A. A. Zuenko, A. G. Oleynik, Y. A. Oleynik Integration of Conceptual Modeling and Constraint Programming for the Synthesis of Flowsheets
A. A. Zuenko, A. G. Oleynik, Y. A. Oleynik Integration of Conceptual Modeling and Constraint Programming for the Synthesis of Flowsheets

The information technology for structural synthesis of multistage technological processes schemes is presented. The technology based on the integration of conceptual modeling and constraints programming methods. Relevance of the development is due to the fact that the existing solutions in the field of structural synthesis do not offer means for the formal description of heterogeneous constraints on the of structural elements combination in the formation of the target object. Integration of conceptual modeling and constraints programming methods provides the formalized description, automated accounting and analysis of heterogeneous constraints both on the compatibility of the equipment that implements the process and on efficiency indicators. Technological processes for the mineral processing are considered as an example. Formal structures characterizing both the properties of the processing object and the equipment that implements the process main technological operations are described. Constrains examples on synthesizing structure of the technological process and functional capabilities of the instrumental system that implements the developed technology are briefly described.


structural synthesis, flowsheet, conceptual modeling, constraint programming, constraint satisfaction problem.

PP. 95-107.

DOI 10.14357/20718632220309

1. Bojko A.N. 2010. Strukturnyj sintez kak zadacha diskretnoj optimizacii [Structural synthesis as a discrete optimization problem]. Elektronnoe nauchno-tekhnicheskoe izdanie “Nauka i Obrazovanie” [Electronic scientific and technical publication “Science and Education”]. 9. Available at: (accessed September 10, 2021).
2. Polovinkin A.I. 1988. Osnovy inzhenernogo tvorchestva [Basics of Engineering Creativity]. Moscow: Mechanical engineering. 364 p.
3. Ankudinov G.I. 1986. Sintez struktury slozhnyh ob’ektov. Logiko-kombinatornyj podhod [Synthesis of the structure of complex objects. Logical-combinatorial approach]. Leningrad: LSU. 258 p.
4. Norenkov I.P. 2000. Osnovy avtomatizirovannogo proek-tirovaniya [Basics of computer-aided design]. Moscow: MSTU. 336 p.
5. Petrosov D. A., and A. G. Bazhanov. 2018. Intellektual'nyj strukturnyj sintez tekhnologicheskih processov na osnove evolyucionnyh metodov i teorii setej Petri [Intelligent structural synthesis of technological processes based on evolutionary methods and the theory of Petri nets]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika [Bulletin of the South-West State University. Series: Management, computer technology, informatics]. Vol. 8, 2(27):41–51.
6. Brzhezovskij A.V., V.I. Zhakov, V.A Putilov, and V.V. Fil'chakov. 1992. Sintez modelej vychislitel'nogo eksperimenta [Synthesis of Computational Experiment Models]. SPb: Science. 231 p.
7. Emel'yanov S.V., A.G. Oleynik, Y.S. Popkov, and V.A. Putilov. 2004. Informacionnye tekhnologii regional'nogo upravleniya [Information technologies of regional administration]. Moscow: Editorial URSS. 400 p.
8. Russel S., and P. Norvig. 2010. Artificial Intelligence: A Modern Approach. 3rd edition. Prentice Hall. 1132 p.
9. Zuenko A. 2020. Representation and Processing of Quali-tative Constraints Using a New Type of Smart Tables. Proceedings of the 4th International Conference on Computer Science and Application Engineering (CSAE '20), 45:1–7.
10. Zuenko A.A., and A.Ya. Fridman Kontekstnyj podhod v sistemah soprovozhdeniya otkrytyh modelej predmetnoj oblasti [Contextual approach in support systems for open domain models]. Iskusstvennyj intellekt i prinyatie reshenij [Artificial Intelligence and Decision Making]. 3:41–51.
11. Bajwa I. S., B. Bordbar B., and M. G. Lee. 2010. OCL Constraints Generation from Natural Language Specification. 14th IEEE International Enterprise Distributed Object Computing Conference. 204–213.
12. Yap R., and W. Wang. 2020. Generalized Arc Consistency Algorithms for Table Constraints: A Summary of Algorithmic Ideas. AAAI 2020. 13590–13597.
13. Ingmar L. and C. Schulte. 2018. Making Compact-Table Compact. CP 2018, Lecture Notes in Computer Science. 11008:210–218.
14. Audemard G., C. Lecoutre, and M. Maamar. 2020. Segmented Tables: An Efficient Modeling Tool for Constraint Reasoning. ECAI 2020. 315–322.
15. Jussien N., G. Rochart, and X. Lorca. Choco documentation. Available at: (accessed September 10, 2021)

2024 / 02
2024 / 01
2023 / 04
2023 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".