Abstract.
We have developed a scenario approach for modeling natural processes under controlled anthropogenic impact. Determining a rational exploitation strategy for large predator species remains one of the controversial problems, and weakly formalized expert methods of fishery management are used for this task. Methods for determining commercial withdrawal quotas for other biological resources, which have previously worked successfully for some objects, can lead to long-term degradation of populations. We have developed a model of population reproduction with a hybrid time and with an algorithm that changes the regulation function depending on the current state of the stock. On the basis of the proposed computational model and typical logic of decisionmaking when changing the fishing impact, an oscillating scenario of collapse is considered on the example of red king crab Paralithodes camtschaticus. The dynamics of the new model with sharp fluctuations in abundance leads to the collapse of the fishery, when experts can expect a recovery of these stocks. The scenario model uses transformations of the phase portrait: disconnected boundaries of the attraction basins of attractors and a strange repeller, direct and inverse tangent bifurcations of stationary points, an attractor in the form of a set of disconnected intervals. Stochastic effects arise in this deterministic population model.
Keywords:
biocybernetics, formalization of expert management of biological resources, logical-hybrid systems, event hierarchical time, collapse scenarios, fractal boundaries, strange repeller, nonunimodal iterations, singular points.
PP. 36-46.
DOI: 10.14357/20790279210304 References
1. Abakumov A.I., Bocharov L.N., Reshetnyak T.M. 2009. Optimal’noye raspredeleniye kvot dlya mnogovidovykh promyslov na primere karaginskogo promyslovogo rayona [Optimal allocation of quotas for multi-species fisheries on the example of the Karagin fishing area]. Voprosy rybolovstva [Issues of fishing] 10 (2): 352-363. 2. Costello C. 2012. The Economic Value of Rebuilding Fisheries. OECD Food, Agriculture and Fisheries Papers 55: 1-69. 3. Pinsky M.L., Jensen O.P., Ricard D. 2011. Unexpected patterns of fisheries collapse in the world’s oceans // Proceedings of the National Academy of Sciences 108: 8317-8322. 4. Borisova T.Y., Solov’yeva I.V. 2017. Problemnyye aspekty modelirovaniya populyatsionnykh protsessov i kriterii ikh soglasovaniya [Problematic aspects of modeling population processes and criteria for their agreement]. Matematicheskiye mashiny i sistemy [Mathematical machines and systems] 1: 71-81. 5. Perevaryukh,a A.Yu. 2015. Gibridnaya model’ razvitiya lokal’no vzryvoobraznogo populyatsionnogo protsessa nasekomogo [A hybrid model of the development of a locally explosive population process of an insect]. Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk [Proceedings of the Institute for System Analysis of the Russian Academy of Sciences] 65 (2): 94-104. 6. Clark L.R. 1964. The population dynamics of Cardiaspina albitextura (Psyllidae). Australian Journal of Zoology 12(3): 362-380. 7. Mikhaylov V.V. 2017. Modelirovaniye dinamiki biogennoy nagruzki pri otsenke effektivnosti vospolneniya bioresursov [Simulation of the dynamics of biogenic load in assessing the efficiency of replenishment of biological resources]. Informatsionno-upravlyayushchiye sistemy [Information and control systems] 4: 103-110. 8. Sokolov A.V. 2014. Modelirovaniye evolyutsii populyatsiy s vozrastnoy strukturoy: svyaz’ rozhdayemosti so skorost’yu izmeneniya sredy [Mode-ling the evolution of populations with age structure: the relationship between fertility and the rate of environmental change]. Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk [Proceedings of the Institute for System Analysis of the Russian Academy of Sciences] 64 (3): 53-59. 9. Magnitskiy N.A. 2020. O perekhode k khaosu v odnoy modeli dinamiki populyatsiy [On the transition to chaos in one model of population dynamics]. Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk [Proceedings of the Institute of System Analysis of the Russian Academy of Sciences] 70 (2): 71-74. 10. Dubrovskaya V.A., Trofimova I.V. 2017. Model of dynamics of structured subpopulations of sturgeon fish in the Caspian Sea takes into account deviations in the rate of development of immature fish. Journal of the Belarusian State University. Biology 3: 76–86. 11. Churova M.V., Meshcheryakova O.V., Nemova N.N., Shatunovskiy M.I. 2010. Sootnosheniye rosta i nekotorykh biokhimicheskikh pokazateley ryb na primere mikizhi Parasalmo mykiss Walb [he ratio of growth and some biochemical parameters of fish on the example of mykiss Parasalmo mykiss Walb]. Izvestiya Rossiyskoy akademii nauk. Seriya biologicheskaya [Herald of the Russian Academy of Sciences. Biological series] 3: 289-299. 12. Kriksunov E.A. 1995. Theory of recruitment and interpretation of fish population dynamics. Journal of Ichthyology 35 (7): 10-37. 13. Veshchev P.V., Guteneva G.I. 2012. Efficiency of natural reproduction of sturgeons in the lower Volga under current conditions. Russian Journal of Ecology 43 (2): 142-147. 14. Borisov V.M., Yelizarov A.A., Nesterov V.D. 2006. Rol’ nerestovogo zapasa v formirovanii popolneniya severo-vostochnoy atlanticheskoy treski Gadus morhua [The role of the spawning stock in the formation of recruitment of the northeastern Atlantic cod Gadus morhua]. Voprosy ikhtiologii [Issues of ichthyology] 46 (1): 77-86. 15. Roughgarden J., Smith F. 1996. Why fisheries collapse and what to do about it. Proc. Natl. Acad. Sci. USA 93: 5078-5083. 16. Perevaryukha A.Yu. 2017. Comparative modeling of two especial scenarios of bioresources collapses: Canadian Atlantic cod and Caspian Sea sturgeon. Journal of Automation and Information Sciences 49 (6) 22-34. 17. Dew B., McConnaughey R. 2005 .Did trawling on the brood stock contribute to the collapse of Alaska’s king crab? Ecological Applications 15: 919–941. 18. Singer D. 1978. Stable orbits and bifurcations of the maps on the interval. SIAM Journal of Applied Math. 35: 260-268. 19. Gonchenko S.V., Gonchenko A.S., Malkin M.I. 2010. O klassifikatsii klassicheskikh i poluoriyentiruyemykh podkov v terminakh granichnykh tochek [On the classification of classical and semi-orientable horseshoes in terms of boundary points]. Nelineynaya dinamika [Nonlinear Dynamics] 6 (3): 549-566. 20. Guckenheimer J. 1979. Sensitive dependence on initial conditions for one dimensional maps. Comm. Mathem. Physics70: 133-160. 21. Grebogi C., Ott E., Yorke J.A. 1983. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D: Nonlinear Phenomena 7 (1–3): 181-200. 22. Nikitina A.V., Sukhinov A.I., Ugol’nitskiy G.A., Usov A.B. 2016. Optimal’noye upravleniye ustoychivym razvitiyem pri biologicheskoy reabilitatsii Azovskogo morya [Optimal management of sustainable development in biological rehabilitation of the Sea of Azov]. Matematicheskoye modelirovaniye [Mathematical modeling] 28 (7): 96-106. 23. Dubrovskaya V.A. 2016. O kriteriyakh obosnovannosti dlya analiza nelineynykh effektov v modelyakh ekspluatiruyemykh populyatsiy [On the validity criteria for analysis of nonlinear effects in models of exploited populations]. Problemy mekhaniki i upravleniya: Nelineynyye dinamicheskiye sistemy [Problems of Mechanics and Control: Nonlinear Dynamical Systems] 48: 74-83.
|