasmon Polariton History”. In: Plasmonics. Ed. by S. Enoch and N. Bonod. Vol. 167. Springer Series in Optical Sciences. Springer Berlin Heidelberg, 2012, pp. 3–37.
3. A. Marini. “Theory of nonlinear and amplified surface plasmon polaritons”. PhD thesis. University of Bath, Department of Physics, 2011.
4. A. Marini, D. V. Skryabin, and B. Malomed. “Stable spatial plasmon solitons in a dielectric-metal- dielectric geometry with gain and loss”. In: Optics Express 19.7 (2011), pp. 6616–6622.
5. X. Antoine, W. Bao, and C. Besse. “Computational methods for the dynamics of the nonlinear Schroedinger/Gross–Pitaevskii equations”. In: Computer Physics Communications 184.12 (Dec. 2013), pp. 2621–2633.
6. A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana. “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals”. In: New Journal of Physics 15.1 (Jan. 2013), pp. 013033–013051.
7. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar. “Self-Focusing and Spatial Plasmon-Polariton Solitons”. In: Optics Express 17.24 (2009), pp. 21732–21737.
8. N. A. Magnitskii. Theory of dynamical chaos [in Russian]. Moscow: LENAND, 2011, p. 320.
9. J. D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: Computing In Science & Engineering 9.3 (2007), pp. 90–95.
10. D. J. Bergman and M. I. Stockman. “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems”. In: Physical Review Letters 90.2 (Jan. 2003), pp. 027402–027405.
11. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev. “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium”. In: Optics Letters 31.20 (Oct. 2006), pp. 3022–3024.
12. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds. “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium”. In: Optics Express 16.2 (2008), pp. 1385–1392.
13. A. B. Kozyrev, I. V. Shadrivov, and Y. S. Kivshar. “Soliton generation in active nonlinear metama- terials”. In: Applied Physics Letters 104.8, 084105 (2014).
14. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats. “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain”. In: Nano Letters 11.6 (2011), pp. 2231–2235.
15. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang. “Observation of Stimulated Emission of Surface Plasmon Polaritons”. In: Nano Letters 8.11 (2008), pp. 3998–4001.
16. I. De Leon and P. Berini. “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media”. In: Physical Review B 78.16 (Oct. 2008), pp. 161401–161404.
17. P. Weinberger. “John Kerr and his effects found in 1877 and 1878”. In: Philosophical Magazine Letters 88.12 (Dec. 2008), pp. 897–907.
18. S. v. d. Walt, S. C. Colbert, and G. Varoquaux. “The NumPy array: a structure for efficient numerical computation”. In: Computing in Science & Engineering 13.2 (2011), pp. 22–30.
19. E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python. 2001.
20. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Vol. 8. Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 1993, p. 528.
21. G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods. 3rd ed. Oxford Applied Mathematics and Computing Science Series. Clarendon Press, 1985, p. 352.
22. J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods. Vol. 22. Texts in Applied Mathematics. Springer-Verlag New York, 1995, p. 437.
23. S. Gottlieb, C.-W. Shu, and E. Tadmor. “Strong Stability-Preserving High-Order Time Discretization Methods”. In: SIAM Review 43.1 (2001), pp. 89–112.
24. S. K. Lele. “Compact Finite Difference Schemes with Spectral-like Resolution”. In: Journal of Computational Physics 103.1 (1992), pp. 16–42.
 

2023-73-4
2023-73-3
2023-73-2
2023-73-1

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".