Macrosystem dynamics
Intellectual systems and technologies
Information Technology
System analysis in medicine and biology
Р.Е. Суворов, Н.В. Ярыгин, К.В. Попов, И.В. Холоденко, И.В. Смирнов "Алгоритмы построения портфолио для получения допуска к клиническим испытаниям в области регенеративной медицины"
Р.Е. Суворов, Н.В. Ярыгин, К.В. Попов, И.В. Холоденко, И.В. Смирнов "Алгоритмы построения портфолио для получения допуска к клиническим испытаниям в области регенеративной медицины"


В работе описываются принципы построения портфолио для получения допуска к клиническим испытаниям в области регенеративной медицины. Предложенные принципы включают методы: автоматизированного сбора информации о (до)клинических исследованиях; сравнительного анализа предлагаемого метода регенеративной медицины с уже имеющимися в клинической практике методами/препаратами; составления обзора по аналогичным методам регенеративной медицины, уже вошедшим в клиническую практику. Разработанные методы обеспечивают информационно-аналитическую поддержку для ускорения перехода от экспериментальных исследований к клинической практике в области регенеративной медицины.

Ключевые слова:

интеллектуальный анализ данных, извлечение информации из текстов, сравнительный анализ клинических испытаний.

Стр. 75-84.

Полная версия статьи в формате pdf. 

R.E. Suvorov, N.V. Yarygin, K.V. Popov, I.V. Kholodenko, I.V. Smirnov

"Principals of portfolio collection for clinical trials admission in regenerative medicine"

Abstract. The paper describes principals of creating portfolio for clinical trials admission in regenerative medicine. The proposed principals include methods for automated collection of information about (pre)clinical trials, a comparative analysis of clinical trials, methods for creating meta-analysis and reviews of analogous methods of regenerative medicine being used in practice.

Keywords: data mining, information extraction, a comparative analysis of clinical trials, regenerative medicine.


1. Savova G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications //Journal of the American Medical Informatics Association. – 2010. – Т. 17. – №. 5. – С. 507-513.
2. Kiritchenko S. et al. ExaCT: automatic extraction of clinical trial characteristics from journal publications //BMC medical informatics and decision making. – 2010. – Т. 10. – №. 1. – С. 56.
3. Rindflesch T. C. et al. EDGAR: extraction of drugs, genes and relations from the biomedical literature //Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. – NIH Public Access, 2000. – С. 517.
4. Xu H. et al. MedEx: a medication information extraction system for clinical narratives //Journal of the American Medical Informatics Association. – 2010. – Т. 17. – №. 1. – С. 19-24.
5. Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology //Nucleic acids research. – 2004. – Т. 32. – №. suppl 1. – С. D267-D270.
6. Tu S. W. et al. A practical method for transforming free-text eligibility criteria into computable criteria //Journal of biomedical informatics. – 2011. – Т. 44. – №. 2. – С. 239-250.
7. Weng, C., Wu, X., Luo, Z., Boland, M. R., Theodoratos, D., & Johnson, S. B. EliXR: an approach to eligibility criteria extraction and representation //Journal of the American Medical Informatics Association. – 2011. – Т. 18. – №. Supplement 1. – С. i116-i124.
8. Ross J. et al. Analysis of eligibility criteria complexity in clinical trials //AMIA Summits on Translational Science Proceedings. – 2010. – Т. 2010. – С. 46.
9. Miotto R., Weng C. Unsupervised mining of frequent tags for clinical eligibility text indexing //Journal of biomedical informatics. – 2013. – Т. 46. – №. 6. – С. 1145-1151.
10. Thiers F. A., Sinskey A. J., Berndt E. R. Trends in the globalization of clinical trials //Nature Reviews Drug Discovery. – 2008. – Т. 7. – №. 1. – С. 13-14.
11. Luo Z., Miotto R., Weng C. A human–computer collaborative approach to identifying common data elements in clinical trial eligibility criteria //Journal of biomedical informatics. – 2013. – Т. 46. – №. 1. – С. 33-39.
12. Pfiffner P. B. et al. ClinicalTrials. gov as a Data Source for Semi-Automated Point-Of-Care Trial Eligibility Screening //PloS one. – 2014. – Т. 9. – №. 10. – С. e111055.
13. Sim I. et al. Ontology-Based Federated Data Access to Human Studies Information //AMIA Annual Symposium Proceedings. – American Medical Informatics Association, 2012. – Т. 2012. – С. 856.
14. Hassanzadeh O. et al. Linkedct: A linked data space for clinical trials //arXiv preprint arXiv:0908.0567. – 2009.
15. Sim I., Olasov B., Carini S. An ontology of randomized controlled trials for evidence-based practice: content specification and evaluation using the competency decomposition method //Journal of biomedical informatics. – 2004. – Т. 37. – №. 2. – С. 108-119.
16. Huser V., Cimino J. J. Linking ClinicalTrials. gov and PubMed to track results of interventional human clinical trials //PloS one. – 2013. – Т. 8. – №. 7. – С. e68409.
17. Tsafnat G. et al. Systematic review automation technologies //Syst Rev. – 2014. – Т. 3. – №. 1. – С. 74.
18. Tasneem A. et al. The database for aggregate analysis of ClinicalTrials. gov (AACT) and subsequent regrouping by clinical specialty //PLoS One. – 2012. – Т. 7. – №. 3. – С. e33677.
19. Deshpande A. M. et al. TrialDB: a web-based clinical study data management system AMIA 2003 open source expo. – 2003. (электронная публикация
20. Brandt C. A. et al. Informatics tools to improve clinical research study implementation //Contemporary clinical trials. – 2006. – Т. 27. – №. 2. – С. 112-122.
21. Cohen A. M. et al. Evidence-based medicine, the essential role of systematic reviews, and the need for automated text mining tools //Proceedings of the 1st ACM International Health Informatics Symposium. – ACM, 2010. – С. 376-380.
22. Hao T. et al. Clustering clinical trials with similar eligibility criteria features //Journal of biomedical informatics. – 2014. – Т. 52. – С. 112-120.
23. Atkinson N. L. et al. Using the Internet to search for cancer clinical trials: A comparative audit of clinical trial search tools //Contemporary clinical trials. – 2008. – Т. 29. – №. 4. – С. 555-564.
24. A.A. Novik, T.I. Ionova Issledovanie kachestva zhizni v medicine [Studying life quality in medicine]. Мoscow, GEOTAR-MED, 2004.
25. Hermanns N, Schmitt A, et al., The Effect of a Diabetes-Specific Cognitive Behavioral Treatment Program (DIAMOS) for Patients With Diabetes and Subclinical Depression: Results of a Randomized Controlled Trial. Diabetes Care. 2015 Jan 20. pii: dc141416.
26. Di Maio M, Gallo C, et al., Symptomatic Toxicities Experienced During Anticancer Treatment: Agreement Between Patient and Physician Reporting in Three Randomized Trials. J Clin Oncol. 2015 Jan 26. pii: JCO.2014.57.9334.


© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".