Стр. 3-13.
Литература
1. Magnitskii N.A., Sidorov S.V. New methods for chaotic dynamics. World Scientific. 2006. V. 58.
2. Magnitskii N.A. Universal bifurcation chaos theory and its new applications //Mathematics. 2023. V. 11. №. 11. P. 2536.
3. Joseph D.D. Stability of fluid motions I. Springer Science & Business Media. 2013. V. 27.
4. Chirikov B.V. A universal instability of manydimensional oscillator systems //Physics reports. 1979. V. 52. №. 5. P. 263-379.
5. Yudovich V.I. Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it // Chaos: An Interdisciplinary Journal of Nonlinear Science. 1995. V. 5. №. 2. P. 402-411.
6. Boiko A.V., Demyanko K.V., Nechepurenko Y.M. Numerical analysis of spatial hydrodynamic stability of shear flows in ducts of constant cross section //Computational Mathematics and Mathematical Physics. 2018. V. 58. P. 700-713.
7. Manneville P. Understanding the sub-critical transition to turbulence in wall flows //Pramana. 2008. V. 70. P. 1009-1021.
8. Sidorov N. et al. Lyapunov-Schmidt methods in nonlinear analysis and applications. Springer Science & Business Media. 2013. V. 550.
9. Evstigneev N.M., Magnitskii N.A. Numerical analysis of laminar–turbulent transition by methods of chaotic dynamics //Doklady Mathematics. Pleiades Publishing, 2020. V. 101. P. 110-114.
10. Zakharov V.E., L’vov V.S., Falkovich G. Kolmogorov spectra of turbulence I: Wave turbulence. Springer Science & Business Media, 2012.
11. Dymov A.V., Kuksin S.B. On the Zakharov–L’vov stochastic model for wave turbulence //Doklady Mathematics. Pleiades Publishing. 2020. V. 101. P. 102-109.
12. Arnol?d V.I., Khesin B.A. Topological methods in hydrodynamics. New York : Springer. 2009. V. 19.
13. Nikitin N.V. Transition problem and localized turbulent structures in pipes //Fluid Dynamics. 2021. V. 56. No 1. P. 31-44.
14. Meshalkin L.D., Sinai I.G. Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid //Journal of Applied Mathematics and Mechanics. 1961. V. 25. No 6. P. 1700-1705.
15. Evstigneev N.M., Magnitskii N.A., Ryabkov O.I. Numerical bifurcation analysis in 3D Kolmogorov flow problem //Journal of Applied Nonlinear Dynamics. 2019. V. 8. No 4. P. 595-619.
16. Evstigneev N.M. On the convergence acceleration and parallel implementation of continuation in disconnected Bifurcation diagrams for large-scale problems // Communications in Computer and Information Science. 2019. V. 1063. P. 122-138.
17. Van Veen L., Goto S. Sub critical transition to turbulence in three-dimensional Kolmogorov flow //Fluid Dynamics Research. 2016. V. 48. No 6. P. 061425.
18. Sadovnichii V.A. Theory of operators. Springer Science & Business Media. 1991.
19. Temam R. Navier–Stokes equations: theory and numerical analysis. American Mathematical Society. 2024. V. 343.
20. Gottlieb D., Orszag S.A. Numerical analysis of spectral methods: theory and applications. Society for Industrial and Applied Mathematics. 1977.
21. Cox S.M., Matthews P.C. Exponential time differencing for stiff systems //Journal of Computational Physics. 2002. V. 176. No 2. P. 430-455.