CONTROL SYSTEMS
M.G. Dmitriev, Z.N. Murzabekov, D.A. Makarov, G.A. Mirzakhmedova Stabilization in the macroeconomic formally linear control system with state-dependent coefficients
DATA PROCESSING AND ANALYSIS
IMAGE PROCESSING METHODS
QUANTUM INFORMATICS
SECURITY ISSUES
M.G. Dmitriev, Z.N. Murzabekov, D.A. Makarov, G.A. Mirzakhmedova Stabilization in the macroeconomic formally linear control system with state-dependent coefficients

Abstract.

In the work on the example of the mathematical model of three-sector economic system the stabilization of the system in the vicinity of equilibrium is shown on the basis of the construction of investment management strategies in the form of feedback using an algorithm for solving a nonlinear control problem in which the differential connections are formally linear in control and state, with state-dependent coefficients.

Keywords:

optimal control, three-sector economic cluster, Lagrange multiplier method, nonlinear system, quadratic functional, matrix Riccati equation.

PP. 3-13.

DOI 10.14357/20718632190201

References

1. Guriyev S. M., Pospelov I. G. Model' obshchego ravnovesiya ekonomiki perekhodnogo perioda [Model of General Equilibrium for a Transitional Economy] // Matem. modelirovaniye [Matem. modeling]. 1994. №2 (6). 3–21.
2. Olenev N. N., Petrov A. A., Pospelov I. G. Regulirovaniye ekologicheskikh posledstviy ekonomicheskogo rosta [Regulation of the environmental consequences of economic growth] // Matem. modelirovaniye [Matem. modeling]. 1998. № 8 (10). 17–32.
3. Kolemayev V.A. Ekonomiko–matematicheskoye modelirovaniye [Economic and Mathematical Modeling] // Moscow: UNITI-DANA, 2005. 295.
4. Aseev, S.M., Besov, K.O., Kryazhimskii, A.V. Infinitehorizon control problems in economics // Russian Math. Surveys. 2012. № 67 (2). 195-253.
5. Mracek, C. P., Cloutier J. R. Full envelope missile longitudinal autopilot design using the state-dependent Riccati equation method. // In: Proc. of the AIAA Guidance, Navigation, and Control Conference, New Orleans LA, 1697-1705.
6. Mracek, C. P., Cloutier J. R. Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method // International Journal of Robust and Nonlinear Control, № 8, 401-433.
7. Afanas'yev V.N. Kontseptsiya garantirovannogo upravleniya neopredelennymi ob"yektami [The concept of guaranteed management of uncertain objects] // Izvestiya RAN. Teoriya isistemy upravleniya [News of the Russian Academy of Sciences. Theory and control systems]. 2010. № 1, 16-23.
8. Afanas'yev V.N., Orlov P.V. Suboptimal'noye upravleniye nelineynym ob"yektom, linearizuyemym obratnoy svyaz'yu [Suboptimal control of a nonlinear object linearized by feedback] // RAN. Teoriya i sistemy upravleniya [News of the Russian Academy of Sciences. Theory and control systems]. 2011. - № 3. - pp. 13-22
9. Cimen T. State-dependent Riccati Equation (SDRE) control: A Survey // Proceedings of the 17th World Congress The International Federation of Automatic Control. Seoul, Korea. (July 6-11. 2008): P.3761-3775.
10. Afanas'yev V.N. Upravleniye nelineynymi ob"yektami s parametrami, zavisyashchimi ot sostoyaniya [Control of nonlinear objects with state-dependent parameters] // Avtomatika i telemekhanika [Automation and Remote Control]. 2011. 4. 43-56.
11. Andryukhina V.N., Afanas'yev V.N. Garantiruyushcheye upravleniye v zadache primeneniya antivirusnykh preparatov I rezul'taty matematichesko gomodelirovaniya [Guaranteed control in the task of using antiviral drugs and the results of mathematical modeling] // Problemy upravleniya [Problems of Control]. 2012. 3. 41-48.
12. Afanas'yev V.N. Zadacha vyvoda I soprovozhdeniya nelineynogo ob"yekta po zadannoy trayektorii [The task of outputting and tracking a nonlinear object along a given trajectory] // Avtomatika i telemekhanika [Automation and Remote Control]. 2015. 1. 3-20.
13. Afanas'yev A.P., Dzyuba S.M., Yemel'yanova I.I. Optimal'noye upravleniye s obratnoy svyaz'yu odnim klassom nelineynykh system po kvadratichnomu kriteriyu [Optimal control with feedback by a single class of nonlinear systems by quadratic criterion] // Vestnik TGU [Vestnik TSU]. 2015. 20 (5). 1024-1033.
14. Afanas'yev V.N. Algoritmicheskiy metod postroyeniya upravleniy nelineynym neopredelennym ob"yektom [Algorithmic method for constructing controls of a nonlinear indefinite object] // Problemy upravleniya [Problems of Control]. 2015. 3. 12-19.
15. Kolemayev V.A. Optimal'nyy sbalansirovannyy rost otkrytoy trekhsektornoy ekonomiki [Optimal balanced growth of an open three-sector economy] // Prikladnaya ekonometrika [Applied Econometrics]. 2008. 3 (11). 15-42.
16. Murzabekov Z., Milosh M., Tusupova K. Resheniye  zadachi poiska statsionarnogo sostoyaniya v trekhsektornoy ekonomicheskoy modeli klastera [Solution of steady state search problem in three-sector economic model of a cluster] // Aktual'níí problemi yekonomííki [Actual Problems of Economy]. 2015. 3(165). 443-452.
17. Murzabekov Z., Milosz M. and Tussupova K. Modeling and optimization of the production cluster // Proceedings of 36th International Conference on Information Systems and Architecture and Technology – ISAT-2015 / Part II, Advances in Intelligent Systems and Computing. – Karpacz, 2016. 99–108.
18. Murzabekov. Z., Milosz M. and Tussupova K. The optimal control problem with fixed-end trajectories for a three-sector economic model of a cluster. // Intelligent Information and Database Systems, ACIIDS 2018. 382–391.
19. GurmanV.I. Printsip rasshireniya v zadachakh upravleniya [The principle of expansion in management tasks]. M.: Nauka, 1985. 288.
20. Dmitriev M.G., Makarov D.A. Gladkiynelineynyy regulyator v slabo nelineynoy sisteme upravleniya s koeffitsiyentami, zavisyashchimi ot sostoyaniya [A smooth non-linear controller in a weakly non-linear control system with state-dependent coefficients] // Trudy ISA RAN [Proceedings of the ISA RAS]. 2014. 64 (4). 53-58.
21. S. V. Emel’yanov, Yu. E. Danik, M. G. Dmitriev, D. A. Makarov. Stabilization of Nonlinear Discrete-Time Dynamic Control Systems with a Parameter and State-Dependent Coefficients // Doklady Mathematics. 2016. Vol. 93(1). 121–123. DOI: 10.1134/S1064562416010142
22. Danik YU.E., Dmitriyev M.G., Makarov D.A. Odin algoritm postroyeniya regulyatorov dlya nelineynykh sistem s formal'nym malym parametrom [One algorithm for constructing regulators for nonlinear systems with a formal small parameter]// Informatsionnyye tekhnologii i vychislitel'nyye sistemy [Information technologies and computing systems]. 2015. №4. Pp. 35-44.
23. Afanas'yev V.N., Kolmanovskiy V.B., Nosov V.R. Matematicheskaya teoriya konstruirovaniya system upravleniya [Mathematical theory of designing control systems]. M.: Vysshaya shkola [M.: Higher School], 2003. 614 p.
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".