Dynamical Systems
A.G. Omarova Numerical solution of the boundary value problem for the heat equation with a fractional Caputo derivative
Computer analysis of texts
Methods and models of system analysis
Risk management and safety
System analysis in medicine and biology
A.G. Omarova Numerical solution of the boundary value problem for the heat equation with a fractional Caputo derivative
Abstract. 

In a rectangular domain, a nonlocal boundary value problem is studied for the heat equation with a fractional Caputo derivative with variable coefficients. An a priori estimate in differential form is obtained by the method of energy inequalities. A difference scheme is constructed that approximates the boundary value problem with the first order. An analog of the a priori estimate in difference form is obtained. The obtained a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the righthand side. The convergence of the difference scheme to the solution of the original problem is proved.

Keywords: 

fractional Caputo derivative, boundary value problem, a priori estimate, difference scheme, method of energy inequalities, numerical methods.

DOI: 10.14357/20790279240201 

EDN: CAZNDM

PP. 3-10.
 
References

1. Samko S. G., Kilbas A. A., and Marichev O. I. Fractional Integrals and Derivatives, Theory and Application. Gordon and Breach: Yverdon;1993. 976 p.
2. Nakhushev A.M. Elements of fractional calculus and their application. Nalchik: 1989.  430 p (In Russ)
3. Podlubny I. Fractional differential equations. San Diego: Academic Press; 1999. 339 p.
4. Oldman K.B.,Spanier J. The fractional calculus: theory and applications of differentiation and integration to arbitrary order. N.Y.:Academic Press; 1974. 234p.
5. Nakhushev A.M. Equations of mathematical biology. Moscow: Vysshaya shkola; 1995. 304 p. (In Russ)
6. Beybalaev V.D., Ibavov T.I., Omarova A.G., Numerical study of the nonlinear heat equation with a fractional order derivative Vestnik Dagestanskogo gosudarstvennogo universiteta. 2021;(2):47-53 (In Russ). DOI: 10.21779/2542-0321-2021-36-2-47-53
7. Beshtokov M. H. Boundary value problems for degenerate and non-degenerate differential cases with nonlocal linear kernel and difference methods for their numerical implementation. Ufimskiy matematicheskiy zhurnal. 2019;11(2): 36-55 (In Russ).
8. Beshtokov M.H, Hudalov M.Z. The third boundary value problem for a loaded heat equation with a fractional Caputo derivative. Matematika i matematicheskoye modelirovaniye. 2020;(3):52-64 (In Russ). doi.org/10.24108/mathm.0320.0000222 
9. Beshtokova Z.V. Numerical method for solving non-local boundary value problems for a multidimensional parabolic equation. Vychislitel'nyye metody i programmirovaniye.2022;23(2):153-171 (In Russ). doi 10.26089/NumMet.v23r210
10. Shogenova E.M. A priori estimates for the solution of boundary value problems for the fractional order convection-diffusion equation. Vestnik KRAUNTS. Fiz.-mat. Nauki.2018;24(4):54-60 (In Russ).  doi: 10.18454/2079-6641-2018-24-4-54-60
11. Alikhanov A.A. A priori estimates of solutions to boundary value problems for equations of fractional order. Differentsial'nyye uravneniya.2010;46(5): 658-664 (In Russ).
12. Alikhanov A.A. Difference methods for solving boundary value problems for a wave equation with a fractional time derivative. Vestn.Sam.gos.tekhn.un-ta.Ser.Fiz-mat.nauki.2008;17(2): 13-20 (In Russ).
13. Kazakova E.M. Difference scheme for fractional-order convection-diffusion equation. Vestnik KRAUNTS. Fiz.-mat.nauki. 2021;36(3):146-154 (In Russ).
14. Alikhanov A.A. Stability and convergence of difference schemes for boundary value problems of the diffusion equation of fractional . Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki.2016;56(4):572-586  (In Russ). doi: 10.7868/S0044466916040049
15. Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics. NewYork: Springer; 1985.409p.
16. Omarova A.G. On the stability and convergence of a difference scheme approximating a boundary value problem for a single differential equation with a fractional Caputo derivative. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Yestestvennyye nauki. 2022;(1):23-27 (In Russ). doi: 10.18522/1026-2237-2022-1-23-27
17. Samarsky A. A., Gulin A. V. Stability of Difference Schemes. Moscow: Nauka; 1973.415p. (In Russ)
18. Alikhanov А.А. Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Applied Mathematics and Computation.2015;(268):12-22.
19. Andreev V. B. On the Convergence of Difference Schemes Approximating the Second and Third Boundary Value Problems for Elliptic Equations. Zh. Vychisl. Mat. Mat. Fiz..1968;8(6):1218–1231 (In Russ).
20. Samarsky A.A. Theory of difference schemes Moscow: Nauka; 1977.656p (In Rus)
 
 
 
2025-75-1
2024-74-4
2024-74-3
2024-74-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".